1
|
Sitarek P, Merecz-Sadowska A, Sikora J, Dudzic M, Wiertek-Płoszaj N, Picot L, Śliwiński T, Kowalczyk T. Flavonoids and their derivatives as DNA topoisomerase inhibitors with anti-cancer activity in various cell models: Exploring a novel mode of action. Pharmacol Res 2024; 209:107457. [PMID: 39389401 DOI: 10.1016/j.phrs.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Flavonoids, a diverse group of plant-derived secondary metabolites, have garnered significant attention for their potential anti-cancer properties. This review explores the role of flavonoids as inhibitors of DNA topoisomerases, key enzymes essential for DNA replication, transcription, and cell division. The article offers a comprehensive overview of flavonoid classification, biosynthesis, and their widespread natural occurrence. It further delves into the molecular mechanisms through which flavonoids exert their anti-cancer effects, emphasizing their interactions with topoisomerases. The review provides a thorough analysis of both in vitro and in vivo studies that highlight the topoisomerase inhibitory activities of various flavonoids and their derivatives. Key findings demonstrate that flavonoids can function as catalytic inhibitors, poisons, or DNA intercalators, affecting both type I and type II topoisomerases. The structure-activity relationships of flavonoids concerning their topoisomerase inhibitory potency are also examined. This review underscores the potential of flavonoids as promising lead compounds for the development of novel topoisomerase inhibitors, which could have important implications for cancer therapy. However, it also acknowledges the need for further research to fully understand the intricate interactions between flavonoids and topoisomerases within the cellular environment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland.
| | - Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, Lodz 90-214, Poland
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland
| | - Malwina Dudzic
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Lodz 90-151, Poland
| | - Natasza Wiertek-Płoszaj
- Students Research Group, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Laurent Picot
- Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle 17042, France
| | - Tomasz Śliwiński
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| |
Collapse
|
2
|
Chhiba V, Pillay P, Mtimka S, Moonsamy G, Kwezi L, Pooe OJ, Tsekoa TL. South Africa's indigenous microbial diversity for industrial applications: A review of the current status and opportunities. Heliyon 2023; 9:e16723. [PMID: 37484259 PMCID: PMC10360602 DOI: 10.1016/j.heliyon.2023.e16723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023] Open
Abstract
The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.
Collapse
Affiliation(s)
- Varsha Chhiba
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Priyen Pillay
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Sibongile Mtimka
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Ghaneshree Moonsamy
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Lusisizwe Kwezi
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Ofentse J. Pooe
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Tsepo L. Tsekoa
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
3
|
Chanboonyasitt P, Chan YW. Regulation of mitotic chromosome architecture and resolution of ultrafine anaphase bridges by PICH. Cell Cycle 2021; 20:2077-2090. [PMID: 34530686 PMCID: PMC8565832 DOI: 10.1080/15384101.2021.1970877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
To ensure genome stability, chromosomes need to undergo proper condensation into two linked sister chromatids from prophase to prometaphase, followed by equal segregation at anaphase. Emerging evidence has shown that persistent DNA entanglements connecting the sister chromatids lead to the formation of ultrafine anaphase bridges (UFBs). If UFBs are not resolved soon after anaphase, they can induce chromosome missegregation. PICH (PLK1-interacting checkpoint helicase) is a DNA translocase that localizes on chromosome arms, centromeres and UFBs. It plays multiple essential roles in mitotic chromosome organization and segregation. PICH also recruits other associated proteins to UFBs, and together they mediate UFB resolution. Here, the proposed mechanism behind PICH's functions in chromosome organization and UFB resolution will be discussed. We summarize the regulation of PICH action at chromosome arms and centromeres, how PICH recognizes UFBs and recruits other UFB-associated factors, and finally how PICH promotes UFB resolution together with other DNA processing enzymes.
Collapse
Affiliation(s)
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
4
|
Jeon KH, Shrestha A, Jang HJ, Kim JA, Sheen N, Seo M, Lee ES, Kwon Y. Anticancer Activity of Indeno[1,2-b]-Pyridinol Derivative as a New DNA Minor Groove Binding Catalytic Inhibitor of Topoisomerase IIα. Biomol Ther (Seoul) 2021; 29:562-570. [PMID: 34011695 PMCID: PMC8411023 DOI: 10.4062/biomolther.2020.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
Topoisomerase IIα has been a representative anti-cancer target for decades thanks to its functional necessity in highly proliferative cancer cells. As type of topoisomerase IIα targeting drugs, topoisomerase II poisons are frequently in clinical usage. However, topoisomerase II poisons result in crucial consequences resulted from mechanistically induced DNA toxicity. For this reason, it is needed to develop catalytic inhibitors of topoisomerase IIα through the alternative mechanism of enzymatic regulation. As a catalytic inhibitor of topoisomerase IIα, AK-I-191 was previously reported for its enzyme inhibitory activity. In this study, we clarified the mechanism of AK-I-191 and conducted various types of spectroscopic and biological evaluations for deeper understanding of its mechanism of action. Conclusively, AK-I-191 represented potent topoisomerase IIα inhibitory activity through binding to minor groove of DNA double helix and showed synergistic effects with tamoxifen in antiproliferative activity.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Aarajana Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hae Jin Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong-Ahn Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Naeun Sheen
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Gupta P, Kumar RV, Kwon CH, Chen ZS. Synthesis and anticancer evaluation of sulfur containing 9-anilinoacridines. Recent Pat Anticancer Drug Discov 2021; 17:102-119. [PMID: 34323200 DOI: 10.2174/1574892816666210728122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND DNA topoisomerases are a class of enzymes that play a critical role in fundamental biological processes of replication, transcription, recombination, repair and chromatin remodeling. Amsacrine (m-AMSA), the best-known compound of 9-anilinoacridines series was one of the first DNA-intercalating agents to be considered as a Topoisomerase II inhibitor. OBJECTIVE A series of sulfur containing 9-anilinoacridines related to amsacrine were synthesized and evaluated for their anticancer activity. METHODS Cell viability was assessed by the MTT assay. The topoisomerase II inhibitory assay was performed using the Human topoisomerase II Assay kit and flow cytometry was used to evaluate the effects on cell cycle of K562 cells. Molecular docking was performed using Schrödinger Maestro program. RESULTS Compound 36 was found to be the most cytotoxic of the sulfide series against SW620, K562, and MCF-7. The limited SAR suggested the importance of the methansulfonamidoacetamide side chain functionality, the lipophilicity and relative metabolic stability of 36 in contributing to the cytotoxicity. Topoisomerase II α inhibitory activity appeared to be involved in the cytotoxicity of 36 through inhibition of decatenation of kinetoplast DNA (kDNA) in a concentration dependent manner. Cell cycle analysis further showed the Topo II inhibition through accumulation of K562 cells in G2/M phase of cell cycle. Docking of 36 into the Topo II α-DNA complex suggested that it may be an allosteric inhibitor of Topo II α. CONCLUSION Compound 36 exhibits anticancer activity by inhibiting topoisomerase II and it could further be evaluated in in vivo models.
