1
|
Sarkar P, Wu C, Yang Z, Tang CY. Empowering ultrathin polyamide membranes at the water-energy nexus: strategies, limitations, and future perspectives. Chem Soc Rev 2024; 53:4374-4399. [PMID: 38529541 DOI: 10.1039/d3cs00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Membrane-based separation is one of the most energy-efficient methods to meet the growing need for a significant amount of fresh water. It is also well-known for its applications in water treatment, desalination, solvent recycling, and environmental remediation. Most typical membranes used for separation-based applications are thin-film composite membranes created using polymers, featuring a top selective layer generated by employing the interfacial polymerization technique at an aqueous-organic interface. In the last decade, various manufacturing techniques have been developed in order to create high-specification membranes. Among them, the creation of ultrathin polyamide membranes has shown enormous potential for achieving a significant increase in the water permeation rate, translating into major energy savings in various applications. However, this great potential of ultrathin membranes is greatly hindered by undesired transport phenomena such as the geometry-induced "funnel effect" arising from the substrate membrane, severely limiting the actual permeation rate. As a result, the separation capability of ultrathin membranes is still not fully unleashed or understood, and a critical assessment of their limitations and potential solutions for future studies is still lacking. Here, we provide a summary of the latest developments in the design of ultrathin polyamide membranes, which have been achieved by controlling the interfacial polymerization process and utilizing a number of novel manufacturing processes for ionic and molecular separations. Next, an overview of the in-depth assessment of their limitations resulting from the substrate membrane, along with potential solutions and future perspectives will be covered in this review.
Collapse
Affiliation(s)
- Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
2
|
Arzani FA, Dos Santos JHZ. Biocides and techniques for their encapsulation: a review. SOFT MATTER 2022; 18:5340-5358. [PMID: 35820409 DOI: 10.1039/d1sm01114f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biocides are compounds that are broadly used to protect products and equipment against microbiological damage. Encapsulation can effectively increase physicochemical stability and allow for controlled release of encapsulated biocides. We categorized microencapsulation into coacervation, sol-gel, and self-assembly methods. The former comprises internal phase separation, interfacial polymerization, and multiple emulsions, and the latter include polymersomes and layer-by-layer techniques. The focus of this review is the description of these categories based on their microencapsulation methods and mechanisms. We discuss the key features and potential applications of each method according to the characteristics of the biocide to be encapsulated, relating the solubility of biocides to the capsule-forming materials, the reactivity between them and the desired release rate. The role of encapsulation in the safety and toxicity of biocide applications is also discussed. Furthermore, future perspectives for biocide applications and encapsulation techniques are presented.
Collapse
Affiliation(s)
- Fernanda A Arzani
- Chemical Engineering Department, Universidade Federal do Rio Grande do Sul, Rua Eng. Luiz Englert s/n, Porto Alegre, 90040-040, Brazil.
| | - João H Z Dos Santos
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91500-000, Brazil.
| |
Collapse
|
3
|
Zhang F, Fan J, Wang S. Grenzflächenpolymerisation: Von der Chemie zu funktionellen Materialien. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Feilong Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Zhang F, Fan JB, Wang S. Interfacial Polymerization: From Chemistry to Functional Materials. Angew Chem Int Ed Engl 2020; 59:21840-21856. [PMID: 32091148 DOI: 10.1002/anie.201916473] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 11/07/2022]
Abstract
Interfacial polymerization, where a chemical reaction is confined at the liquid-liquid or liquid-air interface, exhibits a strong advantage for the controllable fabrication of films, capsules, and fibers for use as separation membranes and electrode materials. Recent developments in technology and polymer chemistry have brought new vigor to interfacial polymerization. Here, we consider the history of interfacial polymerization in terms of the polymerization types: interfacial polycondensation, interfacial polyaddition, interfacial oxidative polymerization, interfacial polycoordination, interfacial supramolecular polymerization, and some others. The accordingly emerging functional materials are highlighted, as well as the challenges and opportunities brought by new technologies for interfacial polymerization. Interfacial polymerization will no doubt keep on developing and producing a series of fascinating functional materials.
Collapse
Affiliation(s)
- Feilong Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun-Bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Berezkin AV, Kudryavtsev YV. Effect of Cross-Linking on the Structure and Growth of Polymer Films Prepared by Interfacial Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12279-12290. [PMID: 26471239 DOI: 10.1021/acs.langmuir.5b03031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interfacial polymerization of tri- and bifunctional monomers (A3B2 polymerization) is investigated by dissipative particle dynamics to reveal an effect of cross-linking on the reaction kinetics and structure of the growing polymer film. Regardless of the comonomer reactivity and miscibility, the kinetics in an initially bilayer melt passes from the reaction to diffusion control. Within the crossover period, branched macromolecules undergo gelation, which drastically changes the scenario of the polymerization process. Comparison with the previously studied linear interfacial polymerization (Berezkin, A. V.; Kudryavtsev, Y. V. Linear Interfacial Polymerization: Theory and Simulations with Dissipative Particle Dynamics J. Chem. Phys. 2014, 141, 194906) shows similar conversion rates but very different product characteristics. Cross-linked polymer films are markedly heterogeneous in density, their average polymerization degree grows with the comonomer miscibility, and end groups are mostly trapped deeply in the film core. Products of linear interfacial polymerization demonstrate opposite trends as they are spontaneously homogenized by a convective flow of macromolecules expelled from the reactive zone to the film periphery, which we call the reactive extrusion effect and which is hampered in branched polymerization. Influence of the comonomer architecture on the polymer film characteristics could be used in various practical applications of interfacial polymerization, such as fabrication of membranes, micro- and nanocapsules and 3D printing.
