1
|
Salomon J, Sambado SB, Crews A, Sidhu S, Seredian E, Almarinez A, Grgich R, Swei A. Macro-parasites and micro-parasites co-exist in rodent communities but are associated with different community-level parameters. Int J Parasitol Parasites Wildl 2023; 22:51-59. [PMID: 37680651 PMCID: PMC10481151 DOI: 10.1016/j.ijppaw.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Wildlife species are often heavily parasitized by multiple infections simultaneously. Yet research on sylvatic transmission cycles, tend to focus on host interactions with a single parasite and neglects the influence of co-infections by other pathogens and parasites. Co-infections between macro-parasites and micro-parasites can alter mechanisms that regulate pathogenesis and are important for understanding disease emergence and dynamics. Wildlife rodent hosts in the Lyme disease system are infected with macro-parasites (i.e., ticks and helminths) and micro-parasites (i.e., Borrelia spp.), however, there has not been a study that investigates the interaction of all three parasites (i.e., I. pacificus, Borrelia spp., and helminths) and how these co-infections impact prevalence of micro-parasites. We live-trapped rodents in ten sites in northern California to collect feces, blood, ear tissue, and attached ticks. These samples were used to test for infection status of Borrelia species (i.e., micro-parasite), and describe the burden of ticks and helminths (i.e., macro-parasites). We found that some rodent hosts were co-infected with all three parasites, however, the burden or presence of concurrent macro-parasites were not associated with Borrelia infections. For macro-parasites, we found that tick burdens were positively associated with rodent Shannon diversity while negatively associated with predator diversity, whereas helminth burdens were not significantly associated with any host community metric. Ticks and tick-borne pathogens are associated with rodent host diversity, predator diversity, and abiotic factors. However, it is still unknown what factors helminths are associated with on the community level. Understanding the mechanisms that influence co-infections of multiple types of parasites within and across hosts is an increasingly critical component of characterizing zoonotic disease transmission and maintenance.
Collapse
Affiliation(s)
- Jordan Salomon
- Ecology & Evolutionary Biology Program at Texas A&M University, College Station, TX, USA
| | - Samantha B. Sambado
- Ecology, Evolution, & Marine Biology Department at University of California Santa Barbara, CA, USA
| | - Arielle Crews
- San Mateo County Mosquito and Vector Control, Burlingame, CA, USA
| | - Sukhman Sidhu
- Biology Department at San Francisco State University, San Francisco, CA, USA
| | - Eric Seredian
- Biology Department at San Francisco State University, San Francisco, CA, USA
| | - Adrienne Almarinez
- Biology Department at San Francisco State University, San Francisco, CA, USA
| | - Rachel Grgich
- Biology Department at San Francisco State University, San Francisco, CA, USA
| | - Andrea Swei
- Biology Department at San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
2
|
Martínez-Pérez PA, Hyndman TH, Fleming PA. Haematology and blood chemistry in free-ranging quokkas (Setonix brachyurus): Reference intervals and assessing the effects of site, sampling time, and infectious agents. PLoS One 2020; 15:e0239060. [PMID: 32941511 PMCID: PMC7498088 DOI: 10.1371/journal.pone.0239060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022] Open
Abstract
Quokkas (Setonix brachyurus) are small macropodid marsupials from Western Australia, which are identified as of conservation concern. Studies on their blood analytes exist but involve small sample sizes and are associated with very little information concerning the health of the animals. Blood was collected from free-ranging quokkas from Rottnest Island (n = 113) and mainland (n = 37) Western Australia, between September 2010 and December 2011, to establish haematology and blood chemistry reference intervals. Differences in haematology and blood chemistry between sites (Rottnest Island v mainland) were significant for haematology (HMT, p = 0.003), blood chemistry (BLC, p = 0.001) and peripheral blood cell morphology (PBCM, p = 0.001). Except for alkaline phosphatase, all blood chemistry analytes were higher in mainland animals. There were also differences with time of year in HMT (p = 0.001), BLC (p = 0.001) and PBCM (p = 0.001) for Rottnest Island quokkas. A small sample of captive animals (n = 8) were opportunistically sampled for plasma concentrations of vitamin E and were found to be deficient compared with wild-caught animals. Fifty-eight of the 150 quokkas were also tested for the presence of Salmonella, microfilariae, Macropodid herpesvirus-6, Theileria spp., Babesia spp., trypanosomes, Cryptococcus spp. and other saprophytic fungi. All eight infectious agents were detected in this study. Infectious agents were detected in 24 of these 58 quokkas (41%), with more than one infectious agent detected for all 24 individuals. Salmonella were detected concurrently with microfilariae in 8 of these 24 quokkas, and this mixed infection was associated with lower values across all haematological analytes, with Salmonella having the greater involvement in the decreased haematological values (p < 0.05). There was no evidence for an effect of sex on HMT, BLC and PBCM. Our data provide important haematological and blood chemistry reference intervals for free-ranging quokkas. We applied novel methods of analyses to HMT and BLC that can be used more broadly, aiding identification of potential disease in wildlife.