Collapse
Affiliation(s)
- Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Radhika V Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Chul-Hoon Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
6
|
Hinzke T, Kleiner M, Meister M, Schlüter R, Hentschker C, Pané-Farré J, Hildebrandt P, Felbeck H, Sievert SM, Bonn F, Völker U, Becher D, Schweder T, Markert S. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. eLife 2021; 10:58371. [PMID: 33404502 PMCID: PMC7787665 DOI: 10.7554/elife.58371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
Collapse
Affiliation(s)
- Tjorven Hinzke
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany.,Energy Bioengineering Group, University of Calgary, Calgary, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Mareike Meister
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Horst Felbeck
- Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, United States
| | - Florian Bonn
- Institute of Biochemistry, University Hospital, Goethe University School of Medicine Frankfurt, Frankfurt, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
7
|
Radaeva M, Dong X, Cherkasov A. The Use of Methods of Computer-Aided Drug Discovery in the Development of Topoisomerase II Inhibitors: Applications and Future Directions. J Chem Inf Model 2020; 60:3703-3721. [DOI: 10.1021/acs.jcim.0c00325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mariia Radaeva
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| |
Collapse
|
8
|
Sheena Mary Y, Ertan-Bolelli T, Thomas R, Krishnan AR, Bolelli K, Kasap EN, Onkol T, Yildiz I. Quantum Mechanical Studies of Three Aromatic Halogen-Substituted Bioactive Sulfonamidobenzoxazole Compounds with Potential Light Harvesting Properties. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1689405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Y. Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Tugba Ertan-Bolelli
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Yenimahalle, Ankara, Turkey
| | - Renjith Thomas
- Department of Chemistry, St. Berchmans College (Autonomous), Changanassery, Kerala, India
| | - Akhil R. Krishnan
- Department of Physics, Malabar Christian College, Kozhikode, Kerala, India
| | - Kayhan Bolelli
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Yenimahalle, Ankara, Turkey
| | - Esin Nagihan Kasap
- Faculty of Pharmacy, Department of Basic Sciences, Gazi University, Ankara, Turkey
| | - Tijen Onkol
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Gazi University, Ankara, Turkey
| | - Ilkay Yildiz
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Yenimahalle, Ankara, Turkey
| |
Collapse
|
9
|
Haider S, Chittiboyina AG, Khan IA. Isolation, Synthesis and Medicinal Significance of Marine Pyridoacridine Alkaloids. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190725093517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyridoacridine alkaloids, distributed in marine organisms have emerged as an
important class of compounds due to their uniqure chemical architecture, diversity and
medicinal significance. These alkaloids are reported to exhibit a wide array of biological
activities like anti-cancer, anti-bacterial, ant-viral, anti-fungal and anti-parasitic activities.
The present review highlights the isolation, synthesis and medicinal significance of this
important class of pyridoacridine alkaloids.
Collapse
Affiliation(s)
- Saqlain Haider
- National Center for Natural Products Research, University of Mississippi, University, MS-38677, United States
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, University of Mississippi, University, MS-38677, United States
| | - Ikhlas A. Khan
- National Center for Natural Products Research, University of Mississippi, University, MS-38677, United States
| |
Collapse
|
10
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
11
|
Hadzic M, Haveric S, Haveric A, Lojo-Kadric N, Galic B, Ramic J, Pojskic L. Bioflavonoids protect cells against halogenated boroxine-induced genotoxic damage by upregulation of hTERT expression. ACTA ACUST UNITED AC 2018; 74:125-129. [DOI: 10.1515/znc-2018-0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Plant bioflavonoids are widely present in the human diet and have various protective properties. In this study, we have demonstrated the capacity of delphinidin and luteolin to increase human telomerase reverse transcriptase (hTERT) expression level and act as protective agents against halogenated boroxine-induced genotoxic damage. Halogenated boroxine K2(B3O3F4OH) (HB), is a novel compound with potential for the treatment of both benign and malignant skin changes. In vivo and in vitro studies have confirmed the inhibitory effects of HB on carcinoma cell proliferation and cell cycle progression as well as enzyme inhibition. However, minor genotoxic effects of HB are registered in higher applied concentrations, but those can be suppressed by in vitro addition of delphinidin and luteolin in appropriate concentrations. Fresh peripheral blood samples were cultivated for 72 h followed by independent and concomitant treatments of HB with luteolin or delphinidin. We analyzed the differences in relative hTERT expression between series of treatments compared with controls, which were based on normalized ratios with housekeeping genes. The obtained results have shown that selected bioflavonoids induce upregulation of hTERT that may contribute to the repair of genotoxic damage in vitro.
Collapse
Affiliation(s)
- Maida Hadzic
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Sanin Haveric
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Anja Haveric
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Naida Lojo-Kadric
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Borivoj Galic
- Faculty of Science, Department for Chemistry , University of Sarajevo , Zmaja od Bosne 33-35 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Jasmin Ramic
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| |
Collapse
|
12
|
Mills M, Tse-Dinh YC, Neuman KC. Direct observation of topoisomerase IA gate dynamics. Nat Struct Mol Biol 2018; 25:1111-1118. [PMID: 30478267 PMCID: PMC6379066 DOI: 10.1038/s41594-018-0158-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Type IA topoisomerases cleave single-stranded DNA and relieve negative supercoils in discrete steps corresponding to the passage of the intact DNA strand through the cleaved strand. Although type IA topoisomerases are assumed to accomplish this strand passage via a protein-mediated DNA gate, opening of this gate has never been observed. We developed a single-molecule assay to directly measure gate opening of the Escherichia coli type IA topoisomerases I and III. We found that after cleavage of single-stranded DNA, the protein gate opens by as much as 6.6 nm and can close against forces in excess of 16 pN. Key differences in the cleavage, ligation, and gate dynamics of these two enzymes provide insights into their different cellular functions. The single-molecule results are broadly consistent with conformational changes obtained from molecular dynamics simulations. These results allowed us to develop a mechanistic model of interactions between type IA topoisomerases and single-stranded DNA.
