1
|
Sarrazin SLF, Bourdineaud JP, Maia JGS, Mourão RHV, Oliveira RB. Antifungal chemosensitization through induction of oxidative stress: A model for control of candidiasis based on the Lippia origanoides essential oil. AN ACAD BRAS CIENC 2024; 96:e20230532. [PMID: 38597491 DOI: 10.1590/0001-3765202420230532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 04/11/2024] Open
Abstract
In this work, evaluated the antifungal chemosensitizing effect of the Lippia origanoides essential oil (EO) through the induction of oxidative stress. The EO was obtained by hydrodistillation and analyzed by GC-MS. To evaluate the antifungal chemosensitizing effect through induction of oxidative stress, cultures of the model yeast Saccharomyces cerevisiae ∆ycf1 were exposed to sub-inhibitory concentrations of the EO, and the expression of genes known, due be overexpressed in response to oxidative and mutagenic stress was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) method. Carvacrol and thymol were identified as the main components. The EO was effective in preventing or reducing the growth of the microorganisms tested. The gene expression profiles showed that EO promoted changes in the patterns of expression of genes involved in oxidative and mutagenic stress resistance. The combined use of the L. origanoides EO with fluconazole has been tested on Candida yeasts and the strategy resulted in a synergistic enhancement of the antifungal action of the azolic chemical product. Indeed, in association with EO, the fluconazole MICs dropped. Thus, the combinatorial use of L. origanoides EO as a chemosensitizer agent should contribute to enhancing the efficiency of conventional antifungal drugs, reducing their negative side effects.
Collapse
Affiliation(s)
- Sandra Layse F Sarrazin
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste doPará, Campus Tapajós, Bloco Modular I, Avenida Vera Paz, s/n, 68040-255 Santarém, PR, Brazil
| | - Jean-Paul Bourdineaud
- University of Bordeaux, CNRS, UMR 5234, Fundamental Microbiology and Pathogenicity Laboratory, European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac, France
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110 Belém, PA, Brazil
| | - Rosa Helena V Mourão
- Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia (BIONORTE/Polo Pará), Universidade Federal do Oeste do Pará, Campus Tapajós, Bloco Modular I, Avenida Vera Paz, s/n, 68040-255 Santarém, PR, Brazil
| | - Ricardo B Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste doPará, Campus Tapajós, Bloco Modular I, Avenida Vera Paz, s/n, 68040-255 Santarém, PR, Brazil
| |
Collapse
|
2
|
Yamamoto K, Tochikawa S, Miura Y, Matsunobu S, Hirose Y, Eki T. Sensing chemical-induced DNA damage using CRISPR/Cas9-mediated gene-deletion yeast-reporter strains. Appl Microbiol Biotechnol 2024; 108:188. [PMID: 38300351 PMCID: PMC10834598 DOI: 10.1007/s00253-024-13020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Microorganism-based genotoxicity assessments are vital for evaluating potential chemical-induced DNA damage. In this study, we developed both chromosomally integrated and single-copy plasmid-based reporter assays in budding yeast using a RNR3 promoter-driven luciferase gene. These assays were designed to compare the response to genotoxic chemicals with a pre-established multicopy plasmid-based assay. Despite exhibiting the lowest luciferase activity, the chromosomally integrated reporter assay showed the highest fold induction (i.e., the ratio of luciferase activity in the presence and absence of the chemical) compared with the established plasmid-based assay. Using CRISPR/Cas9 technology, we generated mutants with single- or double-gene deletions, affecting major DNA repair pathways or cell permeability. This enabled us to evaluate reporter gene responses to genotoxicants in a single-copy plasmid-based assay. Elevated background activities were observed in several mutants, such as mag1Δ cells, even without exposure to chemicals. However, substantial luciferase induction was detected in single-deletion mutants following exposure to specific chemicals, including mag1Δ, mms2Δ, and rad59Δ cells treated with methyl methanesulfonate; rad59Δ cells exposed to camptothecin; and mms2Δ and rad10Δ cells treated with mitomycin C (MMC) and cisplatin (CDDP). Notably, mms2Δ/rad10Δ cells treated with MMC or CDDP exhibited significantly enhanced luciferase induction compared with the parent single-deletion mutants, suggesting that postreplication and for nucleotide excision repair processes predominantly contribute to repairing DNA crosslinks. Overall, our findings demonstrate the utility of yeast-based reporter assays employing strains with multiple-deletion mutations in DNA repair genes. These assays serve as valuable tools for investigating DNA repair mechanisms and assessing chemical-induced DNA damage. KEY POINTS: • Responses to genotoxic chemicals were investigated in three types of reporter yeast. • Yeast strains with single- and double-deletions of DNA repair genes were tested. • Two DNA repair pathways predominantly contributed to DNA crosslink repair in yeast.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Shintaro Tochikawa
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuuki Miura
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Shogo Matsunobu
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
- Laboratory of Genomics and Photobiology, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
3
|
Shichinohe M, Ohkawa S, Hirose Y, Eki T. Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase. PLoS One 2023; 18:e0294571. [PMID: 37992069 PMCID: PMC10664910 DOI: 10.1371/journal.pone.0294571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023] Open
Abstract
Mutagens and oxidative agents damage biomolecules, such as DNA; therefore, detecting genotoxic and oxidative chemicals is crucial for maintaining human health. To address this, we have developed several types of yeast-based reporter assays designed to detect DNA damage and oxidative stress. This study aimed to develop a novel yeast-based assay using a codon-optimized stable or unstable NanoLuc luciferase (yNluc and yNluCP) gene linked to a DNA damage- or oxidative stress-responsive promoter, enabling convenient sensing genotoxicity or oxidative stress, respectively. End-point luciferase assays using yeasts with a chromosomally integrated RNR3 promoter (PRNR3)-driven yNluc gene exhibited high levels of chemiluminescence via NanoLuc luciferase and higher fold induction by hydroxyurea than a multi-copy plasmid-based assay. Additionally, the integrated reporter system detected genotoxicity caused by four different types of chemicals. Oxidants (hydrogen peroxide, tert-butyl hydroperoxide, and menadione) were successfully detected through transient expressions of luciferase activity in real-time luciferase assay using yeasts with a chromosomally integrated TRX2 promoter (PTRX2)-linked yNlucCP gene. However, the luciferase activity was gradually induced in yeasts with a multi-copy reporter plasmid, and their expression profiles were notably distinct from those observed in chromosomally integrated yeasts. The responses of yNlucCP gene against three oxidative chemicals, but not diamide and zinc oxide suspension, were observed using chromosomally integrated reporter yeasts. Given that yeast cells with chromosomally integrated PRNR3-linked yNluc and PTRX2-linked yNlucCP genes express strong chemiluminescence signals and are easily maintained and handled without restrictive nutrient medium, these yeast strains with NanoLuc reporters may prove useful for screening potential genotoxic and oxidative chemicals.
