1
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
2
|
Promoting zebrafish embryo tool to identify the effects of chemicals in the context of Water Framework Directive monitoring and assessment. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Lin CY, Chiang CY, Tsai HJ. Zebrafish and Medaka: new model organisms for modern biomedical research. J Biomed Sci 2016; 23:19. [PMID: 26822757 PMCID: PMC4730764 DOI: 10.1186/s12929-016-0236-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
Abstract
Although they are primitive vertebrates, zebrafish (Danio rerio) and medaka (Oryzias latipes) have surpassed other animals as the most used model organisms based on their many advantages. Studies on gene expression patterns, regulatory cis-elements identification, and gene functions can be facilitated by using zebrafish embryos via a number of techniques, including transgenesis, in vivo transient assay, overexpression by injection of mRNAs, knockdown by injection of morpholino oligonucleotides, knockout and gene editing by CRISPR/Cas9 system and mutagenesis. In addition, transgenic lines of model fish harboring a tissue-specific reporter have become a powerful tool for the study of biological sciences, since it is possible to visualize the dynamic expression of a specific gene in the transparent embryos. In particular, some transgenic fish lines and mutants display defective phenotypes similar to those of human diseases. Therefore, a wide variety of fish model not only sheds light on the molecular mechanisms underlying disease pathogenesis in vivo but also provides a living platform for high-throughput screening of drug candidates. Interestingly, transgenic model fish lines can also be applied as biosensors to detect environmental pollutants, and even as pet fish to display beautiful fluorescent colors. Therefore, transgenic model fish possess a broad spectrum of applications in modern biomedical research, as exampled in the following review.
Collapse
Affiliation(s)
- Cheng-Yung Lin
- Graduate Institute of Biomedical Sciences, Mackay Medical College, No.46, Section 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - Cheng-Yi Chiang
- Graduate Institute of Biomedical Sciences, Mackay Medical College, No.46, Section 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - Huai-Jen Tsai
- Graduate Institute of Biomedical Sciences, Mackay Medical College, No.46, Section 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan.
| |
Collapse
|
4
|
Ren X, Lu F, Cui Y, Wang X, Bai C, Chen J, Huang C, Yang D. Protective effects of genistein and estradiol on PAHs-induced developmental toxicity in zebrafish embryos. Hum Exp Toxicol 2012; 31:1161-9. [PMID: 22736253 DOI: 10.1177/0960327112450900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The toxicity of exposure to polycyclic aromatic hydrocarbons (PAHs) or phytoestrogen is relatively well characterized. However, the toxicity of combined exposure to PAHs and phytoestrogen is not well investigated. In the present study, benzo(a)pyrene (B(a)P) and benzo(k)fluorathene (B(k)F), genistein, along with 17β-estradiol (E2), were investigated for their single and combined developmental toxicity using zebrafish embryos as model system. We demonstrated that two representative PAHs, both B(a)P (≥1 μM) and B(k)F (≥10 μM), can cause significant malformation and mortality in developing zebrafish embryos. The toxicity effect of B(a)P was in general higher than that of B(k)F. Developmental exposure to high level of genistein (>20 μM) or E2 (>10 μM), also caused significant malformation and mortality in zebrafish larvae at 120 hours post fertilization (hpf). However, different toxic effects were observed for the combined exposure to PAHs and phytoestrogen in zebrafish. Lower doses of genistein (1 and 10 μM) and E2 (0.1 and 1 μM), when used in combination with high concentration of B(a)P (1 μM) or B(k)F (20 μM), can significantly suppress the toxicity effect of B(a)P and B(k)F in developing zebrafish embryos. The beneficial effect of genistein may be due to the inhibition of cytochrome P450 enzymes via directly interacting with aryl-hydrocarbon receptor (AhR) pathway, or disturbing the AhR pathway through interacting with estrogen receptor pathway.
Collapse
Affiliation(s)
- X Ren
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Stegeman JJ, Goldstone JV, Hahn ME. Perspectives on zebrafish as a model in environmental toxicology. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)02910-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Aoki Y. Materials for zebrafish research outreach activities in National Institute for Environmental Studies, Japan. Zebrafish 2009; 6:127-32. [PMID: 19537940 DOI: 10.1089/zeb.2008.0565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To promote application of the fruits of zebrafish research, we need to cultivate understanding of the use of zebrafish not only in the research community but also among the general public. On Open Days at our institute, the National Institute for Environmental Studies (NIES), our zebrafish group exhibits our research activity to the public. I explain here how we enable visitors to observe zebrafish embryogenesis under stereomicroscopes. Two kinds of materials handed out to participants are introduced and included: a zebrafish embryogenesis flip book and a mini guide to zebrafish. These materials serve as tools for our outreach activity and to promote further understanding of zebrafish research.