Collapse
Affiliation(s)
- Maria Mills
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Magar TBT, Seo SH, Kadayat TM, Jo H, Shrestha A, Bist G, Katila P, Kwon Y, Lee ES. Synthesis and SAR study of new hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines as selective topoisomerase IIα-targeting anticancer agents. Bioorg Med Chem 2018; 26:1909-1919. [DOI: 10.1016/j.bmc.2018.02.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 02/02/2023]
|
14
|
Singh BN, Achary VMM, Panditi V, Sopory SK, Reddy MK. Dynamics of tobacco DNA topoisomerases II in cell cycle regulation: to manage topological constrains during replication, transcription and mitotic chromosome condensation and segregation. PLANT MOLECULAR BIOLOGY 2017; 94:595-607. [PMID: 28634865 DOI: 10.1007/s11103-017-0626-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/13/2017] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE The topoisomerase II expression varies as a function of cell proliferation. Maximal topoisomerase II expression was tightly coupled to S phase and G2/M phase via both transcriptional and post-transcriptional regulation. Investigation in meiosis using pollen mother cells also revealed that it is not the major component of meiotic chromosomes, it seems to diffuse out once meiotic chromosomal condensation is completed. Synchronized tobacco BY-2 cell cultures were used to study the role of topoisomerase II in various stages of the cell cycle. Topoisomerase II transcript accumulation was observed during the S- and G2/M- phase of cell cycle. This biphasic expression pattern indicates the active requirement of topoisomerase II during these stages of the cell cycle. Through immuno-localization of topoisomerase II was observed diffusely throughout the nucleoplasm in interphase nuclei, whereas, the nucleolus region exhibited a more prominent immuno-positive staining that correlated with rRNA transcription, as shown by propidium iodide staining and BrUTP incorporation. The immuno-staining analysis also showed that topoisomerase II is the major component of mitotic chromosomes and remain attached to the chromosomes during cell division. The inhibition of topoisomerase II activity using specific inhibitors revealed quite dramatic effect on condensation of chromatin and chromosome individualization from prophase to metaphase transition. Partially condensed chromosomes were not arranged on metaphase plate and chromosomal perturbations were observed when advance to anaphase, suggesting the importance of topoisomerase II activity for proper chromosome condensation and segregation during mitosis. Contrary, topoisomerase II is not the major component of meiotic chromosomes, even though mitosis and meiosis share many processes, including the DNA replication, chromosome condensation and precisely regulated partitioning of chromosomes into daughter cells. Even if topoisomerase II is required for individualization and condensation of meiotic chromosomes, it seems to diffuse out once meiotic chromosomal condensation is completed.
Collapse
Affiliation(s)
- Badri Nath Singh
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - V Mohan Murali Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Varakumar Panditi
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Sudhir K Sopory
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Malireddy K Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India.
| |
Collapse
|
15
|
Jagetia GC. The Grape Fruit Bioflavonoid Naringin Protects Against the Doxorubicin-Induced Micronuclei Formation in Mouse Bone Marrow. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/ijmboa.2016.01.00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Basso E, Regazzo G, Fiore M, Palma V, Traversi G, Testa A, Degrassi F, Cozzi R. Resveratrol affects DNA damage induced by ionizing radiation in human lymphocytes in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 806:40-6. [PMID: 27476334 DOI: 10.1016/j.mrgentox.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/01/2016] [Accepted: 07/08/2016] [Indexed: 12/24/2022]
Abstract
Resveratrol (3,4',5-trihydroxystilbene; RSV) acts on cancer cells in several ways, inducing cell cycle delay and apoptotic death, and enhancing ionizing radiation (IR)-mediated responses. However, fewer studies have examined RSV effects on normal cells. We have treated human lymphocytes in vitro with RSV, either alone or combined with IR, to evaluate its potential use as a radioprotector. We measured the effects of RSV on induction of DNA damage, repair kinetics, and modulation of histone deacetylase activity.
Collapse
Affiliation(s)
- Emiliano Basso
- Dipartimento di Scienze, Università "Roma TRE", Roma, Italy
| | - Giulia Regazzo
- Dipartimento di Scienze, Università "Roma TRE", Roma, Italy
| | - Mario Fiore
- Istituto di Biologia Molecolare e Patologia, CNR, Roma, Italy
| | - Valentina Palma
- Sezione di Tossicologia e Scienze Biomediche, ENEA, Casaccia Roma, Italy
| | | | - Antonella Testa
- Sezione di Tossicologia e Scienze Biomediche, ENEA, Casaccia Roma, Italy
| | | | - Renata Cozzi
- Dipartimento di Scienze, Università "Roma TRE", Roma, Italy.
| |
Collapse
|
17
|
Thapa P, Kadayat TM, Park S, Shin S, Thapa Magar TB, Bist G, Shrestha A, Na Y, Kwon Y, Lee ES. Synthesis and biological evaluation of 2-phenol-4-chlorophenyl-6-aryl pyridines as topoisomerase II inhibitors and cytotoxic agents. Bioorg Chem 2016; 66:145-59. [DOI: 10.1016/j.bioorg.2016.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022]
|
18
|
Franchi L, De Souza T, Andrioli W, Lima I, Bastos J, Takahashi C. The effects of the mycotoxin austdiol on cell cycle progression, cytotoxicity and genotoxicity in Chinese hamster ovary (CHO-K1) cells. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Austdiol is a mycotoxin mainly produced by Aspergillus ustus and Mycoleptodiscus indicus. These fungi are found in rye, oats, barley, corn and feed grains; thus, as a potential contaminant of human food and animal feed, this mycotoxin is of great concern. As such, the elucidation of the cytotoxicity and mutagenicity of austdiol is important. In this study, austdiol was purified from a rice-oat solid medium culture of M. indicus using chromatographic separation techniques. Chinese hamster ovary (CHO-K1) cells were then used to study the effect of austdiol on mammalian cell cycle, clonogenicity and DNA damage. Austdiol induced cell cycle arrest in G2/M phase, with a decreased S phase population and increased sub-G1 population. Austdiol also increased the polyploid population. These events resulted in cell death detected 7 days after treatment by clonogenic assay. DNA damage represents the main mechanism of action of austdiol, which induces DNA breaks and increases the frequency of micronuclei and nucleoplasmic bridges in binucleated cells in a CHO-K1 cell line. Moreover, cells exposed to austdiol and doxorubicin (DXR) combined treatments presented a reduced number of colonies and increased frequencies of micronuclei and nucleoplasmic bridges compared with negative control and cells treated with austdiol or DXR alone.