Collapse
Affiliation(s)
| | - Shun Ohkawa
- Molecular Genetics Laboratory, Toyohashi, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Laboratory of Genomics and Photobiology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | | |
Collapse
|
4
|
Lin A, Chumala P, Du Y, Ma C, Wei T, Xu X, Luo Y, Katselis GS, Xiao W. Transcriptional activation of budding yeast DDI2/3 through chemical modifications of Fzf1. Cell Biol Toxicol 2023; 39:1531-1547. [PMID: 35809138 DOI: 10.1007/s10565-022-09745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
DDI2 and DDI3 (DDI2/3) are two identical genes in Saccharomyces cerevisiae encoding cyanamide (CY) hydratase. They are not only highly induced by CY, but also by a DNA-damaging agent methyl methanesulfonate (MMS), and the regulatory mechanism is unknown. In this study, we performed a modified genome-wide genetic synthetic array screen and identified Fzf1 as a zinc-finger transcriptional activator required for CY/MMS-induced DDI2/3 expression. Fzf1 binds to a DDI2/3 promoter consensus sequence CS2 in vivo and in vitro, and this interaction was enhanced in response to the CY treatment. Indeed, experimental over production of Fzf1 alone was sufficient to induce DDI2/3 expression; however, CY and MMS treatments did not cause the accumulation or apparent alteration in migration of cellular Fzf1. To test a hypothesis that Fzf1 is activated by covalent modification of CY and MMS, we performed mass spectrometry of CY/MMS-treated Fzf1 and detected a few modified lysine residues. Amino acid substitutions of these residues revealed that Fzf1-K70A completely abolished MMS-induced and reduced CY-induced DDI2/3 expression, indicating that the Fzf1-K70 methylation activates Fzf1. This study collectively reveals a novel regulatory mechanism by which Fzf1 is activated by chemical modifications and in turn induces the expression of its target genes for detoxification.
Collapse
Affiliation(s)
- Aiyang Lin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Paulos Chumala
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Ying Du
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Chaoqun Ma
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ting Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xin Xu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yu Luo
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - George S Katselis
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
5
|
Zhao X, Lian X, Liu Y, Zhou L, Wu B, Fu YV. A Peptide Derived from GAPDH Enhances Resistance to DNA Damage in Saccharomyces cerevisiae Cells. Appl Environ Microbiol 2022; 88:e0219421. [PMID: 34936834 PMCID: PMC8863060 DOI: 10.1128/aem.02194-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Social behaviors do not exist only in higher organisms but are also present in microbes that interact for the common good. Here, we report that budding yeast cells interact with their neighboring cells after exposure to DNA damage. Yeast cells irradiated with DNA-damaging UV light secrete signal peptides that can increase the survival of yeast cells exposed to DNA-damaging stress. The secreted peptide is derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and it induced cell death of a fraction of yeast cells in the group. The data suggest that the GAPDH-derived peptide serves in budding yeast's social interaction in response to DNA-damaging stress. IMPORTANCE Many studies have shown that microorganisms, including bacteria and yeast, display increased tolerance to stress after exposure to the same stressor. However, the mechanism remains unknown. In this study, we report a striking finding that Saccharomyces cerevisiae cells respond to DNA damage by secreting a peptide that facilitates resistance to DNA-damaging stress. Although it has been shown that GAPDH possesses many key functions in cells aside from its well-established role in glycolysis, this study demonstrated that GAPDH is also involved in the social behaviors response to DNA-damaging stress. The study opens the gate to an interesting research field about microbial social activity for adaptation to a harsh environment.
Collapse
Affiliation(s)
- Xi Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xianqiang Lian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Liyan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu V. Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Stultz LK, Hunsucker A, Middleton S, Grovenstein E, O'Leary J, Blatt E, Miller M, Mobley J, Hanson PK. Proteomic analysis of the S. cerevisiae response to the anticancer ruthenium complex KP1019. Metallomics 2020; 12:876-890. [PMID: 32329475 PMCID: PMC7362344 DOI: 10.1039/d0mt00008f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like platinum-based chemotherapeutics, the anticancer ruthenium complex indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)], or KP1019, damages DNA, induces apoptosis, and causes tumor regression in animal models. Unlike platinum-based drugs, KP1019 showed no dose-limiting toxicity in a phase I clinical trial. Despite these advances, the mechanism(s) and target(s) of KP1019 remain unclear. For example, the drug may damage DNA directly or by causing oxidative stress. Likewise, KP1019 binds cytosolic proteins, suggesting DNA is not the sole target. Here we use the budding yeast Saccharomyces cerevisiae as a model in a proteomic study of the cellular response to KP1019. Mapping protein level changes onto metabolic pathways revealed patterns consistent with elevated synthesis and/or cycling of the antioxidant glutathione, suggesting KP1019 induces oxidative stress. This result was supported by increased fluorescence of the redox-sensitive dye DCFH-DA and increased KP1019 sensitivity of yeast lacking Yap1, a master regulator of the oxidative stress response. In addition to oxidative and DNA stress, bioinformatic analysis revealed drug-dependent increases in proteins involved ribosome biogenesis, translation, and protein (re)folding. Consistent with proteotoxic effects, KP1019 increased expression of a heat-shock element (HSE) lacZ reporter. KP1019 pre-treatment also sensitized yeast to oxaliplatin, paralleling prior research showing that cancer cell lines with elevated levels of translation machinery are hypersensitive to oxaliplatin. Combined, these data suggest that one of KP1019's many targets may be protein metabolism, which opens up intriguing possibilities for combination therapy.
