1
|
Bacurio JHT, Gao S, Yang H, Basu AK, Greenberg MM. Synergistic effects on mutagenicity of tandem lesions containing 8-oxo-7,8-dihydro-2'-deoxyguanosine or Fapy•dG flanked by a 3' 5-formyl-2'-deoxyuridine in human cells. DNA Repair (Amst) 2023; 129:103527. [PMID: 37467631 PMCID: PMC10528826 DOI: 10.1016/j.dnarep.2023.103527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 06/18/2023] [Indexed: 07/21/2023]
Abstract
Modified nucleotides often hinder and/or decrease the fidelity of DNA polymerases. Tandem lesions, which are comprised of DNA modifications at two contiguous nucleotide positions, can be even more detrimental to genome stability. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5fdU) flanked at the 5'-position by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) or N-(2-deoxy-α,β-D-erythropentofuranosyl)-N-(2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy•dG) were discovered. We examined the replication of 5'- 8-OxodGuo-5fdU and 5'-Fapy•dG-5fdU tandem lesions in HEK 293T cells and several polymerase deficient variants by transfecting single-stranded vectors containing them. The local sequence of the tandem lesions encompasses the 273 codon of the p53 gene, a mutational hot-spot. The bypass efficiency and mutation spectra of the tandem lesions were compared to those of the isolated lesions. Replication of weakly mutagenic 5-fdU is little changed when part of the 5'- 8-OxodGuo-5fdU tandem lesion. G → T transversions attributable to 8-OxodGuo increase > 10-fold when the tandem lesion is bypassed. 5'-Fapy•dG-5fdU has a synergistic effect on the error-prone bypass of both lesions. The mutation frequency (MF) of 5'-Fapy•dG-5fdU increases 3-fold compared to isolated Fapy•dG. In addition, a 5'-adjacent Fapy•dG significantly increases the MF of 5fdU. The major mutation, G → T transversions, decrease by almost a third in hPol κ- cells, which is the opposite effect when isolated Fapy•dG in the same sequence context is replicated in HEK 293T cells in the same sequence. Steady-state kinetics indicate that hPol κ contributes to greater G → T transversions by decreasing the specificity constant for dCTP compared to an isolated Fapy•dG. The greater conformational freedom of Fapy•dG compared to 8-OxodGuo and its unusual ability to epimerize at the anomeric center is believed to be the source of the complex effects of 5'-Fapy•dG-5fdU on replication.
Collapse
Affiliation(s)
| | - Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Respiratory and Critical Care Medicine Targeted Tracer Research and Development Laboratory West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
2
|
Scandolara TB, Valle SF, Esteves C, Scherer NDM, de Armas EM, Furtado C, Gomes R, Boroni M, Jaques HDS, Alves FM, Rech D, Panis C, Bonvicino CR. Somatic DNA Damage Response and Homologous Repair Gene Alterations and Its Association With Tumor Variant Burden in Breast Cancer Patients With Occupational Exposure to Pesticides. Front Oncol 2022; 12:904813. [PMID: 35875117 PMCID: PMC9305859 DOI: 10.3389/fonc.2022.904813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination is a crucial pathway that is specialized in repairing double-strand breaks; thus, alterations in genes of this pathway may lead to loss of genomic stability and cell growth suppression. Pesticide exposure potentially increases cancer risk through several mechanisms, such as the genotoxicity caused by chronic exposure, leading to gene alteration. To analyze this hypothesis, we investigated if breast cancer patients exposed to pesticides present a different mutational pattern in genes related to homologous recombination (BRCA1, BRCA2, PALB2, and RAD51D) and damage-response (TP53) concerning unexposed patients. We performed multiplex PCR-based assays and next-generation sequencing (NGS) of all coding regions and flanking splicing sites of BRCA1, BRCA2, PALB2, TP53, and RAD51D in 158 unpaired tumor samples from breast cancer patients on MiSeq (Illumina) platform. We found that exposed patients had tumors with more pathogenic and likely pathogenic variants than unexposed patients (p = 0.017). In general, tumors that harbored a pathogenic or likely pathogenic variant had a higher mutational burden (p < 0.001). We also observed that breast cancer patients exposed to pesticides had a higher mutational burden when diagnosed before 50 years old (p = 0.00978) and/or when carrying BRCA1 (p = 0.0138), BRCA2 (p = 0.0366), and/or PALB2 (p = 0.00058) variants, a result not found in the unexposed group. Our results show that pesticide exposure impacts the tumor mutational landscape and could be associated with the carcinogenesis process, therapy response, and disease progression. Further studies should increase the observation period in exposed patients to better evaluate the impact of these findings.