Collapse
Affiliation(s)
- L.P. Franchi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Bloco G. Av. Bandeirantes 3900, 14049-900 Monte Alegre, SP, Brazil
| | - T.A.J. De Souza
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Bloco G. Av. Bandeirantes 3900, 14049-900 Monte Alegre, SP, Brazil
| | - W.J. Andrioli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
- Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, 14040-900 Vila Monte Alegre, SP, Brazil
| | - I.M.S. Lima
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Bloco G. Av. Bandeirantes 3900, 14049-900 Monte Alegre, SP, Brazil
| | - J.K. Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - C.S. Takahashi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Bloco G. Av. Bandeirantes 3900, 14049-900 Monte Alegre, SP, Brazil
- Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, 14040-900 Vila Monte Alegre, SP, Brazil
| |
Collapse
|
19
|
Hadžić M, Haverić S, Haverić A, Galić B. Inhibitory effects of delphinidin and luteolin on genotoxicity induced by K2B3O3F4OH) in human lymphocytes in vitro. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Tacrine derivatives as dual topoisomerase I and II catalytic inhibitors. Bioorg Chem 2015; 59:168-76. [DOI: 10.1016/j.bioorg.2015.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 11/17/2022]
|
21
|
Sulaiman GM. In vitro study of molecular structure and cytotoxicity effect of luteolin in the human colon carcinoma cells. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2436-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kwon HB, Park C, Jeon KH, Lee E, Park SE, Jun KY, Kadayat TM, Thapa P, Karki R, Na Y, Park MS, Rho SB, Lee ES, Kwon Y. A Series of Novel Terpyridine-Skeleton Molecule Derivants Inhibit Tumor Growth and Metastasis by Targeting Topoisomerases. J Med Chem 2015; 58:1100-22. [DOI: 10.1021/jm501023q] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Han-Byeol Kwon
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global
Top 5 Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Chanmi Park
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global
Top 5 Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kyung-Hwa Jeon
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global
Top 5 Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eunyoung Lee
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global
Top 5 Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - So-Eun Park
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global
Top 5 Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kyu-Yeon Jun
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global
Top 5 Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Tara Man Kadayat
- College
of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Pritam Thapa
- College
of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Radha Karki
- College
of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Younghwa Na
- College
of Pharmacy, Cha University, Pochon 487-010, Republic of Korea
| | - Mi Sun Park
- Research Institute,
National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | - Seung Bae Rho
- Research Institute,
National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | - Eung-Seok Lee
- College
of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Youngjoo Kwon
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global
Top 5 Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
23
|
Chen T, Sun Y, Ji P, Kopetz S, Zhang W. Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene 2014; 34:4019-31. [PMID: 25328138 PMCID: PMC4404185 DOI: 10.1038/onc.2014.332] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 12/29/2022]
Abstract
Genome instability is a hallmark of cancer cells. Chromosome instability (CIN), which is often mutually exclusive from hypermutation genotypes, represents a distinct subtype of genome instability. Hypermutations in cancer cells are due to defects in DNA repair genes, but the cause of CIN is still elusive. However, because of the extensive chromosomal abnormalities associated with CIN, its cause is likely a defect in a network of genes that regulate mitotic checkpoints and chromosomal organization and segregation. Emerging evidence has shown that the chromosomal decatenation checkpoint, which is critical for chromatin untangling and packing during genetic material duplication, is defective in cancer cells with CIN. The decatenation checkpoint is known to be regulated by a family of enzymes called topoisomerases. Among them, the gene encoding topoisomerase IIα (TOP2A) is commonly altered at both gene copy number and gene expression level in cancer cells. Thus, abnormal alterations of TOP2A, its interacting proteins, and its modifications may play a critical role in CIN in human cancers. Clinically, a large arsenal of topoisomerase inhibitors have been used to suppress DNA replication in cancer. However, they often lead to the secondary development of leukemia because of their effect on the chromosomal decatenation checkpoint. Therefore, topoisomerase drugs must be used judiciously and administered on an individual basis. In this review, we highlight the biological function of TOP2A in chromosome segregation and the mechanisms that regulate this enzyme's expression and activity. We also review the roles of TOP2A and related proteins in human cancers, and raise a perspective for how to target TOP2A in personalized cancer therapy.
Collapse
Affiliation(s)
- T Chen
- 1] Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] Department of Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - P Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Kopetz
- Department of Gastrointestinal Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
DNA binders in clinical trials and chemotherapy. Bioorg Med Chem 2014; 22:4506-21. [DOI: 10.1016/j.bmc.2014.05.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 01/09/2023]
|
25
|
Lacombe OK, Zuma AA, da Silva CC, de Souza W, Motta MCM. Effects of camptothecin derivatives and topoisomerase dual inhibitors on Trypanosoma cruzi growth and ultrastructure. J Negat Results Biomed 2014; 13:11. [PMID: 24917086 PMCID: PMC4066697 DOI: 10.1186/1477-5751-13-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/22/2014] [Indexed: 12/02/2022] Open
Abstract
Background Trypanosoma cruzi is the etiological agent of Chagas’ disease that is an endemic disease in Latin America and affects about 8 million people. This parasite belongs to the Trypanosomatidae family which contains a single mitochondrion with an enlarged region, named kinetoplast that harbors the mitochondrial DNA (kDNA). The kinetoplast and the nucleus present a great variety of essential enzymes involved in DNA replication and topology, including DNA topoisomerases. Such enzymes are considered to be promising molecular targets for cancer treatment and for antiparasitic chemotherapy. In this work, the proliferation and ultrastructure of T. cruzi epimastigotes were evaluated after treatment with eukaryotic topoisomerase I inhibitors, such as topotecan and irinotecan, as well as with dual inhibitors (compounds that block eukaryotic topoisomerase I and topoisomerase II activities), such as baicalein, luteolin and evodiamine. Previous studies have shown that such inhibitors were able to block the growth of tumor cells, however most of them have never been tested on trypanosomatids. Results Considering the effects of topoisomerase I inhibitors, our results showed that topotecan decreased cell proliferation and caused unpacking of nuclear heterochromatin, however none of these alterations were observed after treatment with irinotecan. The dual inhibitors baicalein and evodiamine decreased cell growth; however the nuclear and kinetoplast ultrastructures were not affected. Conclusions Taken together, our data showed that camptothecin is more efficient than its derivatives in decreasing T. cruzi proliferation. Furthermore, we conclude that drugs pertaining to a certain class of topoisomerase inhibitors may present different efficiencies as chemotherapeutical agents.
Collapse
Affiliation(s)
| | | | | | | | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
26
|
Attia S, Ahmad S, Abd-Ellah M, Hamada F, Bakheet S. Germ cell mutagenicity of topoisomerase I inhibitor topotecan detected in the male mouse-dominant lethal study. Food Chem Toxicol 2013; 62:470-4. [DOI: 10.1016/j.fct.2013.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
|
27
|
Park SE, Chang IH, Jun KY, Lee E, Lee ES, Na Y, Kwon Y. 3-(3-Butylamino-2-hydroxy-propoxy)-1-hydroxy-xanthen-9-one acts as a topoisomerase IIα catalytic inhibitor with low DNA damage. Eur J Med Chem 2013; 69:139-45. [PMID: 24013413 DOI: 10.1016/j.ejmech.2013.07.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022]
Abstract
As a continuous study we prepared several alkylamine (n = 3-6) and evaluated for the pharmacological activity and mode of action. In the topoisomerase IIα (topo IIα) inhibition test, compound 4 showed strongest inhibitory activity among the compounds at 10 μM. Inhibitory activities of the compounds are in the order of 4 (n = 4) > 1 (n = 3) >> 5 (n = 5) ≈ 6 (n = 6); 8 (n = 4) >> 7 (n = 3) ≈ 9 (n = 5) ≈ 10 (n = 6) where n is the number of carbon in the aliphatic side chain in ring C and compounds 7-10 have additional methoxy group in ring A compared to compounds 1, 4-6. Compound 4 showed efficient cytotoxicities against T47D (IC₅₀: 0.93 ± 0.04 μM) and HCT15 (IC50: 0.78 ± 0.01 μM) cells, which are higher than etoposide. Compound 4 was also an ATP-competitive human topo IIα catalytic inhibitor with partially blocking human topo IIα-catalyzed ATP hydrolysis and intercalating into DNA. Compound 4 induced much less DNA damage than etoposide in HCT15 human colorectal carcinoma cells. Overall, compound 4 can be a potential anticancer agent acting as topo IIα catalytic inhibitor with low DNA damage.
