1
|
Dabić D, Hanževački M, Škorić I, Žegura B, Ivanković K, Biošić M, Tolić K, Babić S. Photodegradation, toxicity and density functional theory study of pharmaceutical metoclopramide and its photoproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150694. [PMID: 34600991 DOI: 10.1016/j.scitotenv.2021.150694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals as ubiquitous organic pollutants in the aquatic environment represent substances whose knowledge of environmental fate is still limited. One such compound is metoclopramide, whose direct and indirect photolysis and toxicological assessment have been studied for the first time in this study. Experiments were performed under solar radiation, showing metoclopramide as a compound that can easily degrade in different water matrices. The effect of pH-values showed the faster degradation at pH = 7, while the highly alkaline conditions at pH = 11 slowed photolysis. The highest value of quantum yield of metoclopramide photodegradation (ϕ = 43.55·10-4) was obtained at pH = 7. Various organic and inorganic substances (NO3-, Fe(III), HA, Cl-, Br-, HCO3-, SO42-), commonly present in natural water, inhibited the degradation by absorbing light. In all experiments, kinetics followed pseudo-first-order reaction with r2 greater than 0.98. The structures of the photolytic degradation products were tentatively identified, and degradation photoproducts were proposed. The hydroxylation of the aromatic ring and the amino group's dealkylation were two major photoproduct formation mechanisms. Calculated thermochemical quantities are in agreement with the experimentally observed stability of different photoproducts. Reactive sites in metoclopramide were studied with conceptual density functional theory and regions most susceptible to •OH attack were characterized. Metoclopramide and its degradation products were neither genotoxic for bacteria Salmonella typhimurium in the SOS/umuC assay nor acutely toxic for bacteria Vibrio fischeri.
Collapse
Affiliation(s)
- Dario Dabić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia.
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Klaudija Ivanković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Martina Biošić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia
| | - Kristina Tolić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia
| | - Sandra Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia
| |
Collapse
|
2
|
Česen M, Eleršek T, Novak M, Žegura B, Kosjek T, Filipič M, Heath E. Ecotoxicity and genotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and their mixtures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:192-201. [PMID: 26735164 DOI: 10.1016/j.envpol.2015.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/24/2023]
Abstract
Cyclophosphamide (CP) and ifosfamide (IF) are commonly used cytostatic drugs that repress cell division by interaction with DNA. The present study investigates the ecotoxicity and genotoxicity of CP, IF, their human metabolites/transformation products (TPs) carboxy-cyclophosphamide (CPCOOH), keto-cyclophosphamide (ketoCP) and N-dechloroethyl-cyclophosphamide (NdCP) as individual compounds and as mixture. The two parent compounds (CP and IF), at concentrations up to 320 mg L(-1), were non-toxic towards the alga Pseudokirchneriella subcapitata and cyanobacterium Synecococcus leopoliensis. Further ecotoxicity studies of metabolites/TPs and a mixture of parent compounds and metabolites/TPs performed in cyanobacteria S. leopoliensis, showed that only CPCOOH (EC50 = 17.1 mg L(-1)) was toxic. The measured toxicity (EC50 = 11.5 mg L(-1)) of the mixture was lower from the toxicity predicted by concentration addition model (EC50 = 21.1 mg L(-1)) indicating potentiating effects of the CPCOOH toxicity. The SOS/umuC assay with Salmonella typhimurium revealed genotoxic activity of CP, CPCOOH and the mixture in the presence of S9 metabolic activation. Only CPCOOH was genotoxic also in the absence of metabolic activation indicating that this compound is a direct acting genotoxin. This finding is of particular importance as in the environment such compounds can directly affect DNA of non-target organisms and also explains toxicity of CPCOOH against cyanobacteria S. leopoliensis. The degradation study with UV irradiation of samples containing CP and IF showed efficient degradation of both compounds and remained non-toxic towards S. leopoliensis, suggesting that no stable TPs with adverse effects were formed. To our knowledge, this is the first study describing the ecotoxicity and genotoxicity of the commonly used cytostatics CP and IF, their known metabolites/TPs and their mixture. The results indicate the importance of toxicological evaluation and monitoring of drug metabolites as they may be for certain aquatic species more hazardous than parent compounds.