Collapse
Affiliation(s)
- Anatoly V Berezkin
- Max-Planck Institut für Eisenforschung GmbH , Max-Planck str. 1, 40237 Düsseldorf, Germany
- Technische Universität München , James-Franck-Str. 1, 85747 Garching, Germany
| | - Yaroslav V Kudryavtsev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences , Leninsky prosp. 29, 119991 Moscow, Russia
| |
Collapse
|
6
|
Berezkin AV, Kudryavtsev YV. Linear interfacial polymerization: Theory and simulations with dissipative particle dynamics. J Chem Phys 2014; 141:194906. [DOI: 10.1063/1.4901727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anatoly V. Berezkin
- Max-Planck Institut für Eisenforschung GmbH, Max-Planck str. 1, 40237 Düsseldorf, Germany
- Technische Universität München, James-Franck-Str. 1, 85747 Garching, Germany
| | - Yaroslav V. Kudryavtsev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky prosp. 29, 119991 Moscow, Russia
| |
Collapse
|
7
|
Perignon C, Ongmayeb G, Neufeld R, Frere Y, Poncelet D. Microencapsulation by interfacial polymerisation: membrane formation and structure. J Microencapsul 2014; 32:1-15. [DOI: 10.3109/02652048.2014.950711] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Hedaoo RK, Tatiya PD, Mahulikar PP, Gite VV. Fabrication of dendritic 0 G PAMAM-based novel polyurea microcapsules for encapsulation of herbicide and release rate from polymer shell in different environment. Des Monomers Polym 2013. [DOI: 10.1080/15685551.2013.840474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Rahul K. Hedaoo
- Department of Polymer Chemistry, School of Chemical Sciences, North Maharashtra University, Jalgaon, 425 001, Maharashtra, India
| | - Pyus D. Tatiya
- Department of Polymer Chemistry, School of Chemical Sciences, North Maharashtra University, Jalgaon, 425 001, Maharashtra, India
| | - Pramod P. Mahulikar
- Department of Polymer Chemistry, School of Chemical Sciences, North Maharashtra University, Jalgaon, 425 001, Maharashtra, India
| | - Vikas V. Gite
- Department of Polymer Chemistry, School of Chemical Sciences, North Maharashtra University, Jalgaon, 425 001, Maharashtra, India
| |
Collapse
|
9
|
Bouchemal K, Briançon S, Chaumont P, Fessi H, Zydowicz N. Microencapsulation of dehydroepiandrosterone (DHEA) with poly(ortho ester) polymers by interfacial polycondensation. J Microencapsul 2010. [DOI: 10.3109/02652040309178352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- K. Bouchemal
- Laboratoire des Matériaux Polymères et des Biomatériaux, UMR-CNRS 5627, Université Claude Bernard Lyon 1. 43, Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, Cedex, France
- Laboratoire d'Automatique et de Génie des Procédés, UMR-CNRS 5007 CPE Lyon, Université Claude Bernard Lyon 1. 43, Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, Cedex, France
| | - S. Briançon
- Laboratoire d'Automatique et de Génie des Procédés, UMR-CNRS 5007 CPE Lyon, Université Claude Bernard Lyon 1. 43, Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, Cedex, France
| | - P. Chaumont
- Laboratoire des Matériaux Polymères et des Biomatériaux, UMR-CNRS 5627, Université Claude Bernard Lyon 1. 43, Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, Cedex, France
| | - H. Fessi
- Laboratoire d'Automatique et de Génie des Procédés, UMR-CNRS 5007 CPE Lyon, Université Claude Bernard Lyon 1. 43, Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, Cedex, France
| | - N. Zydowicz
- Laboratoire des Matériaux Polymères et des Biomatériaux, UMR-CNRS 5627, Université Claude Bernard Lyon 1. 43, Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, Cedex, France
| |
Collapse
|
10
|
Tylkowski B, Pregowska M, Jamowska E, Garcia-Valls R, Giamberini M. Preparation of a new lightly cross-linked liquid crystalline polyamide by interfacial polymerization. Application to the obtainment of microcapsules with photo-triggered release. Eur Polym J 2009. [DOI: 10.1016/j.eurpolymj.2009.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Pascu O, Garcia‐Valls R, Giamberini M. Interfacial polymerization of an epoxy resin and carboxylic acids for the synthesis of microcapsules. POLYM INT 2008. [DOI: 10.1002/pi.2438] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|