Collapse
Affiliation(s)
- So-Eun Park
- College of Pharmacy & Ewha Global Top5 Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Kaplan-Ozen C, Tekiner-Gulbas B, Foto E, Yildiz I, Diril N, Aki E, Yalcin I. Benzothiazole derivatives as human DNA topoisomerase IIα inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0577-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Basso E, Fiore M, Leone S, Degrassi F, Cozzi R. Effects of resveratrol on topoisomerase II-α activity: induction of micronuclei and inhibition of chromosome segregation in CHO-K1 cells. Mutagenesis 2013; 28:243-8. [PMID: 23462849 DOI: 10.1093/mutage/ges067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, a great interest has emerged in resveratrol (RSV) activity in the prevention of various pathologies including cancer. We recently showed that RSV is able to interfere with topoisomerase II-α (TOPO2) activity in cancer cells, thus inducing a delay in S-phase progression with concomitant phosphorylation of the histone H2AX. TOPO2 is mainly active in proliferating cells and is involved in the resolution of supercoiled DNA and chromosome segregation during mitosis. Here, we studied the effects of RSV in CHO-K1 cells concerning to chromosome damage and segregation as a consequence of TOPO2 inhibition. We show an increase in micronuclei and in polyploid and endoreduplicated cells due to incorrect chromosome segregation. Furthermore, since incomplete segregation can also affect the normal distribution of mitotic figures, we checked mitosis progression showing an increase in metaphase in relation to ana-telophase after RSV treatment. On the whole, our data show that RSV affects chromosome stability and segregation in proliferating cells, probably interfering with TOPO2 activity.
Collapse
Affiliation(s)
- Emiliano Basso
- Dipartimento di Biologia, Università Roma TRE, Roma, Italy
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Yang H, Liu C, Jamsen J, Wu Z, Wang Y, Chen J, Zheng L, Shen B. The DNase domain-containing protein TATDN1 plays an important role in chromosomal segregation and cell cycle progression during zebrafish eye development. Cell Cycle 2012. [PMID: 23187801 DOI: 10.4161/cc.22886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The DNase domain-containing protein TATDN1 is a conserved nuclease in both prokaryotes and eukaryotes. It was previously implicated to play a role in apoptotic DNA fragmentation in yeast and C. elegans. However, its biological function in higher organisms, such as vertebrates, is unknown. Here, we report that zebrafish TATDN1 (zTATDN1) possesses a novel endonuclease activity, which first makes a nick at the DNA duplex and subsequently converts the nick into a DNA double-strand break in vitro. This biochemical property allows zTATDN1 to catalyze decatenation of catenated kinetoplast DNA to produce separated linear DNA in vitro. We further determine that zTATDN1 is predominantly expressed in eye cells during embryonic development. Knockdown of TATDN1 in zebrafish embryos results in an abnormal cell cycle progression, formation of polyploidy and aberrant chromatin structures. Consequently, the TATDN1-deficient morphants have disordered eye cell layers and significantly smaller eyes compared with the WT control. Altogether, our current studies suggest that zTATDN1 plays an important role in chromosome segregation and eye development in zebrafish.
Collapse
Affiliation(s)
- Hui Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pastor N, Domínguez I, Orta ML, Campanella C, Mateos S, Cortés F. The DNA topoisomerase II catalytic inhibitor merbarone is genotoxic and induces endoreduplication. Mutat Res 2012; 738-739:45-51. [PMID: 22921906 DOI: 10.1016/j.mrfmmm.2012.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/03/2012] [Accepted: 07/19/2012] [Indexed: 06/01/2023]
Abstract
In the last years a number of reports have shown that the so-called topoisomerase II (topo II) catalytic inhibitors are able to induce DNA and chromosome damage, an unexpected result taking into account that they do not stabilize topo II-DNA cleavable complexes, a feature of topo II poisons such as etoposide and amsacrine. Merbarone inhibits the catalytic activity of topo II by blocking DNA cleavage by the enzyme. While it was first reported that merbarone does not induce genotoxic effects in mammalian cells, this has been challenged by reports showing that the topo II inhibitor induces efficiently chromosome and DNA damage, and the question as to a possible behavior as a topo II poison has been put forward. Given these contradictory results, and the as yet incomplete knowledge of the molecular mechanism of action of merbarone, in the present study we have tried to further characterize the mechanism of action of merbarone on cell proliferation, cell cycle, as well as chromosome and DNA damage in cultured CHO cells. Merbarone was cytotoxic as well as genotoxic, inhibited topo II catalytic activity, and induced endoreduplication. We have also shown that merbarone-induced DNA damage depends upon ongoing DNA synthesis. Supporting this, inhibition of DNA synthesis causes reduction of DNA damage and increased cell survival.
Collapse
Affiliation(s)
- Nuria Pastor
- Department of Cell Biology, University of Seville, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Savatier J, Rharass T, Canal C, Gbankoto A, Vigo J, Salmon JM, Ribou AC. Adriamycin dose and time effects on cell cycle, cell death, and reactive oxygen species generation in leukaemia cells. Leuk Res 2012; 36:791-8. [PMID: 22417651 DOI: 10.1016/j.leukres.2012.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/10/2012] [Accepted: 02/20/2012] [Indexed: 01/03/2023]
Abstract
We investigate the relative importance of the different mechanisms of Adriamycin, an anthracycline, and their interrelations, in particular the link between cell cycle arrest, cell death, and generation of reactive oxygen species (ROS) that is suspected to be the origin of cardiotoxic side-effects. We introduced a lifetime fluorescence based technology and used videomicrofluorometry, two efficient analytical methods. We show that depending on the doses and time after incubation, ADR will not reach the same compartments (nucleus, mitochondria, cytosol) in the cells, having consequences on the production of ROS, growth arrest pathways and cell death pathways.