Collapse
Affiliation(s)
- Laura K Stultz
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Alexandra Hunsucker
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Sydney Middleton
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Evan Grovenstein
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Jacob O'Leary
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Eliot Blatt
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Mary Miller
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - James Mobley
- Department of Surgery, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA
| | - Pamela K Hanson
- Department of Biology, Furman University, Greenville, SC 29613, USA.
| |
Collapse
|
7
|
Yeast-based genotoxicity tests for assessing DNA alterations and DNA stress responses: a 40-year overview. Appl Microbiol Biotechnol 2018; 102:2493-2507. [PMID: 29423630 DOI: 10.1007/s00253-018-8783-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
Abstract
By damaging DNA molecules, genotoxicants cause genetic mutations and also increase human susceptibility to cancers and genetic diseases. Over the past four decades, several assays have been developed in the budding yeast Saccharomyces cerevisiae to screen potential genotoxic substances and provide alternatives to animal-based genotoxicity tests. These yeast-based genotoxicity tests are either DNA alteration-based or DNA stress-response reporter-based. The former, which came first, were developed from the genetic studies conducted on various types of DNA alterations in yeast cells. Despite their limited throughput capabilities, some of these tests have been used as short-term genotoxicity tests in addition to bacteria- or mammalian cell-based tests. In contrast, the latter tests are based on the emergent transcriptional induction of DNA repair-related genes via activation of the DNA damage checkpoint kinase cascade triggered by DNA damage. Some of these reporter assays have been linked to DNA damage-responsive promoters to assess chemical carcinogenicity and ecotoxicity in environmental samples. Yeast-mediated genotoxicity tests are being continuously improved by increasing the permeability of yeast cell walls, by the ectopic expression of mammalian cytochrome P450 systems, by the use of DNA repair-deficient host strains, and by integrating them into high-throughput formats or microfluidic devices. Notably, yeast-based reporter assays linked with the newer toxicogenomic approaches are becoming powerful short-term genotoxicity tests for large numbers of compounds. These tests can also be used to detect polluted environmental samples, and as effective screening tools during anticancer drug development.
Collapse
|
8
|
Ito-Harashima S, Yagi T. Unique molecular mechanisms for maintenance and alteration of genetic information in the budding yeast Saccharomyces cerevisiae. Genes Environ 2017; 39:28. [PMID: 29213342 PMCID: PMC5709847 DOI: 10.1186/s41021-017-0088-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/26/2017] [Indexed: 11/10/2022] Open
Abstract
The high-fidelity transmission of genetic information is crucial for the survival of organisms, the cells of which have the ability to protect DNA against endogenous and environmental agents, including reactive oxygen species (ROS), ionizing radiation, and various chemical compounds. The basis of protection mechanisms has been evolutionarily conserved from yeast to humans; however, each organism often has a specialized mode of regulation that uses different sets of machineries, particularly in lower eukaryotes. The divergence of molecular mechanisms among related organisms has provided insights into the evolution of cellular machineries to a higher architecture. Uncommon characteristics of machineries may also contribute to the development of new applications such as drugs with novel mechanisms of action. In contrast to the cellular properties for maintaining genetic information, living organisms, particularly microbes, inevitably undergo genetic alterations in order to adapt to environmental conditions. The maintenance and alteration of genetic information may be inextricably linked to each other. In this review, we describe recent findings on the unconventional molecular mechanisms of DNA damage response and DNA double-strand break (DSB) repair in the budding yeast Saccharomyces cerevisiae. We also introduce our previous research on genetic and phenotypic instabilities observed in a clonal population of clinically-derived S. cerevisiae. The molecular mechanisms of this case were associated with mutations to generate tyrosine-inserting tRNA-Tyr ochre suppressors and the position effects of mutation frequencies among eight tRNA-Tyr loci dispersed in the genome. Phenotypic variations among different strain backgrounds have also been observed by another type of nonsense suppressor, the aberrant form of the translation termination factor. Nonsense suppressors are considered to be responsible for the genome-wide translational readthrough of termination codons, including natural nonsense codons. The nonsense suppressor-mediated acquisition of phenotypic variations may be advantageous for adaptation to environmental conditions and survival during evolution.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Takashi Yagi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| |
Collapse
|
9
|
Suzuki H, Sakabe T, Hirose Y, Eki T. Development and evaluation of yeast-based GFP and luciferase reporter assays for chemical-induced genotoxicity and oxidative damage. Appl Microbiol Biotechnol 2016; 101:659-671. [PMID: 27766356 DOI: 10.1007/s00253-016-7911-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
We aimed to develop the bioassays for genotixicity and/or oxidative damage using the recombinant yeast. A genotoxicity assay was developed using recombinant Saccharomyces cerevisiae strain BY4741 with a green fluorescent protein (GFP) reporter plasmid, driven by the DNA damage-responsive RNR3 promoter. Enhanced fluorescence induction was observed in DNA repair-deficient strains treated with methyl methanesulfonate, but not with hydrogen peroxide. A GFP reporter yeast strain driven by the oxidative stress-responsive TRX2 promoter was newly developed to assess oxidative damage, but fluorescence was poorly induced by oxidants. In place of GFP, yeast strains with luciferase gene reporter plasmids (luc2 and luc2CP, encoding stable and unstable luciferase, respectively) were prepared. Transient induction of luciferase activity was clearly detected only in a TRX2 promoter-driven luc2CP reporter strain within 90 min of oxidant exposure. However, luciferase was strongly induced by hydroxyurea in the RNR3 promoter-driven luc2 and GFP reporter strains over 8 h after the exposure, suggesting that the RNR3 promoter is continuously upregulated by DNA damage, whereas the TRX2 promoter is transiently activated by oxidative agents. Luciferase activity levels were also increased in a TRX2-promoter-driven luc2CP reporter strain treated with tert-butyl hydroperoxide and menadione and weakly induced with diamide and diethyl maleate. Weakly enhanced luciferase activity induction was detected in the sod1Δ, sod2Δ, and rad27Δ strains treated with hydrogen peroxide compared with that in the wild-type strain. In conclusion, tests using GFP and stable luciferase reporters are useful for genotoxicity, and oxidative damage can be clearly detected by assay with an unstable luciferase reporter.
