1
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Kawaguchi J, Mori H, Iwai N, Wachi M. A secondary metabolic enzyme functioned as an evolutionary seed of a primary metabolic enzyme. Mol Biol Evol 2022; 39:6651898. [PMID: 35904937 PMCID: PMC9356726 DOI: 10.1093/molbev/msac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The antibiotic alaremycin has a structure that resembles that of 5-aminolevulinic acid (ALA), a universal precursor of porphyrins, and inhibits porphyrin biosynthesis. Genome sequencing of the alaremycin-producing bacterial strain and enzymatic analysis revealed that the first step of alaremcyin biosynthesis is catalysed by the enzyme, AlmA, which exhibits a high degree of similarity to 5-aminolevulinate synthase (ALAS) expressed by animals, protozoa, fungi and α-proteobacteria. Site-directed mutagenesis of AlmA revealed that the substitution of two amino acids residues around the substrate binding pocket transformed its substrate specificity from that of alaremycin precursor synthesis to ALA synthesis. To estimate the evolutionary trajectory of AlmA and ALAS, we performed an ancestral sequence reconstitution analysis based on a phylogenetic tree of AlmA and ALAS. The reconstructed common ancestral enzyme of AlmA and ALAS exhibited alaremycin precursor synthetic activity, rather than ALA synthetic activity. These results suggest that ALAS evolved from an AlmA-like enzyme. We propose a new evolutionary hypothesis in which a non-essential secondary metabolic enzyme acts as an 'evolutionary seed' to generate an essential primary metabolic enzyme.
Collapse
Affiliation(s)
- Jun Kawaguchi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hikaru Mori
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Noritaka Iwai
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaaki Wachi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
3
|
Ebiloma GU, Balogun EO, Cueto-Díaz EJ, de Koning HP, Dardonville C. Alternative oxidase inhibitors: Mitochondrion-targeting as a strategy for new drugs against pathogenic parasites and fungi. Med Res Rev 2019; 39:1553-1602. [PMID: 30693533 DOI: 10.1002/med.21560] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
The alternative oxidase (AOX) is a ubiquitous terminal oxidase of plants and many fungi, catalyzing the four-electron reduction of oxygen to water alongside the cytochrome-based electron transfer chain. Unlike the classical electron transfer chain, however, the activity of AOX does not generate adenosine triphosphate but has functions such as thermogenesis and stress response. As it lacks a mammalian counterpart, it has been investigated intensely in pathogenic fungi. However, it is in African trypanosomes, which lack cytochrome-based respiration in their infective stages, that trypanosome alternative oxidase (TAO) plays the central and essential role in their energy metabolism. TAO was validated as a drug target decades ago and among the first inhibitors to be identified was salicylhydroxamic acid (SHAM), which produced the expected trypanocidal effects, especially when potentiated by coadministration with glycerol to inhibit anaerobic energy metabolism as well. However, the efficacy of this combination was too low to be of practical clinical use. The antibiotic ascofuranone (AF) proved a much stronger TAO inhibitor and was able to cure Trypanosoma vivax infections in mice without glycerol and at much lower doses, providing an important proof of concept milestone. Systematic efforts to improve the SHAM and AF scaffolds, aided with the elucidation of the TAO crystal structure, provided detailed structure-activity relationship information and reinvigorated the drug discovery effort. Recently, the coupling of mitochondrion-targeting lipophilic cations to TAO inhibitors has dramatically improved drug targeting and trypanocidal activity while retaining target protein potency. These developments appear to have finally signposted the way to preclinical development of TAO inhibitors.
Collapse
Affiliation(s)
- Godwin U Ebiloma
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
4
|
Tsaousis AD, Hamblin KA, Elliott CR, Young L, Rosell-Hidalgo A, Gourlay CW, Moore AL, van der Giezen M. The Human Gut Colonizer Blastocystis Respires Using Complex II and Alternative Oxidase to Buffer Transient Oxygen Fluctuations in the Gut. Front Cell Infect Microbiol 2018; 8:371. [PMID: 30406045 PMCID: PMC6204527 DOI: 10.3389/fcimb.2018.00371] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Blastocystis is the most common eukaryotic microbe in the human gut. It is linked to irritable bowel syndrome (IBS), but its role in disease has been contested considering its widespread nature. This organism is well-adapted to its anoxic niche and lacks typical eukaryotic features, such as a cytochrome-driven mitochondrial electron transport. Although generally considered a strict or obligate anaerobe, its genome encodes an alternative oxidase. Alternative oxidases are energetically wasteful enzymes as they are non-protonmotive and energy is liberated in heat, but they are considered to be involved in oxidative stress protective mechanisms. Our results demonstrate that the Blastocystis cells themselves respire oxygen via this alternative oxidase thereby casting doubt on its strict anaerobic nature. Inhibition experiments using alternative oxidase and Complex II specific inhibitors clearly demonstrate their role in cellular respiration. We postulate that the alternative oxidase in Blastocystis is used to buffer transient oxygen fluctuations in the gut and that it likely is a common colonizer of the human gut and not causally involved in IBS. Additionally the alternative oxidase could act as a protective mechanism in a dysbiotic gut and thereby explain the absence of Blastocystis in established IBS environments.