Collapse
Affiliation(s)
- Yasunobu Aoki
- Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
7
|
Amanuma K, Tone S, Nagaya M, Matsumoto M, Watanabe T, Totsuka Y, Wakabayashi K, Aoki Y. Mutagenicity of 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) and benzo[a]pyrene (BaP) in the gill and hepatopancreas of rpsL transgenic zebrafish. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 656:36-43. [DOI: 10.1016/j.mrgentox.2008.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/29/2008] [Accepted: 07/05/2008] [Indexed: 10/21/2022]
|
8
|
Hornung MW, Cook PM, Fitzsimmons PN, Kuehl DW, Nichols JW. Tissue distribution and metabolism of benzo[a]pyrene in embryonic and larval medaka (Oryzias latipes). Toxicol Sci 2007; 100:393-405. [PMID: 17804863 DOI: 10.1093/toxsci/kfm231] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The need to understand chemical uptake, distribution, and metabolism in embryonic and larval fish derives from the fact that these early life stages often exhibit greater sensitivity to xenobiotic compounds than do adult animals. In this study, a 6-h acute waterborne exposure immediately after fertilization was used to quickly load the egg with benzo[a]pyrene (BaP). This exposure was used to mimic the initial egg concentration of a persistent bioaccumulative toxicant that could result from maternal transfer. We used multiphoton laser scanning microscopy (MPLSM) in combination with conventional analytical chemistry methods to characterize the tissue distribution of BaP and its principal metabolites in medaka embryos and post-hatch larvae. Embryonic metabolism of BaP was evident by MPLSM prior to liver formation or heart development. A major product of this metabolism was identified by liquid chromatography/mass spectrometry as BaP-3-glucuronide. MPLSM showed that metabolites were sequestered within the yolk, biliary system, and gastrointestinal tract. When the gastrointestinal tract became patent a few days after hatch, the metabolites were rapidly eliminated. These findings indicate that some of the earliest embryonic tissues are metabolically competent and that redistribution of BaP and its metabolic products occurs throughout development. Rapid metabolism of BaP substantially reduces the body burden of parent chemical in the developing embryo, potentially reducing toxicity. It remains unclear whether metabolism of BaP in medaka embryos leads to the formation of DNA adducts associated with genotoxic effects or yields metabolites that later lead to other toxicity in juveniles or adults.
Collapse
Affiliation(s)
- Michael W Hornung
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN 55804, USA.
| | | | | | | | | |
Collapse
|
9
|
Yoshihara R, Nakane C, Takimoto K. A new system for detecting mutations in arabidopsis thaliana and the mutational spectra resulting from ethylmethanesulfonate treatment. JOURNAL OF RADIATION RESEARCH 2006; 47:223-8. [PMID: 16960337 DOI: 10.1269/jrr.0623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A system was developed for the detection and analysis of mutations occurring on chromosomal DNA in plants. The plasmid pML4, carrying the Escherichia coli rpsL gene, a target gene for mutagenesis, was inserted into a shuttle vector, pCGN5138, to construct a plasmid which could be used for the transformation of plants. pML4 sequences were introduced into Arabidopsis thaliana mediated by Agrobacterium. The pML4 DNA was rescued from transgenic Arabidopsis plants exposed to mutagens, and the plasmids were introduced into Escherichia coli DH10B to isolate mutant clones. In this system, any form of inactivation mutation in the rpsL gene can be positively selected since it makes the E. coli cells resistant to streptomycin. Here we report that the system could detect the mutagenic effect of ethylmethanesulfonate (EMS). Further characterization of the mutants revealed that G:C to A:T transitions predominated among the EMS-induced mutations. This assay system is useful for the detection and analysis of mutations arising on chromosomal DNA in plants, and should be useful for evaluating analysis of the effects of environmental mutagens.