Collapse
Affiliation(s)
- Hajime Suzuki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Takahiro Sakabe
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.,The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
10
|
Zhang C, Li Z, Zhang X, Yuan L, Dai H, Xiao W. Transcriptomic profiling of chemical exposure reveals roles of Yap1 in protecting yeast cells from oxidative and other types of stresses. Yeast 2015; 33:5-19. [DOI: 10.1002/yea.3135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/04/2015] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
- University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Zhouquan Li
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
- University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Xiaohua Zhang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
| | - Li Yuan
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
| | - Heping Dai
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
| | - Wei Xiao
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
- Department of Microbiology and Immunology; University of Saskatchewan; Saskatoon Canada
| |
Collapse
|
11
|
Assessment of the toxicity of CuO nanoparticles by using Saccharomyces cerevisiae mutants with multiple genes deleted. Appl Environ Microbiol 2015; 81:8098-107. [PMID: 26386067 DOI: 10.1128/aem.02035-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
To develop applicable and susceptible models to evaluate the toxicity of nanoparticles, the antimicrobial effects of CuO nanoparticles (CuO-NPs) on various Saccharomyces cerevisiae (S. cerevisiae) strains (wild type, single-gene-deleted mutants, and multiple-gene-deleted mutants) were determined and compared. Further experiments were also conducted to analyze the mechanisms associated with toxicity using copper salt, bulk CuO (bCuO), carbon-shelled copper nanoparticles (C/Cu-NPs), and carbon nanoparticles (C-NPs) for comparisons. The results indicated that the growth inhibition rates of CuO-NPs for the wild-type and the single-gene-deleted strains were comparable, while for the multiple-gene deletion mutant, significantly higher toxicity was observed (P < 0.05). When the toxicity of the CuO-NPs to yeast cells was compared with the toxicities of copper salt and bCuO, we concluded that the toxicity of CuO-NPs should be attributed to soluble copper rather than to the nanoparticles. The striking difference in adverse effects of C-NPs and C/Cu-NPs with equivalent surface areas also proved this. A toxicity assay revealed that the multiple-gene-deleted mutant was significantly more sensitive to CuO-NPs than the wild type. Specifically, compared with the wild-type strain, copper was readily taken up by mutant strains when cell permeability genes were knocked out, and the mutants with deletions of genes regulated under oxidative stress (OS) were likely producing more reactive oxygen species (ROS). Hence, as mechanism-based gene inactivation could increase the susceptibility of yeast, the multiple-gene-deleted mutants should be improved model organisms to investigate the toxicity of nanoparticles.
Collapse
|
12
|
Lu Y, Tian Y, Wang R, Wu Q, Zhang Y, Li X. Dual fluorescent protein-based bioassay system for the detection of genotoxic chemical substances in Saccharomyces cerevisiae. Toxicol Mech Methods 2015; 25:698-707. [DOI: 10.3109/15376516.2015.1070305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yixin Lu
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
| | - Yongjie Tian
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
| | - Ruikun Wang
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
| | - Qianqian Wu
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
| | - Yu Zhang
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
| | - Xiangming Li
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, PR China
| |
Collapse
|
13
|
Li J, Biss M, Fu Y, Xu X, Moore SA, Xiao W. Two duplicated genes DDI2 and DDI3 in budding yeast encode a cyanamide hydratase and are induced by cyanamide. J Biol Chem 2015; 290:12664-75. [PMID: 25847245 DOI: 10.1074/jbc.m115.645408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Two DNA damage-inducible genes in Saccharomyces cerevisiae, DDI2 and DDI3, are identical and encode putative HD domain-containing proteins, whose functions are currently unknown. Because Ddi2/3 also shows limited homology to a fungal cyanamide hydratase that converts cyanamide to urea, we tested the enzymatic activity of recombinant Ddi2. To this end, we developed a novel enzymatic assay and determined that the Km value of the recombinant Ddi2/3 for cyanamide is 17.3 ± 0.05 mm, and its activity requires conserved residues in the HD domain. Unlike most other DNA damage-inducible genes, DDI2/3 is only induced by a specific set of alkylating agents and surprisingly is strongly induced by cyanamide. To characterize the biological function of DDI2/3, we sequentially deleted both DDI genes and found that the double mutant was unable to metabolize cyanamide and became much more sensitive to growth inhibition by cyanamide, suggesting that the DDI2/3 genes protect host cells from cyanamide toxicity. Despite the physiological relevance of the cyanamide induction, DDI2/3 is not involved in its own transcriptional regulation. The significance of cyanamide hydratase activity and its induced expression is discussed.
Collapse
Affiliation(s)
- Jia Li
- From the Departments of Microbiology and Immunology and
| | - Michael Biss
- From the Departments of Microbiology and Immunology and
| | - Yu Fu
- From the Departments of Microbiology and Immunology and
| | - Xin Xu
- the College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Stanley A Moore
- Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Wei Xiao
- From the Departments of Microbiology and Immunology and the College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
14
|
Fan L, Niu Y, Zhang S, Shi L, Guo H, Liu Y, Zhang R. Development of a screening system for DNA damage and repair of potential carcinogens based on dual luciferase assay in human HepG2 cell. Mutagenesis 2013; 28:515-24. [DOI: 10.1093/mutage/get028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Yang F, Zhuang S, Zhang C, Dai H, Liu W. Sulforaphane inhibits CYP1A1 activity and promotes genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro. Toxicol Appl Pharmacol 2013; 269:226-32. [PMID: 23566952 DOI: 10.1016/j.taap.2013.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
Abstract
Increasing environmental pollution by carcinogens such as some of persistent organic pollutants (POPs) has prompted growing interest in searching for chemopreventive compounds which are readily obtainable. Sulforaphane (SFN) is isolated from cruciferous vegetables and has the potentials to reduce carcinogenesis through various pathways. In this study, we studied the effects of SFN on CYP1A1 activity and genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that SFN inhibited TCDD-induced CYP1A1 activity in H4IIE cells by directly inhibiting CYP1A1 activity, probably through binding to aryl hydrocarbon receptor and/or CYP1A1 revealed by molecular docking. However, SFN promoted TCDD-induced DNA damage in yeast cells and reduced the viability of initiated yeast cells. Besides, it is surprising that SFN also failed to reduce genotoxicity induced by other genotoxic reagents which possess different mechanisms to lead to DNA damage. Currently, it is difficult to predict whether SFN has the potentials to reduce the risk of TCDD based on the conflicting observations in the study. Therefore, further studies should be urgent to reveal the function and mechanism of SFN in the stress of such POPs on human health.