Collapse
Affiliation(s)
- Marjeta Česen
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Tina Eleršek
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Matjaž Novak
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia; National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Tina Kosjek
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Metka Filipič
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Biran A, Yagur-Kroll S, Pedahzur R, Buchinger S, Reifferscheid G, Ben-Yoav H, Shacham-Diamand Y, Belkin S. Bacterial genotoxicity bioreporters. Microb Biotechnol 2009; 3:412-27. [PMID: 21255340 PMCID: PMC3815808 DOI: 10.1111/j.1751-7915.2009.00160.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Ever since the introduction of the Salmonella typhimurium mammalian microsome mutagenicity assay (the ‘Ames test’) over three decades ago, there has been a constant development of additional genotoxicity assays based upon the use of genetically engineered microorganisms. Such assays rely either on reversion principles similar to those of the Ames test, or on promoter–reporter fusions that generate a quantifiable dose‐dependent signal in the presence of potential DNA damaging compounds and the induction of repair mechanisms; the latter group is the subject of the present review. Some of these assays were only briefly described in the scientific literature, whereas others have been developed all the way to commercial products. Out of these, only one, the umu‐test, has been fully validated and ISO‐ and OECD standardized. Here we review the main directions undertaken in the construction and testing of bacterial‐based genotoxicity bioassays, including the attempts to incorporate at least a partial metabolic activation capacity into the molecular design. We list the genetic modifications introduced into the tester strains, compare the performance of the different assays, and briefly describe the first attempts to incorporate such bacterial reporters into actual genotoxicity testing devices.
Collapse
Affiliation(s)
- Alva Biran
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Genetically Engineered Bacteria for Genotoxicity Assessment. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2009. [DOI: 10.1007/978-3-540-36253-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Hastwell PW, Chai LL, Roberts KJ, Webster TW, Harvey JS, Rees RW, Walmsley RM. High-specificity and high-sensitivity genotoxicity assessment in a human cell line: Validation of the GreenScreen HC GADD45a-GFP genotoxicity assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 607:160-75. [PMID: 16781187 DOI: 10.1016/j.mrgentox.2006.04.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/04/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
The battery of genetic toxicity tests required by most regulatory authorities includes both bacterial and mammalian cell assays and identifies practically all genotoxic carcinogens. However, the relatively high specificity of the Salmonella mutagenicity assay (Ames test) is offset by the low specificity of the established mammalian cell assays, which leads to difficulties in the interpretation of the biological relevance of results. This paper describes a new high-throughput assay that links the regulation of the human GADD45a gene to the production of Green Fluorescent Protein (GFP). A study of 75 well-characterised genotoxic and non-genotoxic compounds with diverse mechanisms of DNA-damage induction (including aneugens) reveals that the assay responds positively to all classes of genotoxic damage with both high specificity and high sensitivity. The current micro-well assay format does not include metabolic activation, but a separate low-throughput protocol demonstrates a successful proof-of-principle for an S9 metabolic activation assay with the model pro-mutagen cyclophosphamide. The test should be of value both as a tool in the selection of candidate compounds for further development, where additional data may be required because of conflicting information from the in vitro test battery, or in product development areas where the use of animals is to be discontinued. As a microplate assay however, it has the qualities of high throughput and low compound use that will facilitate its application in early screening for genotoxic liability.