Collapse
Affiliation(s)
- Ryouhei Yoshihara
- The United Graduate School of Agricultural Science, Tottori University
| | | | | |
Collapse
|
10
|
Barsiene J, Lehtonen KK, Koehler A, Broeg K, Vuorinen PJ, Lang T, Pempkowiak J, Syvokiene J, Dedonyte V, Rybakovas A, Repecka R, Vuontisjärvi H, Kopecka J. Biomarker responses in flounder (Platichthys flesus) and mussel (Mytilus edulis) in the Klaipeda-Būtinge area (Baltic Sea). MARINE POLLUTION BULLETIN 2006; 53:422-36. [PMID: 16678860 DOI: 10.1016/j.marpolbul.2006.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
During the EU project BEEP a battery of biomarkers was applied in flounder (Platichthys flesus) and the blue mussel (Mytilus edulis) collected at three locations off the Lithuanian coast (Baltic Sea) in June and September 2001 and 2002. The elevated biomarker responses in specimens sampled in September 2001 were apparently related to the extensive dredging activities in the Klaipeda port area and subsequent dumping of contaminated sediments. High concentrations of organic pollutants (organochlorines and PBDEs) were also measured in the tissues of both indicator species. In addition, response levels of genotoxicity, cytotoxicity, immunotoxicity as well as concentrations of PAH metabolites in the bile of flounder showed elevations in 2002 after an oil spill in the Būtinge oil terminal in November 2001. In flounder, biomarker measurements 10 months after the spill indicated recovery processes but in mussels a high level of genotoxicity could still be observed 22 months later. The present study illustrates the usefulness of the multi-biomarker approach in the detection of biological effects of pollution in this region of the Baltic Sea.
Collapse
Affiliation(s)
- Janina Barsiene
- Institute of Ecology of Vilnius University, Akademijos 2, 08412 Vilnius, Lithuania.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lein P, Silbergeld E, Locke P, Goldberg AM. In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:735-744. [PMID: 21783550 DOI: 10.1016/j.etap.2004.12.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To address the growing need for scientifically valid and humane alternatives to developmental neurotoxicity testing (DNT), we propose that basic research scientists in developmental neurobiology be brought together with mechanistic toxicologists and policy analysts to develop the science and policy for DNT alternatives that are based on evolutionarily conserved mechanisms of neurodevelopment. In this article we briefly review in vitro and other alternative models and present our rationale for proposing that resources be focused on adapting alternative simple organism systems for DNT. We recognize that alternatives to DNT will not completely replace a DNT paradigm that involves in vivo testing in mammals. However, we believe that alternatives will be of great value in prioritizing chemicals and in identifying mechanisms of developmental neurotoxicity, which in turn will be useful in refining and reducing in vivo mammalian tests for exposures most likely to be hazardous to the developing human nervous system.
Collapse
Affiliation(s)
- Pamela Lein
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, CROET/L606, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
12
|
Amanuma K, Nakamura T, Aoki Y. MNNG-induced mutations in the adult gill and hepatopancreas and in embryos of rpsL transgenic zebrafish. Mutat Res 2005; 556:151-61. [PMID: 15491643 DOI: 10.1016/j.mrfmmm.2004.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/30/2004] [Accepted: 07/30/2004] [Indexed: 11/19/2022]
Abstract
To evaluate the feasibility of a mutagenicity assay using adult rpsL transgenic zebrafish, 4- to 8-month-old females were exposed to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) (0, 15 or 30 mg/L in a water bath for 2 h). At 2 weeks after exposure, MNNG showed a concentration-dependent significant increase in mutant frequency (MF) of 8 x 10(-5), 18 x 10(-5), and 51 x 10(-5), respectively, in the gill. DNA sequencing revealed that 60-74% of the induced mutations were G:C to A:T transitions, consistent with the known mutagenic effects of MNNG. A marginal but significant increase in MF was observed in the hepatopancreas only in the group exposed to 30 mg/L, with the induction of some G:C to A:T transitions. A time-course of the appearance of mutations was determined in fish treated with 15 mg/L MNNG. In both, the gill and hepatopancreas, a higher MF was observed at 3 weeks than at 2 weeks, suggesting that an expression time of at least 3 weeks is preferable for the assay. When embryos (29 h post-fertilization) were exposed to MNNG (0, 50, and 150 mg/L) for 1 h, MFs increased significantly with an increase in the concentration of MNNG (5 x 10(-5), 40 x 10(-5), and 144 x 10(-5), respectively) at 3 days after exposure. G:C to A:T transitions were the predominant mutations, and these occurred at the same sites in the rpsL gene as in adult tissues. Thus, MNNG induces typical mutations in the gill and hepatopancreas of adult fish, and in embryos, suggesting that the rpsL zebrafish is a useful tool for monitoring genotoxicity caused by water-borne mutagens.