Collapse
Affiliation(s)
- Fangxing Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | | | | | | | | |
Collapse
|
16
|
Wei T, Zhang C, Xu X, Hanna M, Zhang X, Wang Y, Dai H, Xiao W. Construction and evaluation of two biosensors based on yeast transcriptional response to genotoxic chemicals. Biosens Bioelectron 2013; 44:138-45. [PMID: 23416315 DOI: 10.1016/j.bios.2013.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 11/16/2022]
Abstract
It has been well established that essentially all microbial mutagens are rodent carcinogens, yet current mutagen detection systems are limited by their detection sensitivity. Here we report the construction of a pair of hypersensitive biosensors by optimizing both reporters and the host strain. The resulting RNR3-yEGFP and HUG1-yEGFP reporters and the septuple yeast mutant in combination with the automated protocol not only remarkably enhance the detection sensitivity, but also allow a high throughput screen of environmental genotoxins. This system is deemed much more sensitive than similar yeast and bacterium-based tests for all selected chemicals examined in this study.
Collapse
Affiliation(s)
- Ting Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Stevens SK, Strehle AP, Miller RL, Gammons SH, Hoffman KJ, McCarty JT, Miller ME, Stultz LK, Hanson PK. The anticancer ruthenium complex KP1019 induces DNA damage, leading to cell cycle delay and cell death in Saccharomyces cerevisiae. Mol Pharmacol 2012; 83:225-34. [PMID: 23090979 DOI: 10.1124/mol.112.079657] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The anticancer ruthenium complex trans-[tetrachlorobis(1H-indazole)ruthenate(III)], otherwise known as KP1019, has previously been shown to inhibit proliferation of ovarian tumor cells, induce DNA damage and apoptosis in colon carcinoma cells, and reduce tumor size in animal models. Notably, no dose-limiting toxicity was observed in a Phase I clinical trial. Despite these successes, KP1019's precise mechanism of action remains poorly understood. To determine whether Saccharomyces cerevisiae might serve as an effective model for characterizing the cellular response to KP1019, we first confirmed that this drug is internalized by yeast and induces mutations, cell cycle delay, and cell death. We next examined KP1019 sensitivity of strains defective in DNA repair, ultimately showing that rad1Δ, rev3Δ, and rad52Δ yeast are hypersensitive to KP1019, suggesting that nucleotide excision repair (NER), translesion synthesis (TLS), and recombination each play a role in drug tolerance. These data are consistent with published work showing that KP1019 causes interstrand cross-links and bulky DNA adducts in mammalian cell lines. Published research also showed that mammalian cell lines resistant to other chemotherapeutic agents exhibit only modest resistance, and sometimes hypersensitivity, to KP1019. Here we report similar findings for S. cerevisiae. Whereas gain-of-function mutations in the transcription activator-encoding gene PDR1 are known to increase expression of drug pumps, causing resistance to structurally diverse toxins, we now demonstrate that KP1019 retains its potency against yeast carrying the hypermorphic alleles PDR1-11 or PDR1-3. Combined, these data suggest that S. cerevisiae could serve as an effective model system for identifying evolutionarily conserved modulators of KP1019 sensitivity.
Collapse
Affiliation(s)
- Shannon K Stevens
- Department of Biology, Birmingham-Southern College, 900 Arkadelphia Rd. Birmingham, AL 35254, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Endogenous DNA replication stress results in expansion of dNTP pools and a mutator phenotype. EMBO J 2012; 31:895-907. [PMID: 22234187 DOI: 10.1038/emboj.2011.485] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 12/09/2011] [Indexed: 11/09/2022] Open
Abstract
The integrity of the genome depends on diverse pathways that regulate DNA metabolism. Defects in these pathways result in genome instability, a hallmark of cancer. Deletion of ELG1 in budding yeast, when combined with hypomorphic alleles of PCNA results in spontaneous DNA damage during S phase that elicits upregulation of ribonucleotide reductase (RNR) activity. Increased RNR activity leads to a dramatic expansion of deoxyribonucleotide (dNTP) pools in G1 that allows cells to synthesize significant fractions of the genome in the presence of hydroxyurea in the subsequent S phase. Consistent with the recognized correlation between dNTP levels and spontaneous mutation, compromising ELG1 and PCNA results in a significant increase in mutation rates. Deletion of distinct genome stability genes RAD54, RAD55, and TSA1 also results in increased dNTP levels and mutagenesis, suggesting that this is a general phenomenon. Together, our data point to a vicious circle in which mutations in gatekeeper genes give rise to genomic instability during S phase, inducing expansion of the dNTP pool, which in turn results in high levels of spontaneous mutagenesis.
Collapse
|
19
|
Ochi Y, Sugawara H, Iwami M, Tanaka M, Eki T. Sensitive detection of chemical-induced genotoxicity by the Cypridina secretory luciferase reporter assay, using DNA repair-deficient strains of Saccharomyces cerevisiae. Yeast 2011; 28:265-78. [DOI: 10.1002/yea.1837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 11/10/2022] Open
|
20
|
Zhang M, Zhang C, Li J, Hanna M, Zhang X, Dai H, Xiao W. Inactivation of YAP1 enhances sensitivity of the yeast RNR3-lacZ genotoxicity testing system to a broad range of DNA-damaging agents. Toxicol Sci 2010; 120:310-21. [PMID: 21205635 DOI: 10.1093/toxsci/kfq391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Despite the great advances by using microorganism-based genotoxicity testing systems to assess environmental genotoxic compounds, most of them respond poorly, particularly to oxidative agents. In this study, we systematically examined the RNR3-lacZ reporter gene expression in Saccharomyces cerevisiae mutant strains defective in the protection against reactive oxygen species and found that only YAP1 deletion resulted in a significant enhancement in the detection of oxidative damage. To our surprise, YAP1 deletion also caused an increased cellular sensitivity to a variety of DNA damage. This altered sensitivity appears to be independent of oxidative damage because under conditions in which vitamin C treatment rescued oxidative damage, it failed to reverse the phenotypes caused by other types of DNA damage. Furthermore, although inactivation of cell permeability genes enhanced the RNR3-lacZ detection sensitivity particularly to large molecular weight compounds, their effects on small molecular oxidative agents are minimal. Taken together, this study helps to create a hypersensitive genotoxicity testing system to a broad range of DNA-damaging agents by deleting a single yeast gene.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang M, Hanna M, Li J, Butcher S, Dai H, Xiao W. Creation of a Hyperpermeable Yeast Strain to Genotoxic Agents through Combined Inactivation of PDR and CWP Genes. Toxicol Sci 2009; 113:401-11. [DOI: 10.1093/toxsci/kfp267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Benton MG, Glasser NR, Palecek SP. Deletion of MAG1 and MRE11 enhances the sensitivity of the Saccharomyces cerevisiae HUG1P-GFP promoter-reporter construct to genotoxicity. Biosens Bioelectron 2008; 24:736-41. [PMID: 18693109 DOI: 10.1016/j.bios.2008.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/06/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Eukaryotic yeast-based DNA damage cellular sensors offer many advantages to traditional prokaryotic-based mutagenicity assays. The HUG1P-GFP promoter-reporter construct has proven to be an effective method to selectively screen for multiple types of DNA damage. To enhance the sensitivity and selectivity of the system to different types of DNA damage, two genes involved in distinct DNA damage responses were deleted. Deletion of MAG1, a gene encoding a DNA glycosylase and member of the base excision repair (BER) pathway, increased the biosensor's sensitivity to the alkylating agents methyl methanesulfonate (MMS) (lowering the sensitivity threshold to 0.0001% (v/v)) and ethyl methanesulfonate (EMS). Deletion of MRE11, part of the highly conserved RMX complex that aids in sensing and repairing double strand breaks in budding yeasts, enhanced sensitivity to gamma radiation (gamma-ray) (detection threshold of 50Gy) and camptothecin. The mre11Delta phenotype dominated in mag1Deltamre11Delta strains. Through the deletions, we were able to engineer increased selectivity to alkylating agents, gamma-ray, and camptothecin, since increased sensitivity to one type of damage did not alter the quantitative response to other genotoxins. The enhancements to the HUG1P-GFP system did not affect its ability to detect several other DNA damaging agents, including 1,2-dimethyl hydrazine (SDMH), phleomycin, and hydroxyurea (HU), or affect its lack of response to the potentially non-genotoxic carcinogen formaldehyde.