Collapse
Affiliation(s)
- Thalita Basso Scandolara
- Department of Genetics, Biology Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sara Ferreira Valle
- Department of Genetics, Biology Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Esteves
- Bioinformatics and Computational Biology Laboratory, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Nicole de Miranda Scherer
- Bioinformatics and Computational Biology Laboratory, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Elvismary Molina de Armas
- Bioinformatics and Computational Biology Laboratory, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
- Department of Informatics, Pontificia Universidade Católica (PUC)-Rio, Rio de Janeiro, Brazil
| | - Carolina Furtado
- Division of Genetics, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Renan Gomes
- Division of Genetics, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Mariana Boroni
- Bioinformatics and Computational Biology Laboratory, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | | | - Fernanda Mara Alves
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão, Brazil
| | - Daniel Rech
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão, Brazil
- Francisco Beltrão Cancer Hospital, Francisco Beltrão, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão, Brazil
| | - Cibele Rodrigues Bonvicino
- Department of Genetics, Biology Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Genetics, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Kozmin SG, Eot-Houllier G, Reynaud-Angelin A, Gasparutto D, Sage E. Dissecting Highly Mutagenic Processing of Complex Clustered DNA Damage in Yeast Saccharomyces cerevisiae. Cells 2021; 10:cells10092309. [PMID: 34571958 PMCID: PMC8471780 DOI: 10.3390/cells10092309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Clusters of DNA damage, also called multiply damaged sites (MDS), are a signature of ionizing radiation exposure. They are defined as two or more lesions within one or two helix turns, which are created by the passage of a single radiation track. It has been shown that the clustering of DNA damage compromises their repair. Unresolved repair may lead to the formation of double-strand breaks (DSB) or the induction of mutation. We engineered three complex MDS, comprised of oxidatively damaged bases and a one-nucleotide (1 nt) gap (or not), in order to investigate the processing and the outcome of these MDS in yeast Saccharomyces cerevisiae. Such MDS could be caused by high linear energy transfer (LET) radiation. Using a whole-cell extract, deficient (or not) in base excision repair (BER), and a plasmid-based assay, we investigated in vitro excision/incision at the damaged bases and the mutations generated at MDS in wild-type, BER, and translesion synthesis-deficient cells. The processing of the studied MDS did not give rise to DSB (previously published). Our major finding is the extremely high mutation frequency that occurs at the MDS. The proposed processing of MDS is rather complex, and it largely depends on the nature and the distribution of the damaged bases relative to the 1 nt gap. Our results emphasize the deleterious consequences of MDS in eukaryotic cells.
Collapse
Affiliation(s)
- Stanislav G. Kozmin
- Institut Curie, PSL Research University Orsay, F-91405 Orsay, France; (G.E.-H.); (A.R.-A.)
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: (S.G.K.); (E.S.)
| | - Gregory Eot-Houllier
- Institut Curie, PSL Research University Orsay, F-91405 Orsay, France; (G.E.-H.); (A.R.-A.)
- Institut de Génétique et Développement de Rennes, CNRS-UR1 UMR6290, Université Rennes-1, F-35043 Rennes, France
| | - Anne Reynaud-Angelin
- Institut Curie, PSL Research University Orsay, F-91405 Orsay, France; (G.E.-H.); (A.R.-A.)
| | - Didier Gasparutto
- CEA, CNRS IRIG/SyMMES-UMR5819, Université Grenoble Alpes, F-38054 Grenoble, France;
| | - Evelyne Sage
- Institut Curie, PSL Research University Orsay, F-91405 Orsay, France; (G.E.-H.); (A.R.-A.)
- CNRS UMR3347, INSERM U1021, Université Paris-Saclay, F-91405 Orsay, France
- Correspondence: (S.G.K.); (E.S.)
| |
Collapse
|
4
|
Grøsvik K, Tesfahun AN, Muruzábal-Lecumberri I, Haugland GT, Leiros I, Ruoff P, Kvaløy JT, Knævelsrud I, Ånensen H, Alexeeva M, Sato K, Matsuda A, Alseth I, Klungland A, Bjelland S. The Escherichia coli alkA Gene Is Activated to Alleviate Mutagenesis by an Oxidized Deoxynucleoside. Front Microbiol 2020; 11:263. [PMID: 32158436 PMCID: PMC7051996 DOI: 10.3389/fmicb.2020.00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/04/2020] [Indexed: 12/01/2022] Open
Abstract
The cellular methyl donor S-adenosylmethionine (SAM) and other endo/exogenous agents methylate DNA bases non-enzymatically into products interfering with replication and transcription. An important product is 3-methyladenine (m3A), which in Escherichia coli is removed by m3A-DNA glycosylase I (Tag) and II (AlkA). The tag gene is constitutively expressed, while alkA is induced by sub-lethal concentrations of methylating agents. We previously found that AlkA exhibits activity for the reactive oxygen-induced thymine (T) lesion 5-formyluracil (fU) in vitro. Here, we provide evidence for AlkA involvement in the repair of oxidized bases by showing that the adenine (A) ⋅ T → guanine (G) ⋅ cytosine (C) mutation rate increased 10-fold in E. coli wild-type and alkA– cells exposed to 0.1 mM 5-formyl-2′-deoxyuridine (fdU) compared to a wild-type specific reduction of the mutation rate at 0.2 mM fdU, which correlated with alkA gene induction. G⋅C → A⋅T alleviation occurred without alkA induction (at 0.1 mM fdU), correlating with a much higher AlkA efficiency for fU opposite to G than for that to A. The common keto form of fU is the AlkA substrate. Mispairing with G by ionized fU is favored by its exclusion from the AlkA active site.