Collapse
Affiliation(s)
- Anastasios D. Tsaousis
- RAPID Group, Laboratory of Molecular & Evolutionary Parasitology, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Karleigh A. Hamblin
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Catherine R. Elliott
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Luke Young
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Alicia Rosell-Hidalgo
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | |
Collapse
|
5
|
Abstract
SUMMARYNew drugs against Trypanosoma brucei, the causative agent of Human African Trypanosomiasis, are urgently needed to replace the highly toxic and largely ineffective therapies currently used. The trypanosome alternative oxidase (TAO) is an essential and unique mitochondrial protein in these parasites and is absent from mammalian mitochondria, making it an attractive drug target. The structure and function of the protein are now well characterized, with several inhibitors reported in the literature, which show potential as clinical drug candidates. In this review, we provide an update on the functional activity and structural aspects of TAO. We then discuss TAO inhibitors reported to date, problems encountered with in vivo testing of these compounds, and discuss the future of TAO as a therapeutic target.
Collapse
|
6
|
Nakamura K, Fujioka S, Fukumoto S, Inoue N, Sakamoto K, Hirata H, Kido Y, Yabu Y, Suzuki T, Watanabe YI, Saimoto H, Akiyama H, Kita K. Trypanosome alternative oxidase, a potential therapeutic target for sleeping sickness, is conserved among Trypanosoma brucei subspecies. Parasitol Int 2010; 59:560-4. [PMID: 20688188 DOI: 10.1016/j.parint.2010.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 07/17/2010] [Accepted: 07/23/2010] [Indexed: 11/16/2022]
Abstract
Trypanosoma brucei rhodesiense and T. b. gambiense are known causes of human African trypanosomiasis (HAT), or "sleeping sickness," which is deadly if untreated. We previously reported that a specific inhibitor of trypanosome alternative oxidase (TAO), ascofuranone, quickly kills African trypanosomes in vitro and cures mice infected with another subspecies, non-human infective T. b. brucei, in in vivo trials. As an essential factor for trypanosome survival, TAO is a promising drug target due to the absence of alternative oxidases in the mammalian host. This study found TAO expression in HAT-causing trypanosomes; its amino acid sequence was identical to that in non-human infective T. b. brucei. The biochemical understanding of the TAO including its 3 dimensional structure and inhibitory compounds against TAO could therefore be applied to all three T. brucei subspecies in search of a cure for HAT. Our in vitro study using T. b. rhodesiense confirmed the effectiveness of ascofuranone (IC(50) value: 1 nM) to eliminate trypanosomes in human infective strain cultures.
Collapse
Affiliation(s)
- Kosuke Nakamura
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Williams BAP, Elliot C, Burri L, Kido Y, Kita K, Moore AL, Keeling PJ. A broad distribution of the alternative oxidase in microsporidian parasites. PLoS Pathog 2010; 6:e1000761. [PMID: 20169184 PMCID: PMC2820529 DOI: 10.1371/journal.ppat.1000761] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes.
Collapse
Affiliation(s)
- Bryony A. P. Williams
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon, United Kingdom
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine Elliot
- Department of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Lena Burri
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Anthony L. Moore
- Department of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:327-30. [DOI: 10.1016/j.bbabio.2008.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 11/18/2022]
|
9
|
Steverding D, Scory S. Trypanosoma brucei: Unexpected Azide Sensitivity of Bloodstream Forms. J Parasitol 2004; 90:1188-90. [PMID: 15562629 DOI: 10.1645/ge-275r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Bloodstream forms of Trypanosoma brucei lack cytochromes and are, therefore, insensitive to cyanide. Azide is a toxic anion that bears chemical and biological properties in common with cyanide and may act in a similar way by inhibition of cytochrome c oxidase. It was, therefore, surprising to find that bloodstream forms of T. brucei are sensitive to azide; growth is reduced by 50% with 0.1 mM azide. So far, the only enzyme known in bloodstream forms of T. brucei to be sensitive to azide is the iron-containing superoxide dismutase. However, because the activity of the superoxide dismutase was not affected in parasites incubated for 16 hr with 0.5 mM azide (a concentration at which no cell proliferates), the toxic action of azide cannot be due to inhibition of this enzyme. These results indicate that the general toxicity of azide is different from that of cyanide.
Collapse
Affiliation(s)
- Dietmar Steverding
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK.
| | | |
Collapse
|
10
|
Suzuki T, Hashimoto T, Yabu Y, Kido Y, Sakamoto K, Nihei CI, Hato M, Suzuki SI, Amano Y, Nagai K, Hosokawa T, Minagawa N, Ohta N, Kita K. Direct evidence for cyanide-insensitive quinol oxidase (alternative oxidase) in apicomplexan parasite Cryptosporidium parvum: phylogenetic and therapeutic implications. Biochem Biophys Res Commun 2004; 313:1044-52. [PMID: 14706648 DOI: 10.1016/j.bbrc.2003.12.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cryptosporidium parvum is a parasitic protozoan that causes the diarrheal disease cryptosporidiosis, for which no satisfactory chemotherapy is currently available. Although the presence of mitochondria in this parasite has been suggested, its respiratory system is poorly understood due to difficulties in performing biochemical analyses. In order to better understand the respiratory chain of C. parvum, we surveyed its genomic DNA database in GenBank and identified a partial sequence encoding cyanide-insensitive alternative oxidase (AOX). Based on this sequence, we cloned C. parvum AOX (CpAOX) cDNA from the phylum apicomplexa for the first time. The deduced amino acid sequence (335 a.a.) of CpAOX contains diiron coordination motifs (-E-, -EXXH-) that are conserved among AOXs. Phylogenetic analysis suggested that CpAOX is a mitochondrial-type AOX, possibly derived from mitochondrial endosymbiont gene transfer. The recombinant enzyme expressed in Escherichia coli showed quinol oxidase activity. This activity was insensitive to cyanide and highly sensitive to ascofuranone, a specific inhibitor of trypanosome AOX.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Molecular Parasitology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|