Collapse
Affiliation(s)
- Julien Savatier
- Institut Fresnel, Domaine Universitaire de St Jerôme, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Chen Z, Wang J, Zhang H, Liu D, Li Y, Xu Y, Tan D, Chen D, Zhao X, Wang G. Topo IIα gene alterations correlated with survival in patients with diffuse large B-cell lymphoma. Eur J Clin Invest 2012; 42:310-20. [PMID: 21880040 DOI: 10.1111/j.1365-2362.2011.02585.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Topoisomerase IIα (topo IIα) protein expression has prognostic significance in many cancers. However, it is still unclear whether topo IIα protein expression and gene alterations play roles as prognostic factors in diffuse large B-cell lymphoma (DLBCL). MATERIALS AND METHODS We selected 102 patients with DLBCL who were homogeneously treated with CHOP chemotherapy and followed up. Using tissue microarray technology, all of the cases, consisting of 25 germinal centre B-cell-like (GCB) and 77 nongerminal centre B-cell-like (non-GCB) types, were studied. Topo IIα protein expression was detected by immunohistochemistry. Gene copy number of topo IIα was analysed by chromogenic in situ hybridization. Cox regression, chi-square test and Kaplan-Meier statistics were performed using SPSS 15·0. RESULTS Topo IIα protein overexpression was found in 91 (91/102, 89·2%) cases, while topo IIα gene amplification was absent in all cases. Chromosome 17 deletion was identified in 3 (3/102, 2·9%) cases, diploid in 66 (66/102, 64·7%) cases and aneuploidy in 33 (33/102, 32·4%) cases. By multivariate analysis, no significant differences in progression-free survival (PFS) and overall survival (OS) were observed in patients with topo IIα protein overexpression (P > 0·05), while chromosome 17 aneuploidy predicted worse PFS and OS (P < 0·001). CONCLUSIONS These results suggested that chromosome 17 aneuploidy, but not topo IIα protein expression, could predict worse survival in patients with DLBCL.
Collapse
Affiliation(s)
- Zhenwen Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Attia SM. Molecular cytogenetic evaluation of the mechanism of genotoxic potential of amsacrine and nocodazole in mouse bone marrow cells. J Appl Toxicol 2011; 33:426-33. [DOI: 10.1002/jat.1753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/10/2011] [Accepted: 09/10/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Sabry M. Attia
- Department of Pharmacology, College of Pharmacy; King Saud University; PO Box 11451; Riyadh; Saudi Arabia
| |
Collapse
|
36
|
Attia SM. Comparative aneugenicity of doxorubicin and its derivative idarubicin using fluorescence in situ hybridization techniques. Mutat Res 2011; 715:79-87. [PMID: 21856314 DOI: 10.1016/j.mrfmmm.2011.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/24/2011] [Accepted: 07/22/2011] [Indexed: 05/31/2023]
Abstract
The present study was designed to evaluate and compare the aneugenicity of idarubicin and doxorubicin, topoisomerase-targeting anticancer anthracyclines, using fluorescence in situ hybridization techniques. It was found that idarubicin and doxorubicin treatment (12 mg/kg) induced sperm meiotic delay of 24h. To determine the frequencies of disomic and diploid sperm, groups of 5 male Swiss albino mice were treated with 3, 6 and 12 mg/kg idarubicin or doxorubicin. Significant increases in the frequencies of disomic and diploid sperm were caused by treatment with all doses of idarubicin and the two highest doses of doxorubicin compared with the controls. Moreover, both compounds significantly increased the frequency of diploid sperm, indicating that complete meiotic arrest occurred. The observation that XX- and YY-sperm significantly prevailed XY-sperm indicates missegregation during the second meiotic division. The results suggest also that earlier prophase stages contribute relatively less to idarubicin and doxorubicin-induced aneuploidy. Effects of the same doses were investigated by the bone-marrow micronucleus test. Significant increases in the frequencies of micronuclei were found after treatment with all doses of both compounds. The responses were also directly correlated with bone marrow suppression. Idarubicin was more toxic than doxorubicin. Exposure to 12 mg/kg of idarubicin and doxorubicin yielded 3.82 and 2.64% micronuclei, respectively, and of these an average of 58.3 and 62.8%, respectively, showed centromeric signals, indicating their formation by whole chromosomes and reflecting the aneugenic activity of both compounds. Correspondingly, about 41.7 and 37.2% of the induced micronuclei, respectively, were centromere-negative, demonstrating that both compounds not only induce chromosome loss but also DNA strand breaks. Based on our data, aneuploidy assays such as sperm-fluorescence in situ hybridization assay and micronucleus test complemented by fluorescence in situ hybridization with centromeric DNA probes have been to some extent validated to be recommended for the assessment of aneuploidogenic effects of chemicals.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology, College of Pharmacy, King Saud University, PO Box 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
37
|
Effect of topoisomerase inhibitors and DNA-binding drugs on the cell proliferation and ultrastructure of Trypanosoma cruzi. Int J Antimicrob Agents 2011; 37:449-56. [DOI: 10.1016/j.ijantimicag.2010.11.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/31/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022]
|
38
|
Naowaratwattana W, De-Eknamkul W, De Mejia EG. Phenolic-Containing Organic Extracts of Mulberry (Morus alba L.) Leaves Inhibit HepG2 Hepatoma Cells Through G2/M Phase Arrest, Induction of Apoptosis, and Inhibition of Topoisomerase IIα Activity. J Med Food 2010; 13:1045-56. [DOI: 10.1089/jmf.2010.1021] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Wanlaya Naowaratwattana
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanchai De-Eknamkul
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Elvira Gonzalez De Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
39
|
Fehr M, Baechler S, Kropat C, Mielke C, Boege F, Pahlke G, Marko D. Repair of DNA damage induced by the mycotoxin alternariol involves tyrosyl-DNA phosphodiesterase 1. Mycotoxin Res 2010; 26:247-56. [DOI: 10.1007/s12550-010-0063-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 11/29/2022]
|
40
|
Schindlbeck C, Mayr D, Olivier C, Rack B, Engelstaedter V, Jueckstock J, Jenderek C, Andergassen U, Jeschke U, Friese K. Topoisomerase IIalpha expression rather than gene amplification predicts responsiveness of adjuvant anthracycline-based chemotherapy in women with primary breast cancer. J Cancer Res Clin Oncol 2010; 136:1029-37. [PMID: 20052594 DOI: 10.1007/s00432-009-0748-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 12/07/2009] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Adjuvant anthracycline-based chemotherapy (AbCTX) is a standard treatment for patients with primary breast cancer. Its main target is topoisomerase IIalpha (TopIIa), a nuclear protein which is important for DNA replication and mitosis. We propose that the overexpression of the TopIIa protein or amplification of the TopIIa gene may be useful in predicting increased responsiveness towards AbCTX. METHODS Tumor tissues of 118 patients who received adjuvant AbCTX were examined by immunohistochemistry (IHC) and fluorescence in situ hybridisation (FISH) for TopIIa and HER2. For IHC, the primary antibodies 485 (Dako) and NCL-TOPOIIA (Novocastra) were used. FISH analysis was performed with the SPEC HER2/CEP 17 Dual Color Probe (Zytovision) and LSI TOP 2A Spectrum Orange/CEP 17 Spectrum Green probe (Abbott). TopIIa IHC was evaluated by the immunoreactive score (IRS). FISH amplification was stated at an HER2-TopIIa/CEP 17 ratio > or = 2, deletion of TopIIa at a ratio <0.8. RESULTS The median age of the patient population was 50 years (range 23-77), 76 (64%) had tumors >2 cm in size, 98 (85%) were nodal positive, and 72 (66%) estrogen-receptor positive. Chemotherapy regimes consisted of epirubicin-cyclophosphamide (EC 40 pts), EC-CMF (18 pts), FAC/FEC (33 pts), anthracycline-taxane combinations (23 pts) and others (4 pts). After IHC, it was found that 19% of the tumors were positive for HER2 (3+) and the median IRS for TopIIa staining was 2 (49% positive); 28 (24%) tumors showed HER2 amplification, therefrom 20/22 (91%) within the HER2 3+ group. TopIIa gene was amplified in 17 cases (16%) and deletion was seen in 6 (5%) tumors. Of all cases with HER2 gene amplification, 14 (50%) cases of TopIIa co-amplification and one case of deletion were seen. Looking at histological parameters, TopIIa IHC correlated with nodal status (P = 0.018) and high grading (G3) (P = 0.047). After a median follow-up of 42 months (range 1-242), a significant prognostic factor for local recurrence was HER2 positivity (IHC P = 0.013 and FISH P = 0.023). Thirty-two patients developed metastasis (27%), which was correlated with HER2 FISH positivity (P = 0.024) and, as a trend, Top IIa IHC negativity (P = 0.094); 25 (21%) patients died from the disease. Negative prognostic parameters were the lack of estrogen-receptor expression (P = 0.008), lymphangiosis (P = 0.02), and TopIIa IHC negativity (P = 0.03). CONCLUSION In this cohort of patients, HER2 positivity indicated higher rates of local and distant recurrence. In contrast, TopIIa IHC positivity predicted lower risk of metastases and death, thus being a positive-predictive factor for the responsiveness to AbCTX. TopIIa gene amplification did not add predictive information. Therefore, we conclude that TopIIa protein expression might rather be the target of anthracyclines independent from gene copy number.