Collapse
Affiliation(s)
- Kristin Grøsvik
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Almaz Nigatu Tesfahun
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Izaskun Muruzábal-Lecumberri
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | | | - Ingar Leiros
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Jan Terje Kvaløy
- Department of Mathematics and Physics, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ingeborg Knævelsrud
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Hilde Ånensen
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Kousuke Sato
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology, Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
5
|
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry and Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
6
|
Kasai H, Kawasaki Y, Kawai K. Pyrimidine Ring-Opened Product from Oxidative DNA Damage of 5-Formyl-2'-deoxyuridine. Chem Res Toxicol 2019; 32:737-744. [PMID: 30785277 DOI: 10.1021/acs.chemrestox.8b00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After thymidine (dT) was treated with a Fenton-type reagent and further incubated for a long period (6 days) under physiological conditions (37 °C, pH 7.4), a new product, named dT*, was detected by HPLC in addition to the free thymine base and the known oxidative dT damage, 5-formyl-2'-deoxyuridine (f5dU). dT* was found to be formed from f5dU. The structure of dT* was determined to be 3-amino-2-carbamoyl-2-propenal-N3-2'-deoxyriboside, a pyrimidine ring-opened product from f5dU, on the basis of 1H- and 13C NMR analyses and mass spectra. From the model compound 1-methyl-5-formyluracil, a similar ring-opened product was formed after the incubation. dT* was also detected in DNA treated with a Fenton-type reagent or γ-rays, followed by the prolonged incubation. dT* will be a new promising marker of oxidative DNA damage. The possible role of this product in oxy-radical-induced mutagenesis is discussed.
Collapse
Affiliation(s)
- Hiroshi Kasai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences , University of Occupational and Environmental Health , 807-8555 Kitakyushu , Japan
| | - Yuya Kawasaki
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences , University of Occupational and Environmental Health , 807-8555 Kitakyushu , Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences , University of Occupational and Environmental Health , 807-8555 Kitakyushu , Japan
| |
Collapse
|
7
|
Shinmura K, Kato H, Kawanishi Y, Goto M, Tao H, Yoshimura K, Nakamura S, Misawa K, Sugimura H. Defective repair capacity of variant proteins of the DNA glycosylase NTHL1 for 5-hydroxyuracil, an oxidation product of cytosine. Free Radic Biol Med 2019; 131:264-273. [PMID: 30552997 DOI: 10.1016/j.freeradbiomed.2018.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
The NTHL1 gene encodes DNA glycosylase, which is involved in base excision repair, and biallelic mutations of this gene result in NTHL1-associated polyposis (NAP), a hereditary disease characterized by colorectal polyposis and multiple types of carcinomas. However, no proper functional characterization of variant NTHL1 proteins has been done so far. Herein, we report functional evaluation of variant NTHL1 proteins to aid in the accurate diagnosis of NAP. First, we investigated whether it would be appropriate to use 5-hydroxyuracil (5OHU), an oxidation product of cytosine, for the evaluation. In the supF forward mutation assay, 5OHU caused an increase of the mutation frequency in human cells, and the C→T mutation was predominant among the 5OHU-induced mutations. In addition, in DNA cleavage activity assay, 5OHU was excised by NTHL1 as well as four other DNA glycosylases (SMUG1, NEIL1, TDG, and UNG2). When human cells overexpressing the five DNA glycosylases were established, it was found that each of the five DNA glycosylases, including NTHL1, had the ability to suppress 5OHU-induced mutations. Based on the above results, we performed functional evaluation of eight NTHL1 variants using 5OHU-containing DNA substrate or shuttle plasmid. The DNA cleavage activity assay showed that the variants of NTHL1, Q90X, Y130X, R153X, and Q287X, but not R19Q, V179I, V217F, or G286S, showed defective repair activity for 5OHU and two other oxidatively damaged bases. Moreover, the supF forward mutation assay showed that the four truncated-type NTHL1 variants showed a reduced ability to suppress 5OHU-induced mutations in human cells. These results suggest that the NTHL1 variants Q90X, Y130X, R153X, and Q287X, but not R19Q, V179I, V217F, or G286S, were defective in 5OHU repair and the alleles encoding them were considered to be pathogenic for NAP.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan.
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan
| | - Yuichi Kawanishi
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masanori Goto
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hong Tao
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan
| | - Satoki Nakamura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan
| |
Collapse
|
8
|
Liu C, Wang Y, Zhang X, Wu F, Yang W, Zou G, Yao Q, Wang J, Chen Y, Wang S, Zhou X. Enrichment and fluorogenic labelling of 5-formyluracil in DNA. Chem Sci 2017; 8:4505-4510. [PMID: 28660064 PMCID: PMC5472030 DOI: 10.1039/c7sc00637c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/02/2017] [Indexed: 12/26/2022] Open
Abstract
Recently, the detection of natural thymine modified 5-formyluracil has attracted widespread attention. Herein, we introduce a new insight into designing reagents for both the selective biotin enrichment and fluorogenic labelling of 5-formyluracil in DNA. Biotinylated o-phenylenediamine directly tethered to naphthalimide can switch on 5-formyluracil, under physiological conditions, which can then be used in cell imaging after exposure to γ-irradiation. In addition, its labelling property caused the polymerase extension to stop in the 5-formyluracil site, which gave us more information than the fluorescence did itself. The idea of detecting 5-formyluracil might be used in the synthesis of other modified diaminofluoresceins.