Collapse
Affiliation(s)
| | - Timothy H. Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
- * E-mail:
| | - Patricia A. Fleming
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
3
|
Order of Inoculation during Heligmosomoides bakeri and Hymenolepis microstoma Coinfection Alters Parasite Life History and Host Responses. Pathogens 2013; 2:130-52. [PMID: 25436885 PMCID: PMC4235709 DOI: 10.3390/pathogens2010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/02/2013] [Accepted: 02/21/2013] [Indexed: 11/24/2022] Open
Abstract
Parasite life history may differ during coinfection compared to single infections, and the order of infection may be an important predictor of life history traits. We subjected laboratory mice (Mus musculus) to single and coinfections with Heligmosomoides bakeri and Hymenolepis microstoma and measured life history traits of worms and also hepatobiliary and morphological responses by the host. We found that fewer H. bakeri larvae established, and adult worms were shorter and produced fewer eggs during a coinfection where H. microstoma occurred first. H. microstoma grew more and released more eggs after simultaneous inoculation of both parasites compared to a single H. microstoma infection, despite similar worm numbers. Mouse small intestine mass, but not length, varied with coinfection and bile duct mass was largest when H. microstoma was given alone or first. Mouse serum alkaline phosphatase levels were greatest for mice infected with H. microstoma only but did not vary with number of scolices; no change in mouse serum alanine transaminase levels was observed. Overall, the order of coinfection influenced life history traits of both H. bakeri and H. microstoma, but changes in survival, growth, and reproduction with order of inoculation were not consistent between the two parasites.
Collapse
|
4
|
Millington OR, Di Lorenzo C, Phillips RS, Garside P, Brewer JM. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function. J Biol 2006; 5:5. [PMID: 16611373 PMCID: PMC1561486 DOI: 10.1186/jbiol34] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 12/16/2005] [Accepted: 03/02/2006] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. RESULTS Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell) membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. CONCLUSION Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.