Collapse
Affiliation(s)
- Paul W Hastwell
- Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Matsui N, Kaya T, Nagamine K, Yasukawa T, Shiku H, Matsue T. Electrochemical mutagen screening using microbial chip. Biosens Bioelectron 2006; 21:1202-9. [PMID: 15970438 DOI: 10.1016/j.bios.2005.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/24/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
Electrochemical microbial chip for mutagen screening were microfabricated and characterized by scanning electrochemical microscopy (SECM). Salmonella typhimurium TA1535 with a plasmid pSK1002 carrying a umuC'-'lacZ fusion gene was used for the whole cell mutagen sensor. The TA1535/pSK1002 cells were exposed to mutagen solutions containing 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamido (AF-2), mitomycin C (MMC) or 2-aminoanthracene (2-AA) and embedded in a microcavity (5nl) on a glass substrate using collagen gel. The beta-galactosidase expression on the microbial chip was electrochemically monitored using p-aminophenyl-beta-d-galactopyranoside (PAPG) as the enzymatic substrate. This system has several advantages compared with the conventional umu test: drastic reduction of the sample volume, less time-consuming for beta-galactosidase detection (free from substrate reaction time) and lower detection limit for the three mutagens (AF-2, MMC, 2-AA). Finally, a multi-sample assay was carried out using the microbial array chip with four microcavities.
Collapse
Affiliation(s)
- Nobuto Matsui
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The delicate and dynamic balance of the physiological steady state and its maintenance is well characterized by studies of bacterial stress response. Through the use of genetic analysis, numerous stress regulons, their physiological regulators and their biochemical processes have been delineated. In particular, transcriptionally activated stress regulons are subjects of study and application. These regulons include those that respond to macromolecular damage and toxicity as well as to nutrient starvation. The convenience of reporter gene fusions has allowed the creation of biosensor strains, resulting from the fusion of stress-responsive promoters with a variety of reporter genes. Such cellular biosensors are being used for monitoring dynamic systems and can report the presence of environmental stressors in real time. They provide a greater range of sensitivity, e.g. to sub-lethal concentrations of toxicants, than the simple assessment of cell viability. The underlying physiological context of the reporter strains results in the detection of bioavailable concentrations of both toxicants and nutrients. Culture conditions and host strain genotypes can be customized so as to maximize the sensitivity of the strain for a particular application. Collections of specific strains that are grouped in panels are used to diagnose targets or mode of action for unknown toxicants. Further application in massive by parallel DNA and gene fusion arrays greatly extends the information available for diagnosis of modes of action and may lead to development of novel high-throughput screens. Future studies will include more panels, arrays, as well as single reporter cell detection for a better understanding of the population heterogeneity during stress response. New knowledge of physiology gained from further studies of novel systems, or using innovative methods of analysis, will undoubtedly yield still more useful and informative environmental biosensors.
Collapse
Affiliation(s)
- Amy Cheng Vollmer
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
| | | |
Collapse
|
8
|
Maehana K, Tani H, Shiba T, Kamidate T. Effects of using a low-copy plasmid and controlling membrane permeability in SOS-based genotoxic bioassay. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2004.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kostrzynska M, Leung KT, Lee H, Trevors JT. Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds. J Microbiol Methods 2002; 48:43-51. [PMID: 11733081 DOI: 10.1016/s0167-7012(01)00335-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increasing levels of environmental pollution demand specific and sensitive methods for detection of genotoxic agents in water, food products and environmental samples. Tests for genotoxicity assessment are often based on biosensor strains that respond to DNA damage induced by chemicals. In the present study, fluorescent reporter Escherichia coli strains have been developed, which contain a plasmid-borne transcriptional fusion between the DNA-damage inducible recA promoter and the green fluorescent protein gene (gfp) or a gene encoding a red-shifted, higher intensity GFP variant (mutant 3). GFP-based biosensors allowed the detection of a dose-dependent response to genotoxic agents such as mitomycin C (MMC), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and nalidixic acid (NA). A reporter strain carrying recA'-gfp mutant 3 fusion gave more dramatic and sensitive response than a strain containing the wild-type gfp. These results indicate that recA'-gfp mutant 3-based biosensor is potentially useful for detection of genotoxins.
Collapse
Affiliation(s)
- Magdalena Kostrzynska
- Department of Environmental Biology, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | | | | | | |
Collapse
|
10
|
Construction of green fluorescent protein reporter genes for genotoxicity test (SOS/umu-test) and improvement of mutagen-sensitivity. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80267-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|