Collapse
Affiliation(s)
- Chaoxing Liu
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Yafen Wang
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Fan Wu
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Wei Yang
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Qian Yao
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Jiaqi Wang
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Yuqi Chen
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Shaoru Wang
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Hubei Province Key Laboratory of Allergy and Immunology , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| |
Collapse
|
9
|
Yu Y, Cui Y, Niedernhofer LJ, Wang Y. Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage. Chem Res Toxicol 2016; 29:2008-2039. [PMID: 27989142 DOI: 10.1021/acs.chemrestox.6b00265] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A variety of endogenous and exogenous agents can induce DNA damage and lead to genomic instability. Reactive oxygen species (ROS), an important class of DNA damaging agents, are constantly generated in cells as a consequence of endogenous metabolism, infection/inflammation, and/or exposure to environmental toxicants. A wide array of DNA lesions can be induced by ROS directly, including single-nucleobase lesions, tandem lesions, and hypochlorous acid (HOCl)/hypobromous acid (HOBr)-derived DNA adducts. ROS can also lead to lipid peroxidation, whose byproducts can also react with DNA to produce exocyclic DNA lesions. A combination of bioanalytical chemistry, synthetic organic chemistry, and molecular biology approaches have provided significant insights into the occurrence, repair, and biological consequences of oxidatively induced DNA lesions. The involvement of these lesions in the etiology of human diseases and aging was also investigated in the past several decades, suggesting that the oxidatively induced DNA adducts, especially bulky DNA lesions, may serve as biomarkers for exploring the role of oxidative stress in human diseases. The continuing development and improvement of LC-MS/MS coupled with the stable isotope-dilution method for DNA adduct quantification will further promote research about the clinical implications and diagnostic applications of oxidatively induced DNA adducts.
Collapse
Affiliation(s)
| | | | - Laura J Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute Florida , Jupiter, Florida 33458, United States
| | | |
Collapse
|
10
|
Hardisty R, Kawasaki F, Sahakyan AB, Balasubramanian S. Selective Chemical Labeling of Natural T Modifications in DNA. J Am Chem Soc 2015; 137:9270-2. [PMID: 25946119 PMCID: PMC4521287 DOI: 10.1021/jacs.5b03730] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/30/2022]
Abstract
We present a chemical method to selectively tag and enrich thymine modifications, 5-formyluracil (5-fU) and 5-hydroxymethyluracil (5-hmU), found naturally in DNA. Inherent reactivity differences have enabled us to tag 5-fU chemoselectively over its C modification counterpart, 5-formylcytosine (5-fC). We rationalized the enhanced reactivity of 5-fU compared to 5-fC via ab initio quantum mechanical calculations. We exploited this chemical tagging reaction to provide proof of concept for the enrichment of 5-fU containing DNA from a pool that contains 5-fC or no modification. We further demonstrate that 5-hmU can be chemically oxidized to 5-fU, providing a strategy for the enrichment of 5-hmU. These methods will enable the mapping of 5-fU and 5-hmU in genomic DNA, to provide insights into their functional role and dynamics in biology.
Collapse
Affiliation(s)
- Robyn
E. Hardisty
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Fumiko Kawasaki
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Aleksandr B. Sahakyan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Shankar Balasubramanian
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cancer
Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
- School
of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, U.K.
| |
Collapse
|
11
|
Sato K. [Development of selective detection method for 5-formyl-2'-deoxyuridine in DNA using a fluorogenic reagent]. YAKUGAKU ZASSHI 2013; 133:1041-53. [PMID: 24088348 DOI: 10.1248/yakushi.13-00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is important that various lesions in DNA were detected selectively and conveniently to know mechanisms of carcinogenicity and/or aging of cells. However, most detection methods of DNA lesion are complicated and take a long time for enzymatic hydrolysis and analysis by HPLC and/or mass spectrometry. This review shows the new concept for detection of DNA lesion by "fluorogenic reagent". Inspired by the unique bis-heteroaryl structure of luciferin and 5-heteroaryl-2'-deoxyuridine having good fluorescence properties, we designed and synthesized fluorogenic reagent 4,5-dimethoxy-2-aminothiophenol for a selective and convenient detection for 5-formyl-2'-deoxyuridine, which is generated in yields comparable to that of 2'-deoxy-8-oxoguanosine, in DNA. Generated 5-(5,6-dimethoxybenzothiazol-2-yl)-2'-deoxyuridine has a high quantum yield and larger Stokes shift in aqueous solution. This derivatization of 5-formyl-2'-deoxyuridine in oligodeoxynucleotide occurred quickly and quantitatively. The fluorogenic reagent was also revealed to detect 5-formyl-2'-deoxyuridine in γ-irradiated calf thymus DNA with irradiation dose dependent manner. Thus, our fluorogenic strategy enables to selective and convenient detection of lesion in DNA exposed to various forms of oxidative stress.
Collapse
Affiliation(s)
- Kousuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
12
|
Belousova EA, Vasil'eva IA, Moor NA, Zatsepin TS, Oretskaya TS, Lavrik OI. Clustered DNA lesions containing 5-formyluracil and AP site: repair via the BER system. PLoS One 2013; 8:e68576. [PMID: 23936307 PMCID: PMC3735541 DOI: 10.1371/journal.pone.0068576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/29/2013] [Indexed: 12/31/2022] Open
Abstract
Lesions in the DNA arise under ionizing irradiation conditions or various chemical oxidants as a single damage or as part of a multiply damaged site within 1–2 helical turns (clustered lesion). Here, we explored the repair opportunity of the apurinic/apyrimidinic site (AP site) composed of the clustered lesion with 5-formyluracil (5-foU) by the base excision repair (BER) proteins. We found, that if the AP site is shifted relative to the 5-foU of the opposite strand, it could be repaired primarily via the short-patch BER pathway. In this case, the cleavage efficiency of the AP site-containing DNA strand catalyzed by human apurinic/apyrimidinic endonuclease 1 (hAPE1) decreased under AP site excursion to the 3'-side relative to the lesion in the other DNA strand. DNA synthesis catalyzed by DNA polymerase lambda was more accurate in comparison to the one catalyzed by DNA polymerase beta. If the AP site was located exactly opposite 5-foU it was expected to switch the repair to the long-patch BER pathway. In this situation, human processivity factor hPCNA stimulates the process.