Collapse
Affiliation(s)
- Michael G Benton
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA
| | | | | |
Collapse
|
23
|
A stable and sensitive testing system for potential carcinogens based on DNA damage-induced gene expression in human HepG2 cell. Toxicol In Vitro 2008; 23:158-65. [PMID: 19013231 DOI: 10.1016/j.tiv.2008.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 09/18/2008] [Accepted: 10/17/2008] [Indexed: 01/12/2023]
Abstract
In order to analyze potential carcinogenic and genotoxic responses caused by exposure to pollutants existing in environment, a screening method has been established in our laboratory that uses a stably transfected HepG2 cell lines containing gadd153 promoter regions which drive a luciferase reporter gene. Activation of the exogenous gadd153 promoter was quantified using the luciferase activity following drug exposure. Twenty four agents were used to evaluate this screening assay. We selected the agents, ranging from DNA alkylating agents, oxidative agent, radiation, DNA cross-linking agent, nongenotoxic carcinogens, precarcinogenic agents, which included cadmium chloride, chromium trichloride, mercuric chloride, lead nitrate, dichloro-diphenyl-trichloroethane, deltamethrin, biphenylamine, 2-aminofluorene, benzo[a]pyrene, 2,3,7,8,-tetracblorodibenzo-p-dioxin, diethyl-stilbestrol, carbon tetrachloride, mitomycin C, hydroxycamptothecin, UV, sodium fluoride, acrylamide, hydrogen peroxide. In addition, two complex genotoxic agents (water samples) existing in the environment were selected. The results showed that all 20 tested known carcinogenic and genotoxic agents were able to induce gadd153-Luc expression at a sublethal dose. In contrast, four tested non-carcinogens, included 4-acetylaminofluorene, pyrene, benzylpenicillin sodium and vitamin C, were unable to induce gadd153-Luc expression. In conclusion, this reporter system can facilitate in vitro screening for potential carcinogens. Therefore, the gadd153-Luc test system we have developed appears to be a useful and complementary system to existing genotoxic and mutagenic tests.
Collapse
|
24
|
Zhang M, Liang Y, Zhang X, Xu Y, Dai H, Xiao W. Deletion of yeast CWP genes enhances cell permeability to genotoxic agents. Toxicol Sci 2008; 103:68-76. [PMID: 18281714 DOI: 10.1093/toxsci/kfn034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously reported the development of a novel genotoxic testing system based on the transcriptional response of the yeast RNR3-lacZ reporter gene to DNA damage. This system appears to be more sensitive than other similar tests in microorganisms, and is comparable with the Ames test. In an effort to further enhance detection sensitivity, we examined the effects of altering major cell wall components on cell permeability and subsequent RNR3-lacZ sensitivity to genotoxic agents. Although inactivation of single CWP genes encoding cell wall mannoproteins had little effect, the simultaneous inactivation of both CWP1 and CWP2 had profound effects on the cell wall structure and permeability. Consequently, the RNR3-lacZ detection sensitivity is markedly enhanced, especially to high molecular weight compounds such as 4-nitroquinoline-N-oxide (> sevenfold) and phleomycin (> 13-fold). In contrast, deletion of genes encoding representative membrane components or membrane transporters had minor effects on cell permeability. We conclude that the yeast cell wall mannoproteins constitute the major barrier to environmental genotoxic agents and that their removal will significantly enhance the sensitivity of RNR-lacZ as well as other yeast-based genotoxic tests.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072 China
| | | | | | | | | | | |
Collapse
|
25
|
Benton MG, Glasser NR, Palecek SP. The utilization of a Saccharomyces cerevisiae HUG1P-GFP promoter-reporter construct for the selective detection of DNA damage. Mutat Res 2007; 633:21-34. [PMID: 17618162 DOI: 10.1016/j.mrgentox.2007.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/25/2007] [Accepted: 05/04/2007] [Indexed: 05/16/2023]
Abstract
In this study, we report the creation and characterization of a yeast-based promoter-reporter construct for the detection of genotoxic compounds within a cell's local environment. We have synthesized a fusion containing the HUG1 promoter and GFP and incorporated this cassette into the yeast genome creating a stable, sensitive genotoxicity indicator. To quantify biosensor performance, HUG1P-GFP cells were exposed to multiple doses of a wide variety of genotoxins, including alkylating agents, an oxidative agent, a ribonucleotide reductase inhibitor, a UV mimetic agent, an agent that causes double strand breaks, a topoisomerase I inhibitor, and ionizing radiation, all of which triggered a detectable and reproducible level of GFP production by the HUG1P-GFP strain. Furthermore, GFP was not induced by general cell stresses including starvation, heat shock, and acidic pH. These results suggest this system will be a valuable supplement to traditional genotoxicity assays.