Collapse
Affiliation(s)
- Christian Schindlbeck
- Department of Obstetrics and Gynecology, Campus Innenstadt, Ludwig-Maximilians-University, Maistrasse 11, 80337 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bower JJ, Karaca GF, Zhou Y, Simpson DA, Cordeiro-Stone M, Kaufmann WK. Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling. Oncogene 2010; 29:4787-99. [PMID: 20562910 PMCID: PMC2928865 DOI: 10.1038/onc.2010.232] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerase IIalpha (topoIIalpha) is an essential mammalian enzyme that topologically modifies DNA and is required for chromosome segregation during mitosis. Previous research suggests that inhibition of topoII decatenatory activity triggers a G(2) checkpoint response, which delays mitotic entry because of insufficient decatenation of daughter chromatids. Here we examine the effects of both topoIIalpha and topoIIbeta on decatenatory activity in cell extracts, DNA damage and decatenation G(2) checkpoint function, and the frequencies of p16(INK4A) allele loss and gain. In diploid human fibroblast lines, depletion of topoIIalpha by small-interfering RNA was associated with severely reduced decatenatory activity, delayed progression from G(2) into mitosis and insensitivity to G(2) arrest induced by the topoII catalytic inhibitor ICRF-193. Furthermore, interphase nuclei of topoIIalpha-depleted cells showed increased frequencies of losses and gains of the tumor suppressor genetic locus p16(INK4A). This study shows that the topoIIalpha protein is required for decatenation G(2) checkpoint function, and inactivation of decatenation and the decatenation G(2) checkpoint leads to abnormal chromosome segregation and genomic instability.
Collapse
Affiliation(s)
- J J Bower
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
42
|
Cosimi S, Orta L, Mateos S, Cortés F. The mycotoxin ochratoxin A inhibits DNA topoisomerase II and induces polyploidy in cultured CHO cells. Toxicol In Vitro 2009; 23:1110-5. [PMID: 19490938 DOI: 10.1016/j.tiv.2009.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/05/2009] [Accepted: 05/26/2009] [Indexed: 11/25/2022]
Abstract
Ochratoxin A (OTA), a known nephrotoxin and carcinogenic mycotoxin, was investigated to examine its effectiveness to induce cytotoxicity and DNA damage (Comet assay), as well as its possible inhibition of topoisomerase II (topo II) catalytic activity in cultured Chinese hamster ovary (CHO) cells. The analysis of OTA-induced DNA strand breaks as well as the flow cytometric assessment of polyploidy has provided evidence that is consistent with the idea of a mixed mode of action of the mycotoxin: in addition to its genotoxic activity, OTA may also interfere with chromosome distribution during cell division.
Collapse
Affiliation(s)
- Simona Cosimi
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes 6, E-41012 Seville, Spain
| | | | | | | |
Collapse
|
43
|
Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 2009; 41:2069-80. [PMID: 19379828 DOI: 10.1016/j.biocel.2009.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/20/2022]
Abstract
Without mitochondria, eukaryotic cells would depend entirely on anaerobic glycolysis for ATP generation. This also holds true for protists, both free-living and parasitic. Parasitic protists include agents of human and animal diseases that have a huge impact on world populations. In the phylum Apicomplexa, several species of Plasmodium cause malaria, whereas Toxoplasma gondii is a cosmopolite parasite found on all continents. Flagellates of the order Kinetoplastida include the genera Leishmania and Trypanosoma causative agents of human leishmaniasis and (depending on the species) African trypanosomiasis and Chagas disease. Although clearly distinct in many aspects, the members of these two groups bear a single and usually well developed mitochondrion. The single mitochondrion of Apicomplexa has a dense matrix and many cristae with a circular profile. The organelle is even more peculiar in the order Kinetoplastida, exhibiting a condensed network of DNA at a specific position, always close to the flagellar basal body. This arrangement is known as Kinetoplast and the name of the order derived from it. Kinetoplastids also bear glycosomes, peroxisomes that concentrate enzymes of the glycolytic cycle. Mitochondrial volume and activity is maximum when glycosomal is low and vice versa. In both Apicomplexa and trypanosomatids, mitochondria show particularities that are absent in other eukaryotic organisms. These peculiar features make them an attractive target for therapeutic drugs for the diseases they cause.
Collapse
|
44
|
Orta ML, Mateos S, Cortés F. DNA demethylation protects from cleavable complex stabilization and DNA strand breakage induced by the topoisomerase type I inhibitor camptothecin. Mutagenesis 2009; 24:237-44. [PMID: 19201781 DOI: 10.1093/mutage/gep002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Methylation of cytosine in CpG sequences of the DNA in mammalian cells is an epigenetic feature regulated very exactly that bears importance for events like gene expression, DNA replication, transcription and genetic imprinting. Changes in the DNA methylation pattern, both hypermethylation and hypomethylation, have been observed in the carcinogenic process. These changes, in general, influence the DNA conformation in such a way that certain proteins are disturbed in their interactions with the molecule. In this paper, we investigated in cultured Chinese hamster ovary cells the influence of hypomethylation induced by the substitution of 5-aza-2'-deoxycytidine for cytidine in DNA on topoisomerase type I (topo I) function, measured as the capacity of the enzyme inhibitor camptothecin (CPT) to stabilize the topoisomerase-DNA complexes and to induce DNA strand breakage. Our results demonstrate that the degree of methylation in DNA correlates with the effectiveness of CPT to stabilize the topo I-DNA complexes and to induce DNA cleavage. A protective effect of hypomethylation, as a whole, has been observed.