Collapse
Affiliation(s)
- Kimiko Amanuma
- Research Center for Environmental Risk, National Institute for Environmental Studies, Onogawa, Tsukuba 305-8506, Japan.
| | | | | |
Collapse
|
13
|
Hinton DE, Kullman SW, Hardman RC, Volz DC, Chen PJ, Carney M, Bencic DC. Resolving mechanisms of toxicity while pursuing ecotoxicological relevance? MARINE POLLUTION BULLETIN 2005; 51:635-48. [PMID: 16154600 DOI: 10.1016/j.marpolbul.2005.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this age of modern biology, aquatic toxicological research has pursued mechanisms of action of toxicants. This has provided potential tools for ecotoxicologic investigations. However, problems of biocomplexity and issues at higher levels of biological organization remain a challenge. In the 1980s and 1990s and continuing to a lesser extent today, organisms residing in highly contaminated field sites or exposed in the laboratory to calibrated concentrations of individual compounds were carefully analyzed for their responses to priority pollutants. Correlation of biochemical and structural analyses in cultured cells and tissues, as well as the in vivo exposures led to the production and application of biomarkers of exposure and effect and to our awareness of genotoxicity and its chronic manifestations, such as neoplasms, in wild fishes. To gain acceptance of these findings in the greater environmental toxicology community, "validation of the model" versus other, better-established often rodent models, was necessary and became a major focus. Resultant biomarkers were applied to heavily contaminated and reference field sites as part of effects assessment and with investigations following large-scale disasters such as oil spills or industrial accidents. Over the past 15 years, in the laboratory, small aquarium fish models such as medaka (Oryzias latipes), zebrafish (Danio rerio), platyfish (Xiphophorus species), fathead minnow (Pimephales promelas), and sheepshead minnow (Cyprinodon variegatus) were increasingly used establishing mechanisms of toxicants. Today, the same organisms provide reliable information at higher levels of biological organization relevant to ecotoxicology. We review studies resolving mechanisms of toxicity and discuss ways to address biocomplexity, mixtures of contaminants, and the need to relate individual level responses to populations and communities.
Collapse
Affiliation(s)
- David E Hinton
- Laboratory of Molecular Aquatic Toxicology, Division of Environmental Sciences and Policy, Nicholas School of the Environment and Earth Sciences, Duke University Durham, NC 277-8-0328, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Udvadia AJ, Linney E. Windows into development: historic, current, and future perspectives on transgenic zebrafish. Dev Biol 2003; 256:1-17. [PMID: 12654288 DOI: 10.1016/s0012-1606(02)00083-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The recent explosion of transgenic zebrafish lines in the literature demonstrates the value of this model system for detailed in vivo analysis of gene regulation and morphogenetic movements. The optical clarity and rapid early development of zebrafish provides the ability to follow these events as they occur in live, developing embryos. This article will review the development of transgenic technology in zebrafish as well as the current and future uses of transgenic zebrafish to explore the dynamic environment of the developing vertebrate embryo.
Collapse
Affiliation(s)
- Ava J Udvadia
- Department of Molecular Genetics and Microbiology, Box 3020, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
15
|
Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 2003; 31 Suppl:62-87. [PMID: 12597434 PMCID: PMC1909756 DOI: 10.1080/01926230390174959] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1-2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Environmental and Molecular Toxicology and Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA.
| | | |
Collapse
|
16
|
AOKI Y, SATO H, AMANUMA K. Analytical Chemistry related to Biofunctional Research. Detection of environmental mutagens using transgenic animals. BUNSEKI KAGAKU 2002. [DOI: 10.2116/bunsekikagaku.51.373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yasunobu AOKI
- Research Center for Environmental Risk, National Institute for Environmental Studies
| | - Hiromi SATO
- Research Center for Environmental Risk, National Institute for Environmental Studies
| | - Kimiko AMANUMA
- Research Center for Environmental Risk, National Institute for Environmental Studies
| |
Collapse
|