Collapse
Affiliation(s)
- Ekaterina A. Belousova
- Laboratory of Bioorganic chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Inna A. Vasil'eva
- Laboratory of Bioorganic chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Nina A. Moor
- Laboratory of Bioorganic chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Timofey S. Zatsepin
- Chemistry Department of Moscow State University and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Tatiana S. Oretskaya
- Chemistry Department of Moscow State University and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Olga I. Lavrik
- Laboratory of Bioorganic chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
13
|
Khrustalev VV, Barkovsky EV. A blueprint for a mutationist theory of replicative strand asymmetries formation. Curr Genomics 2012; 13:55-64. [PMID: 22942675 PMCID: PMC3269017 DOI: 10.2174/138920212799034730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/15/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022] Open
Abstract
In the present review, we summarized current knowledge on replicative strand asymmetries in prokaryotic genomes. A cornerstone for the creation of a theory of their formation has been overviewed. According to our recent works, the probability of nonsense mutation caused by replication-associated mutational pressure is higher for genes from lagging strands than for genes from leading strands of both bacterial and archaeal genomes. Lower density of open reading frames in lagging strands can be explained by faster rates of nonsense mutations in genes situated on them. According to the asymmetries in nucleotide usage in fourfold and twofold degenerate sites, the direction of replication-associated mutational pressure for genes from lagging strands is usually the same as the direction of transcription-associated mutational pressure. It means that lagging strands should accumulate more 8-oxo-G, uracil and 5-formyl-uracil, respectively. In our opinion, consequences of cytosine deamination (C to T transitions) do not lead to the decrease of cytosine usage in genes from lagging strands because of the consequences of thymine oxidation (T to C transitions), while guanine oxidation (causing G to T transversions) makes the main contribution into the decrease of guanine usage in fourfold degenerate sites of genes from lagging strands. Nucleotide usage asymmetries and bias in density of coding regions can be found in archaeal genomes, although, the percent of "inversed" asymmetries is much higher for them than for bacterial genomes. "Homogenized" and "inversed" replicative strand asymmetries in archaeal genomes can be used as retrospective indexes for detection of OriC translocations and large inversions.
Collapse
Affiliation(s)
- Vladislav V Khrustalev
- Department of General Chemistry, Belarussian State Medical University, Belarus, Minsk, Dzerzinskogo, 83, Russia
| | | |
Collapse
|
14
|
Hirose W, Sato K, Matsuda A. Fluorescence Properties of 5-(5,6-Dimethoxybenzothiazol-2-yl)-2′-deoxyuridine (dbtU) and Oligodeoxyribonucleotides Containing dbtU. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100818] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Wang J, Yuan B, Guerrero C, Bahde R, Gupta S, Wang Y. Quantification of oxidative DNA lesions in tissues of Long-Evans Cinnamon rats by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope-dilution method. Anal Chem 2011; 83:2201-9. [PMID: 21323344 DOI: 10.1021/ac103099s] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of our study was to develop suitable methods to quantify oxidative DNA lesions in the setting of transition metal-related diseases. Transition metal-driven Fenton reactions constitute an important endogenous source of reactive oxygen species (ROS). In genetic diseases with accumulation of transition metal ions, excessive ROS production causes pathophysiological changes, including DNA damage. Wilson's disease is an autosomal recessive disorder with copper toxicosis due to deficiency of ATP7B protein needed for excreting copper into bile. The Long-Evans Cinnamon (LEC) rat bears a deletion in Atp7b gene and serves as an excellent model for hepatic Wilson's disease. We used a sensitive capillary liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS/MS) method in conjunction with the stable isotope-dilution technique to quantify several types of oxidative DNA lesions in the liver and brain of LEC rats. These lesions included 5-formyl-2'-deoxyuridine, 5-hydroxymethyl-2'-deoxyuridine, and the 5'R and 5'S diastereomers of 8,5'-cyclo-2'-deoxyguanosine and 8,5'-cyclo-2'-deoxyadenosine. Moreover, the levels of these DNA lesions in the liver and brain increased with age and correlated with age-dependent regulation of the expression of DNA repair genes in LEC rats. These results provide significant new knowledge for better understanding the implications of oxidative DNA lesions in transition metal-induced diseases, such as Wilson's disease, as well as in aging and aging-related pathological conditions.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | | | | | | | | | | |
Collapse
|
16
|
Tsunoda M, Sakaue T, Naito S, Sunami T, Abe N, Ueno Y, Matsuda A, Takénaka A. Insights into the structures of DNA damaged by hydroxyl radical: crystal structures of DNA duplexes containing 5-formyluracil. J Nucleic Acids 2010; 2010:107289. [PMID: 20976303 PMCID: PMC2952808 DOI: 10.4061/2010/107289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/19/2010] [Accepted: 08/15/2010] [Indexed: 12/01/2022] Open
Abstract
Hydroxyl radicals are potent mutagens that attack DNA to form various base and ribose derivatives. One of the major damaged thymine derivatives is 5-formyluracil (fU), which induces pyrimidine transition during replication. In order to establish the structural basis for such mutagenesis, the crystal structures of two kinds of DNA d(CGCGRATfUCGCG) with R = A/G have been determined by X-ray crystallography. The fU residues form a Watson-Crick-type pair with A and two types of pairs (wobble and reversed wobble) with G, the latter being a new type of base pair between ionized thymine base and guanine base. In silico structural modeling suggests that the DNA polymerase can accept the reversed wobble pair with G, as well as the Watson-Crick pair with A.