Collapse
Affiliation(s)
- Manuel Luís Orta
- Department of Cell Biology, Faculty of Biology, University of Seville, Seville, Spain
| | | | | |
Collapse
|
45
|
Jiménez-Alonso S, Orellana HC, Estévez-Braun A, Ravelo AG, Pérez-Sacau E, Machín F. Design and Synthesis of a Novel Series of Pyranonaphthoquinones as Topoisomerase II Catalytic Inhibitors. J Med Chem 2008; 51:6761-72. [DOI: 10.1021/jm800499x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sandra Jiménez-Alonso
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| | - Haydee Chávez Orellana
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| | - Angel G. Ravelo
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| | - Elisa Pérez-Sacau
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| | - Felix Machín
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| |
Collapse
|
46
|
Tea flavanols inhibit cell growth and DNA topoisomerase II activity and induce endoreduplication in cultured Chinese hamster cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 654:8-12. [DOI: 10.1016/j.mrgentox.2008.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/08/2008] [Accepted: 03/28/2008] [Indexed: 01/22/2023]
|
47
|
Cimini D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:32-40. [PMID: 18549824 DOI: 10.1016/j.bbcan.2008.05.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/21/2008] [Accepted: 05/13/2008] [Indexed: 01/16/2023]
Abstract
Accurate chromosome segregation in mitosis is crucial to maintain a diploid chromosome number. A majority of cancer cells are aneuploid and chromosomally unstable, i.e. they tend to gain and lose chromosomes at each mitotic division. Chromosome mis-segregation can arise when cells progress through mitosis with mis-attached kinetochores. Merotelic kinetochore orientation, a type of mis-attachment in which a single kinetochore binds microtubules from two spindle poles rather than just one, can represent a particular threat for dividing cells, as: (i) it occurs frequently in early mitosis; (ii) it is not detected by the spindle assembly checkpoint (unlike other types of mis-attachments); (iii) it can lead to chromosome mis-segregation, and, hence, aneuploidy. A number of studies have recently started to unveil the cellular and molecular mechanisms involved in merotelic kinetochore formation and correction. Here, I review these studies and discuss the relevance of merotelic kinetochore orientation in cancer cell biology.
Collapse
Affiliation(s)
- Daniela Cimini
- Virginia Tech, Department of Biological Sciences, 5036 Derring Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
48
|
Kopjar N, Zeljezić D, Vrdoljak AL, Radić B, Ramić S, Milić M, Gamulin M, Pavlica V, Fucić A. Irinotecan Toxicity to Human Blood Cells in vitro: Relationship between Various Biomarkers. Basic Clin Pharmacol Toxicol 2007; 100:403-13. [PMID: 17516995 DOI: 10.1111/j.1742-7843.2007.00068.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxic effects of the antineoplastic drug irinotecan on human blood cells at concentrations of 9.0 microg/ml and 4.6 microg/ml were evaluated in vitro. Using the alkaline and neutral comet assay significantly increased levels of primary DNA damage in lymphocytes were detected. The induction of apoptosis/necrosis, as determined by a fluorescent assay, was also notably increased. Cytogenetic outcomes of the treatment were assessed by the analysis of structural chromosome aberrations and fluorescence in situ hybridization. A significantly higher incidence of chromatid breaks and complex quadriradials was observed. Painted chromosomes 1, 2 and 4 were equally involved in translocations, but only the chromosome 1 was involved in the formation of quadriradials. Sister chromatid exchange analysis was performed in parallel with the analysis of lymphocyte proliferation kinetics. The higher concentration of irinotecan caused almost seven-time increase, while the lower one caused a five-time increase of the basal sister chromatid exchange frequency, accompanied with significant lowering of the lymphocyte proliferation index. Using the cytokinesis-block micronucleus assay, a dose-dependent increase in micronucleus frequency along with the formation of nuclear buds and nucleoplasmic bridges was noticed. Inhibitory effects of irinotecan on enzyme acetylcholinesterase (AChE) were studied in erythrocytes. An IC(50) value of 5.0 x 10(-7) was established. Irinotecan was found to be strong inhibitor of the acetylcholine hydrolysis and to cause a continuous decrease of catalytic activity of AChE. The results obtained on a single donor may contribute to the understanding of irinotecan toxicity, but further in vitro and in vivo studies are essential in order to clarify remaining issues, especially on possible inter-individual variability in genotoxic responses to the drug.
Collapse
Affiliation(s)
- Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cortés F, Pastor N, Mateos S, Domínguez I. Topoisomerase inhibitors as therapeutic weapons. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.5.521] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Abstract
Spermatocytes normally sustain many meiotically induced double-strand DNA breaks (DSBs) early in meiotic prophase; in autosomal chromatin, these are repaired by initiation of meiotic homologous-recombination processes. Little is known about how spermatocytes respond to environmentally induced DNA damage after recombination-related DSBs have been repaired. The experiments described here tested the hypothesis that, even though actively completing meiotic recombination, pachytene spermatocytes cultured in the absence of testicular somatic cells initiate appropriate chromatin remodeling and cell-cycle responses to environmentally induced DNA damage. Two DNA-damaging agents were employed for in vitro treatment of pachytene spermatocytes: gamma-irradiation and etoposide, a topoisomerase II (TOP2) inhibitor that results in persistent unligated DSBs. Chromatin modifications associated with DSBs were monitored after exposure by labeling surface-spread chromatin with antibodies against RAD51 (which recognizes DSBs) and the phosphorylated variant of histone H2AFX (herein designated by its commonly used symbol, H2AX), gammaH2AX (which modifies chromatin associated with DSBs). Both gammaH2AX and RAD51 were rapidly recruited to irradiation- or etoposide-damaged chromatin. These chromatin modifications imply that spermatocytes recruit active DNA damage responses, even after recombination is substantially completed. Furthermore, irradiation-induced DNA damage inhibited okadaic acid-induced progression of spermatocytes from meiotic prophase to metaphase I (MI), implying efficacy of DNA damage checkpoint mechanisms. Apoptotic responses of spermatocytes with DNA damage differed, with an increase in frequency of early apoptotic spermatocytes after etoposide treatment, but not following irradiation. Taken together, these results demonstrate modification of pachytene spermatocyte chromatin and inhibition of meiotic progress after DNA damage by mechanisms that may ensure gametic genetic integrity.
Collapse
Affiliation(s)
- Shannon Matulis
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | | |
Collapse
|