Collapse
Affiliation(s)
- Michael G Benton
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
26
|
Ichikawa K, Eki T. A novel yeast-based reporter assay system for the sensitive detection of genotoxic agents mediated by a DNA damage-inducible LexA-GAL4 protein. J Biochem 2007; 139:105-12. [PMID: 16428325 DOI: 10.1093/jb/mvj011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yeast-based genotoxicity testing systems can sensitively detect DNA damaging agents in the environment. We have developed a novel "indirect" reporter assay system based on a recombinant yeast containing both a sensor and a reporter plasmid. The sensor plasmid contains a gene encoding the artificial transcription factor of the Escherichia coli LexA DNA binding domain fused to the transcriptional activation domain of yeast Gal4p, which is regulated by the DNA damage-inducible RNR2 promoter. The reporter plasmid contains the E. coli lacZ gene with the LexA binding site in the 5'-upstream region, allowing transcriptional activation by the induced LexA-GAL4 protein. The activity of DNA damage-dependent beta-galactosidase (beta-gal) in the "indirect" reporter assay system was compared with that of a current yeast-based "direct" reporter system. The "indirect" system exhibited 1.5- to 5-fold greater beta-gal activity upon induction by alkylating agents or camptothecin. To increase the sensitivity of the new reporter system further, several deletion yeast strains were tested, and enhanced induction of reporter activity was observed in DNA repair-deficient mag1Delta cells. The "indirect" 96-well microtiter plate assay system is a potentially inexpensive and sensitive method for detecting genotoxic activities in a wide range of compounds, and in polluted environmental samples.
Collapse
Affiliation(s)
- Kohei Ichikawa
- Division of Bioscience and Biotechnology, Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580
| | | |
Collapse
|
27
|
Boronat S, Piña B. Development of RNR3- and RAD54-GUS reporters for testing genotoxicity in Saccharomyces cerevisiae. Anal Bioanal Chem 2006; 386:1625-32. [PMID: 17004060 DOI: 10.1007/s00216-006-0751-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 08/02/2006] [Accepted: 08/09/2006] [Indexed: 11/30/2022]
Abstract
S. cerevisiae RNR3 and RAD54 gene transcription becomes strongly activated upon DNA damage. This property was used to construct yeast strains in which DNA damage can be monitored by a very sensitive fluorogenic assay in a convenient 96-well microtiter plate format. These strains carried stably integrated fusions of RNR3 or RAD54 promoters to the E. coli beta-glucuronidase GUS gene. GUS activity was measured by fluorogenic detection, a method that greatly increases the precision and sensitivity of the assay. Detection levels were similar to those of real-time quantitative PCR methods and close to the limits of biological response. The two reporters differed in terms of fold-induction, activation kinetics, sensitivity and specificity upon exposure to a variety of genotoxic compounds. While RNR3-GUS showed the fastest response, RAD54-GUS showed the highest sensitivity: similar to previous reported sensitivities for bacterial and eukaryotic genotoxic detection systems. These reporter strains may complement current genotoxicity tests, but they also have the advantages of higher flexibility, requirement for shorter incubation times, and the capability of being fully automated. In addition, the intrinsic features of the system facilitate its easy improvement by genetic manipulating the yeast strain or by introducing mammalian metabolizing enzymes.
Collapse
Affiliation(s)
- Susanna Boronat
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Jordi Girona, 18, 08034, Barcelona, Spain
| | | |
Collapse
|
28
|
Tringe SG, Willis J, Liberatore KL, Ruby SW. The WTM genes in budding yeast amplify expression of the stress-inducible gene RNR3. Genetics 2006; 174:1215-28. [PMID: 16980392 PMCID: PMC1667055 DOI: 10.1534/genetics.106.062042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular responses to DNA damage and inhibited replication are evolutionarily conserved sets of pathways that are critical to preserving genome stability. To identify new participants in these responses, we undertook a screen for regulators that, when present on a high-copy vector, alter expression of a DNA damage-inducible RNR3-lacZ reporter construct in Saccharomyces cerevisiae. From this screen we isolated a plasmid encoding two closely related paralogs, WTM1 and WTM2, that greatly increases constitutive expression of RNR3-lacZ. Moderate overexpression of both genes together, or high-level expression of WTM2 alone from a constitutive promoter, upregulates RNR3-lacZ in the absence of DNA damage. Overexpressed, tagged Wtm2p is associated with the RNR3 promoter, indicating that this effect is likely direct. Further investigation reveals that Wtm2p and Wtm1p, previously described as regulators of meiotic gene expression and transcriptional silencing, amplify transcriptional induction of RNR3 in response to replication stress and modulate expression of genes encoding other RNR subunits.
Collapse
Affiliation(s)
- Susannah Green Tringe
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
29
|
Fu Y, Xiao W. Identification and characterization of CRT10 as a novel regulator of Saccharomyces cerevisiae ribonucleotide reductase genes. Nucleic Acids Res 2006; 34:1876-83. [PMID: 16600900 PMCID: PMC1447646 DOI: 10.1093/nar/gkl100] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The CRT10 gene was identified through screening of the Saccharomyces cerevisiae deletion library for hydroxyurea (HU) resistance. CRT10 encodes a putative 957 amino acid, 110 kDa protein with a leucine repeat and a WD40 repeat near the N-terminus. Deletion of CRT10 resulted in an enhanced resistance to HU reminiscent of the inactivation of two other ribonucleotide reductase (Rnr) suppressors, CRT1 and SML1, which regulate Rnr activity at transcriptional and translational levels, respectively. Epistatic analysis indicates that CRT10 belongs to the CRT1 pathway but not the SML1 pathway. Indeed, deletion of CRT10 enhanced the survival of the mec1 null mutant and increased basal level and DNA damage-induced expression of RNR2 and RNR3, suggesting that Crt10 regulates RNR genes at the transcriptional level. Furthermore, the dun1 mutation is epistatic to crt10 with respect to both HU sensitivity and RNR gene expression. Interestingly, the expression of CRT10 itself is induced by DNA damaging agents and this induction requires DUN1, suggesting that CRT10 plays a role in cellular response to DNA damage and replication blocks. The CRT10 function appears to be achieved by positive regulation of the CRT1 transcript level, indicating that CRT10 is a component of the regulatory circuit.