Collapse
Affiliation(s)
- Masaru Tsunoda
- Faculty of Pharmacy, Iwaki Meisei University, Chuodai-Iino, Iwaki 970-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Osyda D, Motyka R, Walczak KZ. The arylimines of 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbaldehyde: Synthesis and their application in 1,3-dipolar cycloaddition reaction. J Heterocycl Chem 2009. [DOI: 10.1002/jhet.284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Goto M, Shinmura K, Igarashi H, Kobayashi M, Konno H, Yamada H, Iwaizumi M, Kageyama S, Tsuneyoshi T, Tsugane S, Sugimura H. Altered expression of the human base excision repair gene NTH1 in gastric cancer. Carcinogenesis 2009; 30:1345-1352. [PMID: 19414504 DOI: 10.1093/carcin/bgp108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
A base excision repair enzyme, NTH1, has activity that is capable of removing oxidized pyrimidines, such as thymine glycol (Tg), from DNA. To clarify whether the NTH1 gene is involved in gastric carcinogenesis, we first examined the NTH1 expression level in eight gastric cancer cell lines, and the results showed that NTH1 expression was downregulated in all of them, including cell line AGS. Next, a comparison of excisional repair activity against Tg by empty vector-transfected AGS clones and FLAG-NTH1-expressing AGS clones showed that a low NTH1 expression level led to low capacity to repair the damaged base in the gastric epithelial cells. Reduced messenger RNA expression of NTH1 was also detected in 36% (18/50) of primary gastric cancers. Moreover, immunohistochemical analysis revealed that NTH1 was predominantly localized in the cytoplasm in 24% (12/50) of the primary gastric cancers in contrast to the nuclear localization in non-cancerous tissue, suggesting impaired excisional repair ability for nuclear DNA. No associations between clinicopathological factors and NTH1 expression level or localization pattern were detected in the gastric cancers. Next, we found two novel genetic polymorphisms, i.e. c.-163C>G and c.-241_-221del, in the NTH1 promoter region, and a luciferase assay showed that both were associated with reduced promoter activity. However, there were no associations between the polymorphisms and risk of gastric cancer in a gastric cancer case-control study. These findings suggested that downregulation of NTH1 expression and abnormal localization of NTH1 may be involved in the pathogenesis of a subset of gastric cancers.
Collapse
Affiliation(s)
- Masanori Goto
- First Department of Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Knaevelsrud I, Slupphaug G, Leiros I, Matsuda A, Ruoff P, Bjelland S. Opposite-base dependent excision of 5-formyluracil from DNA by hSMUG1. Int J Radiat Biol 2009; 85:413-20. [PMID: 19365746 DOI: 10.1080/09553000902818915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of this study was to determine the excision efficiency of hSMUG1 (human single-strand-selective monofunctional uracil-DNA glycosylase) for 5-formyluracil (fU), a major thymine lesion formed by ionizing radiation, opposite all normal bases in DNA, to possibly explain mutation induction by fU in the DNA of mammalian cells. MATERIALS AND METHODS An enzymatically [(32)P]labelled fU-containing 36 nucleotide DNA sequence plus its complementary sequence (with an A, C, G or T residue inserted opposite fU) was subjected to hSMUG1 in a pH 7.5-buffer, followed by NaOH-mediated cleavage of the resultant abasic sites. Cleaved and uncleaved DNA were separated by denaturing electrophoresis and quantified by autoradiography. RESULTS The hSMUG1 excised fU from DNA opposite all normal bases with the highest activity when opposite non-cognate C or T followed by G and cognate A. CONCLUSIONS The predominant T --> G and T --> A transversions induced by fU in mammalian cells may be explained by replicative incorporation of C and T, respectively, opposite the lesion and subsequent SMUG1-initiated repair of fU.
Collapse
Affiliation(s)
- Ingeborg Knaevelsrud
- Faculty of Science and Technology, Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | | | | | | | | | | |
Collapse
|
20
|
Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008; 21:232-52. [PMID: 18072751 PMCID: PMC2821157 DOI: 10.1021/tx700292a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions.
Collapse
Affiliation(s)
- James C. Delaney
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - John M. Essigmann
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
21
|
Hong H, Wang Y. Derivatization with Girard reagent T combined with LC-MS/MS for the sensitive detection of 5-formyl-2'-deoxyuridine in cellular DNA. Anal Chem 2007; 79:322-6. [PMID: 17194156 PMCID: PMC2531228 DOI: 10.1021/ac061465w] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleoside 5-formyl-2'-deoxyuridine (FodU) is a major thymidine lesion generated by reactive oxygen species. In vitro and in vivo replication studies revealed that FodU can be mutagenic. A reliable and sensitive quantification method is, therefore, important for assessing the biological implications of this lesion. However, the detection limit of FodU by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was relatively poor compared with those of other oxidative DNA base damages. In this paper we described a new approach for the highly sensitive detection of FodU. We derivatized FodU with Girard reagent T to form a hydrazone conjugate harboring a precharged quaternary ammonium moiety, which enabled the facile detection of the resulting conjugate by positive-ion electrospray ionization MS. We also showed that the combination of derivatization with LC-MS/MS on a linear-ion-trap mass spectrometer could allow for the quantification of FodU at a detection limit of 3-4 fmol, which is approximately 20-fold better than that for the direct analysis of the underivatized compound. By using isotope-labeled FodU as the internal standard and this derivatization method, we further quantified, by using LC-MS/MS, the yield of FodU formed in cellular DNA.