Collapse
Affiliation(s)
- Owain R Millington
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11 6NT, UK
- Current address: Centre for Biophotonics, University of Strathclyde, Glasgow G4 0NR, UK
| | - Caterina Di Lorenzo
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11 6NT, UK
| | - R Stephen Phillips
- Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Paul Garside
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11 6NT, UK
- Current address: Centre for Biophotonics, University of Strathclyde, Glasgow G4 0NR, UK
| | - James M Brewer
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11 6NT, UK
- Current address: Centre for Biophotonics, University of Strathclyde, Glasgow G4 0NR, UK
| |
Collapse
|
5
|
Boitelle A, Di Lorenzo C, Scales HE, Devaney E, Kennedy MW, Garside P, Lawrence CE. Contrasting effects of acute and chronic gastro-intestinal helminth infections on a heterologous immune response in a transgenic adoptive transfer model. Int J Parasitol 2005; 35:765-75. [PMID: 15893319 DOI: 10.1016/j.ijpara.2005.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 02/23/2005] [Accepted: 02/23/2005] [Indexed: 11/16/2022]
Abstract
We have previously found that co-immunisation with ovalbumin (OVA) and the body fluid of the helminth Ascaris suum inhibited an OVA-specific delayed type hypersensitivity (DTH) response by reducing OVA-specific CD4+ T lymphocyte proliferation via an IL-4 independent mechanism. In the present study, we determined whether parasite infections themselves could induce similar changes to peripheral immunisation by examining the modulation of OVA-specific immune responses during acute and chronic helminth infections. Surprisingly, an acute infection with Trichinella spiralis, but not a chronic infection with Heligmosomoides polygyrus, inhibited the OVA-specific DTH reaction. Correspondingly, the T helper 1 (Th1) OVA-specific response was decreased in mice infected with T. spiralis, but not with H. polygyrus. Inhibition of the Th1 response may be a result of a shift in the Th1/Th2 balance as although both H. polygyrus and T. spiralis infected mice induced a Th2 OVA-specific response, that exhibited by T. spiralis was more potent. Furthermore, although IL-10 secretion upon OVA restimulation was similarly increased by both infections, production of this immunoregulatory cytokine may play a role in the suppression of immune responses observed with T. spiralis infection depending on the context of its release. Interestingly, analysis of the OVA-specific T lymphocyte division by carboxyfluorescein diacetate succinimidyl ester (CFSE) staining revealed that gastro-intestinal infection with the acute helminth T. spiralis, but not with chronic H. polygyrus, inhibited the systemic immune response by significantly inhibiting the antigen-specific T cell proliferation during the primary response, a mechanism similar to that observed when A. suum parasite extracts were directly mixed with the OVA during immunisation in our previous studies.
Collapse
Affiliation(s)
- A Boitelle
- Department of Immunology, University of Strathclyde, The Todd Wing, SIBS, 27 Taylor Street, Glasgow G4 0NR, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Behnke JM, Bajer A, Sinski E, Wakelin D. Interactions involving intestinal nematodes of rodents: experimental and field studies. Parasitology 2001; 122 Suppl:S39-49. [PMID: 11442195 DOI: 10.1017/s0031182000016796] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multiple species infections with parasitic helminths, including nematodes, are common in wild rodent populations. In this paper we first define different types of associations and review experimental evidence for different categories of interactions. We conclude that whilst laboratory experiments have demonstrated unequivocally that both synergistic and antagonistic interactions involving nematodes exist, field work utilizing wild rodents has generally led to the conclusion that interactions between nematode species play no, or at most a minor, role in shaping helminth component communities. Nevertheless, we emphasize that analysis of interactions between parasites in laboratory systems has been fruitful, has made a fundamental contribution to our understanding of the mechanisms underlying host-protective intestinal immune responses, and has provided a rationale for studies on polyparasitism in human beings and domestic animals. Finally, we consider the practical implications for transmission of zoonotic diseases to human communities and to their domestic animals, and we identify the questions that merit research priority.
Collapse
Affiliation(s)
- J M Behnke
- School of Life and Environmental Sciences, University Park, University of Nottingham, UK.
| | | | | | | |
Collapse
|
7
|
Abstract
Concomitant infections are common in nature and often involve parasites. A number of examples of the interactions between protozoa and viruses, protozoa and bacteria, protozoa and other protozoa, protozoa and helminths, helminths and viruses, helminths and bacteria, and helminths and other helminths are described. In mixed infections the burden of one or both the infectious agents may be increased, one or both may be suppressed or one may be increased and the other suppressed. It is now possible to explain many of these interactions in terms of the effects parasites have on the immune system, particularly parasite-induced immunodepression, and the effects of cytokines controlling polarization to the Th1 or Th2 arms of the immune response. In addition, parasites may be affected, directly or indirectly, by cytokines and other immune effector molecules and parasites may themselves produce factors that affect the cells of the immune system. Parasites are, therefore, affected when they themselves, or other organisms, interact with the immune response and, in particular, the cytokine network. The importance of such interactions is discussed in relation to clinical disease and the development and use of vaccines.
Collapse
Affiliation(s)
- F E Cox
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, UK.
| |
Collapse
|