Collapse
Affiliation(s)
| | - Wei Xiao
- To whom correspondence should be addressed. Tel: +1 306 966 4308; Fax: +1 306 966 4311;
| |
Collapse
|
30
|
Bakkali F, Averbeck S, Averbeck D, Zhiri A, Idaomar M. Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 585:1-13. [PMID: 15975845 DOI: 10.1016/j.mrgentox.2005.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 01/25/2005] [Accepted: 03/14/2005] [Indexed: 01/17/2023]
Abstract
In order to get an insight into the possible genotoxicity of essential oils (EOs) used in traditional pharmacological applications we tested five different oils extracted from the medicinal plants Origanum compactum, Coriandrum sativum, Artemisia herba alba, Cinnamomum camphora (Ravintsara aromatica) and Helichrysum italicum (Calendula officinalis) for genotoxic effects using the yeast Saccharomyces cerevisiae. Clear cytotoxic effects were observed in the diploid yeast strain D7, with the cells being more sensitive to EOs in exponential than in stationary growth phase. The cytotoxicity decreased in the following order: Origanum compactum>Coriandrum sativum>Artemisia herba alba>Cinnamomum camphora>Helichrysum italicum. In the same order, all EOs, except that derived from Helichrysum italicum, clearly induced cytoplasmic petite mutations indicating damage to mitochondrial DNA. However, no nuclear genetic events such as point mutations or mitotic intragenic or intergenic recombination were induced. The capacity of EOs to induce nuclear DNA damage-responsive genes was tested using suitable Lac-Z fusion strains for RNR3 and RAD51, which are genes involved in DNA metabolism and DNA repair, respectively. At equitoxic doses, all EOs demonstrated significant gene induction, approximately the same as that caused by hydrogen peroxide, but much lower than that caused by methyl methanesulfonate (MMS). EOs affect mitochondrial structure and function and can stimulate the transcriptional expression of DNA damage-responsive genes. The induction of mitochondrial damage by EOs appears to be closely linked to overall cellular cytotoxicity and appears to mask the occurrence of nuclear genetic events. EO-induced cytotoxicity involves oxidative stress, as is evident from the protection observed in the presence of ROS inhibitors such as glutathione, catalase or the iron-chelating agent deferoxamine.
Collapse
Affiliation(s)
- F Bakkali
- Université Abdelmalek Essaadi, BCM, Département de Biologie, BP 2121 Tétouan, Morocco.
| | | | | | | | | |
Collapse
|
31
|
Jensen LH, Dejligbjerg M, Hansen LT, Grauslund M, Jensen PB, Sehested M. Characterisation of cytotoxicity and DNA damage induced by the topoisomerase II-directed bisdioxopiperazine anti-cancer agent ICRF-187 (dexrazoxane) in yeast and mammalian cells. BMC Pharmacol 2004; 4:31. [PMID: 15575955 PMCID: PMC545072 DOI: 10.1186/1471-2210-4-31] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 12/02/2004] [Indexed: 12/17/2022] Open
Abstract
Background Bisdioxopiperazine anti-cancer agents are inhibitors of eukaryotic DNA topoisomerase II, sequestering this protein as a non-covalent protein clamp on DNA. It has been suggested that such complexes on DNA represents a novel form of DNA damage to cells. In this report, we characterise the cytotoxicity and DNA damage induced by the bisdioxopiperazine ICRF-187 by a combination of genetic and molecular approaches. In addition, the well-established topoisomerase II poison m-AMSA is used for comparison. Results By utilizing a panel of Saccharomyces cerevisiae single-gene deletion strains, homologous recombination was identified as the most important DNA repair pathway determining the sensitivity towards ICRF-187. However, sensitivity towards m-AMSA depended much more on this pathway. In contrast, disrupting the post replication repair pathway only affected sensitivity towards m-AMSA. Homologous recombination (HR) defective irs1SF chinese hamster ovary (CHO) cells showed increased sensitivity towards ICRF-187, while their sensitivity towards m-AMSA was increased even more. Furthermore, complementation of the XRCC3 deficiency in irs1SF cells fully abrogated hypersensitivity towards both drugs. DNA-PKcs deficient V3-3 CHO cells having reduced levels of non-homologous end joining (NHEJ) showed slightly increased sensitivity to both drugs. While exposure of human small cell lung cancer (SCLC) OC-NYH cells to m-AMSA strongly induced γH2AX, exposure to ICRF-187 resulted in much less induction, showing that ICRF-187 generates fewer DNA double strand breaks than m-AMSA. Accordingly, when yeast cells were exposed to equitoxic concentrations of ICRF-187 and m-AMSA, the expression of DNA damage-inducible genes showed higher levels of induction after exposure to m-AMSA as compared to ICRF-187. Most importantly, ICRF-187 stimulated homologous recombination in SPD8 hamster lung fibroblast cells to lower levels than m-AMSA at all cytotoxicity levels tested, showing that the mechanism of action of bisdioxopiperazines differs from that of classical topoisomerase II poisons in mammalian cells. Conclusion Our results point to important differences in the mechanism of cytotoxicity induced by bisdioxopiperazines and topoisomerase II poisons, and suggest that bisdioxopiperazines kill cells by a combination of DNA break-related and DNA break-unrelated mechanisms.
Collapse
Affiliation(s)
- Lars H Jensen
- Department of Pathology, Diagnostic Centre, Rigshospitalet 5444, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
- Laboratory of Experimental Medical Oncology, Finsen Centre, Rigshospitalet 5074, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Marielle Dejligbjerg
- Department of Pathology, Diagnostic Centre, Rigshospitalet 5444, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - Lasse T Hansen
- Institute of Molecular Pathology, University of Copenhagen, Frederik V's Vej 11, DK-2100, Copenhagen, Denmark
| | - Morten Grauslund
- Department of Pathology, Diagnostic Centre, Rigshospitalet 5444, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - Peter B Jensen
- Laboratory of Experimental Medical Oncology, Finsen Centre, Rigshospitalet 5074, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Maxwell Sehested
- Department of Pathology, Diagnostic Centre, Rigshospitalet 5444, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| |
Collapse
|
32
|
Current Awareness on Yeast. Yeast 2003. [DOI: 10.1002/yea.940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Muto S, Baba H, Uno Y. Evaluation of the Vitotox test as a high-throughput genotoxicity assay. ACTA ACUST UNITED AC 2003. [DOI: 10.3123/jems.25.69] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|