Collapse
Affiliation(s)
- Haizheng Hong
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California at Riverside, Riverside, California 92521, USA
| | | |
Collapse
|
22
|
Matuo Y, Nishijima S, Hase Y, Sakamoto A, Tanaka A, Shimizu K. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae. Mutat Res 2006; 602:7-13. [PMID: 16949109 DOI: 10.1016/j.mrfmmm.2006.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/27/2006] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of gamma-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by gamma-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C-->T:A, and all the transitions were G:C-->A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by gamma-ray irradiation were located uniformly throughout the gene.
Collapse
Affiliation(s)
- Youichirou Matuo
- Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Irie D, Ono A, Izuta S. Recognition of oxidized thymine base on the single-stranded DNA by replication protein A. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:439-51. [PMID: 16838837 DOI: 10.1080/01457630600684138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Replication protein A (RAP) is a eukaryotic single-stranded DNA binding protein involved in DNA replication, repair, and recombination. Recent studies indicate that RPA preferentially binds the damaged sites rather than the undamaged sites. Therefore, RPA is thought to be a member ofrepair factories or a sensor of lesion on DNA. To obtain further information of behavior of RPA against the oxidized lesion, we studied the binding affinity of RPA for the single-stranded DNA containing 5-formyluracil, a major lesion of thymine base yielded by the oxidation, using several synthetic oligonucleotides. The affinity of RPA for oligonucleotides was determined by gel shift assay. Results suggest that the surrounding sequence of 5-formyluracil may affect the affinity for RPA, and that the 5-formyluracil on the purine stretch but not the pyrimidine stretch increases the affinity for RPA. Results of affinity labeling experiment of RPA with the oligonucleotides containing 5-formyluracil indicate that RPA1 subunit may directly recognize and bind to the 5-formyluracil on the single-stranded DNA.
Collapse
Affiliation(s)
- Daisuke Irie
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | | |
Collapse
|
24
|
Abstract
5-Methylcytosine in DNA is genetically unstable. Methylated CpG (mCpG) sequences frequently undergo mutation resulting in a general depletion of this dinucleotide sequence in mammalian genomes. In human genetic disease- and cancer-relevant genes, mCpG sequences are mutational hotspots. It is an almost universally accepted dogma that these mutations are caused by random deamination of 5-methylcytosines. However, it is plausible that mCpG transitions are not caused simply by spontaneous deamination of 5-methylcytosine in double-stranded DNA but by other processes including, for example, mCpG-specific base modification by endogenous or exogenous mutagens or, alternatively, by secondary factors operating at mCpG sequences and promoting deamination. We also discuss that mCpG sequences are favored targets for specific exogenous mutagens and carcinogens. When adjacent to another pyrimidine, 5-methylcytosine preferentially undergoes sunlight-induced pyrimidine dimer formation. Certain polycyclic aromatic hydrocarbons form guanine adducts and induce G to T transversion mutations with high selectivity at mCpG sequences.
Collapse
Affiliation(s)
- G P Pfeifer
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
25
|
Zhang QM, Yonekura SI, Takao M, Yasui A, Sugiyama H, Yonei S. DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the hNEIL1 and hNTH1 enzymes in human cells. DNA Repair (Amst) 2005; 4:71-9. [PMID: 15533839 DOI: 10.1016/j.dnarep.2004.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Accepted: 08/17/2004] [Indexed: 01/08/2023]
Abstract
Bacteria and eukaryotes possess redundant activities that recognize and remove oxidatively damaged bases from DNA through base excision repair. DNA glycosylases excise damaged bases to initiate the base excision repair pathway. hOgg1 and hNTH1, homologues of E. coli MutM and Nth, respectively, had been identified and characterized in human cells. Recent works revealed that human cells have three orthologues of E. coli Nei, hNEIL1, hNEIL2 and hNEIL3. In the present experiments, hNEIL1 protected the E. coli nth nei mutant from lethal effect of hydrogen peroxide and high frequency of spontaneous mutations under aerobic conditions. Furthermore, hNEIL1 efficiently cleaved double stranded oligonucleotides containing 5-formyluracil (5-foU) and 5-hydroxymethyluracil (5-hmU) in vitro via beta- and delta-elimination reactions. Similar activities were detected with hNTH1. These results indicate that hNEIL1 and hNTH1 are DNA glycosylases that excise 5-foU and 5-hmU as efficiently as Tg in human cells.
Collapse
Affiliation(s)
- Qiu-Mei Zhang
- Laboratory of Radiation Biology, Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Avila-Adame C, Olaya G, Köller W. Characterization of Colletotrichum graminicola Isolates Resistant to Strobilurin-Related QoI Fungicides. PLANT DISEASE 2003; 87:1426-1432. [PMID: 30812383 DOI: 10.1094/pdis.2003.87.12.1426] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of Colletotrichum graminicola were collected from annual bluegrass or bent grass turf in Japan and the United States, and their sensitivities to QoI fungicides (QoIs) as well as their cytochrome b sequences were characterized. Five isolates sampled from turf treated repeatedly with azoxystrobin were highly QoI resistant under both in vivo and in vitro test conditions. The nucleotide sequences of a large cytochrome b gene segment involving the binding site of QoIs were fully homologous for all resistant isolates and contained the G143A target site mutation known to confer QoI resistance in other pathogens. QoI-sensitive isolates collected prior to treatments with QoIs were more diverse with regard to their cytochrome b gene sequences and their phenotype responses to QoIs. All wild-type isolates retained a glycine in position 143 of cytochrome b. Three of the four QoI-sensitive isolates were, in addition, distinguished by leucines in positions 95, 130, and 141, which were exchanged to threonine in all resistant but also in one of the sensitive isolates. In addition to a more pronounced divergence of cytochrome b sequences, the sensitive wild-type isolates also were diverse with regard to the induction of alternative respiration in response to QoI action, as indicated by comparisons of QoI sensitivities displayed in the absence or presence of the alternative oxidase inhibitor salicylhydroxamic acid. These different phenotype responses expressed under in vitro test conditions had no or only a slight impact on anthracnose control in protective applications of azoxystrobin. Isolate responses in vitro were very similar for trifloxystrobin, indicating cross-resistance among the class of QoIs. Our results imply that C. graminicola falls into the class of pathogens with a potential for rapid selection of highly QoI-resistant phenotypes. Frequent monitoring of population sensitivities will be required to determine the status of population responses toward practical QoI resistance.
Collapse
Affiliation(s)
- Cruz Avila-Adame
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva 14456
| | | | - Wolfram Köller
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station
| |
Collapse
|
27
|
Abstract
The oxidation of the thymine methyl group can generate 5-formyluracil (FoU). Template FoU residues are known to miscode, generating base substitution mutations. The repair of the FoU lesion is therefore important in minimizing mutations induced by DNA oxidation. We have studied the repair of FoU in synthetic oligonucleotides when paired with A and G. In E. coli cell extract, the repair of FoU is four orders of magnitude lower than the repair of U and is similar for both FoU:A and FoU:G base pairs. In HeLa nuclear extract, the repair of FoU:A is similarly four orders of magnitude lower than the repair of uracil, although the FoU:G lesion is repaired 10 times more efficiently than FoU:A. The FoU:G lesion is shown to be repaired by E. coli mismatch uracil DNA glycosylase (Mug), thermophile mismatch thymine DNA glycosylase (Tdg), mouse mismatch thymine DNA glycosylase (mTDG) and human methyl-CpG-binding thymine DNA glycosylase (MBD4), whereas the FoU:A lesion is repaired only by Mug and mTDG. The repair of FoU relative to the other pyrimidines examined here in human cell extract differs from the substrate preferences of the known glycosylases, suggesting that additional, and as yet unidentified glycosylases exist in human cells to repair the FoU lesion. Indeed, as observed in HeLa nuclear extract, the repair of mispaired FoU derived from misincorporation of dGMP across from template FoU could promote rather than minimize mutagenesis. The pathways by which this important lesion is repaired in human cells are as yet unexplained, and are likely to be complex.
Collapse
Affiliation(s)
- Pingfang Liu
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
28
|
Kamiya H. Mutagenic potentials of damaged nucleic acids produced by reactive oxygen/nitrogen species: approaches using synthetic oligonucleotides and nucleotides: survey and summary. Nucleic Acids Res 2003; 31:517-31. [PMID: 12527759 PMCID: PMC140503 DOI: 10.1093/nar/gkg137] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA and DNA precursors (deoxyribonucleotides) suffer damage by reactive oxygen/nitrogen species. They are important mutagens for organisms, due to their endogenous formation. Damaged DNA and nucleotides cause alterations of the genetic information by the mispairing properties of the damaged bases, such as 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) and 2-hydroxyadenine. Here, the author reviews the mutagenic potentials of damaged bases in DNA and of damaged DNA precursors formed by reactive oxygen/nitrogen species, focusing on the results obtained with synthetic oligonucleotides and 2'-deoxyribonucleoside 5'-triphosphates.
Collapse
Affiliation(s)
- Hiroyuki Kamiya
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
29
|
Miyabe I, Zhang QM, Kino K, Sugiyama H, Takao M, Yasui A, Yonei S. Identification of 5-formyluracil DNA glycosylase activity of human hNTH1 protein. Nucleic Acids Res 2002; 30:3443-8. [PMID: 12140329 PMCID: PMC137084 DOI: 10.1093/nar/gkf460] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5-formyluracil (5-foU) is a potentially mutagenic lesion of thymine produced in DNA by ionizing radiation and various chemical oxidants. The elucidation of repair mechanisms for 5-foU will yield important insights into the biological consequences of the lesion. Recently, we reported that 5-foU is recognized and removed from DNA by Escherichia coli enzymes Nth (endonuclease III), Nei (endonuclease VIII) and MutM (formamidopyrimidine DNA glycosylase). Human cells have been shown to have enzymatic activities that release 5-foU from X-ray-irradiated DNA, but the molecular identities of these activities are not yet known. In this study, we demonstrate that human hNTH1 (endonuclease III homolog) has a DNA glycosylase/AP lyase activity that recognizes 5-foU in DNA and removes it. hNTH1 cleaved 5-foU-containing duplex oligonucleotides via a beta-elimination reaction. It formed Schiff base intermediates with 5-foU-containing oligonucleotides. Furthermore, hNTH1 cleaved duplex oligonucleotides containing all of the 5-foU/N pairs (N = G, A, T or C). The specific activities of hNTH1 for cleavage of oligonucleotides containing 5-foU and thymine glycol were 0.011 and 0.045 nM/min/ng protein, respectively. These results indicate that hNTH1 has DNA glycosylase activity with the potential to recognize 5-foU in DNA and remove it in human cells.
Collapse
Affiliation(s)
- Izumi Miyabe
- Laboratory of Radiation Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|