1
|
Lv L, Cheng X, Yang J, Chen X, Ni J. Novel role for non-invasive neuromodulation techniques in central respiratory dysfunction. Front Neurosci 2023; 17:1226660. [PMID: 37680969 PMCID: PMC10480838 DOI: 10.3389/fnins.2023.1226660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Respiration is a crucial steady-state function of human life. Central nervous system injury can damage the central respiratory pattern generator (CRPG) or interrupt its outflow, leading to central respiratory paralysis and dysfunction, which can endanger the patient's life. At present, there is no effective means to reverse this process. Commonly used non-invasive neuromodulation techniques include repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and so forth, which have been widely applied in nervous system diseases and their various secondary symptoms, but rarely in respiratory function. Clinical and animal studies have confirmed that TMS is also suitable for investigating the excitability and plasticity of ascending corticospinal respiratory pathways. In addition, although rTMS and tDCS differ in their respective mechanisms, both can regulate respiratory networks in healthy individuals and in diseased states. In this review, we provide an overview of the physiology of respiration, the use of TMS to assess the excitability of corticophrenic pathways in healthy individuals and in central respiratory disorders, followed by an overview of the animal and clinical studies of rTMS, tDCS and so forth in regulating respiratory circuits and the possible mechanisms behind them. It was found that the supplementary motor area (SMA) and the phrenic motor neuron (PMN) may be key regulatory areas. Finally, the challenges and future research directions of neuroregulation in respiratory function are proposed. Through understanding how neuromodulation affects the respiratory neural circuit non-invasively, we can further explore the therapeutic potential of this neuromodulation strategy, so as to promote the recovery of respiratory function after central nervous system diseases or injury.
Collapse
Affiliation(s)
- Lan Lv
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoping Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiaying Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
3
|
Dereli M, Ozcan Kahraman B, Kahraman T. A Narrative Review of Respiratory Impairment, Assessment, and Rehabilitation in Multiple Sclerosis. DUBAI MEDICAL JOURNAL 2022. [DOI: 10.1159/000521444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Background:</i></b> Respiratory impairment is a problem seen in people with multiple sclerosis (pwMS) from the early stages of the disease but not frequently recognized by clinicians until the later stages. It is seen in different ways, such as respiratory muscle weakness, change in pulmonary volumes, and decrease in cough efficiency. This situation has consequences affecting individuals’ physical fitness, participation in daily life, and quality of life. <b><i>Summary:</i></b> This review explains possible respiratory impairment mechanisms, related problems, assessment, and rehabilitation approaches in pwMS. <b><i>Key Messages:</i></b> It is recommended a comprehensive assessment of respiratory functions in pwMS regardless of the disease severity and stage. In addition, pulmonary rehabilitation and other exercises can have positive effects on the respiratory functions of pwMS. In future studies, specific training parameters should be determined for pwMS to achieve optimal benefits. There is also a need for studies that apply respiratory muscle training in pwMS who have a high disease severity and limited participation in the activities of daily living.
Collapse
|
4
|
Evolving relationship between respiratory functions & impairment in sleep and cognition in patients with multiple sclerosis. Mult Scler Relat Disord 2020; 46:102514. [PMID: 32992131 DOI: 10.1016/j.msard.2020.102514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND The most apparent source of disability in patients with multiple sclerosis (MS) is the physical and mental impact. The pathophysiological mechanisms of cognitive dysfunction are multifactorial although hypoventilation secondary to respiratory dysfunction may contribute to cognitive decline. METHODS This study was conducted on 146 MS patients with baseline clinical assessments including the Epworth sleepiness scale (ESS) and physical disability was assessed using the Expanded Disability Status Scale (EDSS). Cognitive testing was performed utilizing the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) and the Perceived Deficits Questionnaire (PDQ). Respiratory functions were assessed by spirometry and the respiratory muscle functional assessment was done by maximal mouth pressure measurement. RESULTS The respiratory muscle function test had a significant negative correlation with the score of ESS and PDQ scale and a significant positive correlation with the BICAMS scale score (p < 0.001). The ESS and PDQ scores were significantly negatively correlated with forced expiratory volume in the first second (FEV1)/ forced vital capacity (FVC) (p = 0.03, 0.02), FVC supine (p = 0.03, 0.01), FVC upright- FVC supine (ΔFVC) (p < 0.001, <0.001) FEV1 (p < 0.001) and FVC (L) (p < 0.001), respectively. While the BICAMS showed a significant positive correlation with spirometry results except FVC upright. ESS scores were significantly correlated with the BICAMS and PDQ scale score (p < 0.001). CONCLUSION Among MS patients, impaired respiratory functions are significantly associated with sleep disturbance and cognitive impairment. Thus the spirometry and respiratory muscle strength assessment are necessary from the early phase of MS.
Collapse
|
6
|
Tzelepis GE, McCool FD. Respiratory dysfunction in multiple sclerosis. Respir Med 2015; 109:671-9. [PMID: 25724874 DOI: 10.1016/j.rmed.2015.01.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/08/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022]
Abstract
Respiratory dysfunction frequently occurs in patients with advanced multiple sclerosis (MS), and may manifest as acute or chronic respiratory failure, disordered control of breathing, respiratory muscle weakness, sleep disordered breathing, or neurogenic pulmonary edema. The underlying pathophysiology is related to demyelinating plaques involving the brain stem or spinal cord. Respiratory complications such as aspiration, lung infections and respiratory failure are typically seen in patients with long-standing MS. Acute respiratory failure is uncommon and due to newly appearing demyelinating plaques extensively involving areas of the brain stem or spinal cord. Early recognition of MS patients at risk for respiratory complications allows for the timely implementation of care and measures to decrease disease associated morbidity and mortality.
Collapse
Affiliation(s)
- George E Tzelepis
- Department of Pathophysiology and Laiko General Hospital, and University of Athens Medical School, Athens, Greece; Department of Pulmonary and Critical Care Medicine, The Memorial Hospital RI, and The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - F Dennis McCool
- Department of Pathophysiology and Laiko General Hospital, and University of Athens Medical School, Athens, Greece; Department of Pulmonary and Critical Care Medicine, The Memorial Hospital RI, and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Miscio G, Gukov B, Pisano F, Mazzini L, Baudo S, Salvadori A, Mauro A. The cortico-diaphragmatic pathway involvement in amyotrophic lateral sclerosis: neurophysiological, respiratory and clinical considerations. J Neurol Sci 2006; 251:10-6. [PMID: 17078971 DOI: 10.1016/j.jns.2006.05.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 11/23/2022]
Abstract
Cortico-diaphragmatic pathway was investigated by means of transcranial magnetic stimulation (TMS), in 14 patients affected by definite amyotrophic lateral sclerosis (ALS) without clinical signs of respiratory impairment. Spirometry, gas analysis, and measurement of static inspiratory and expiratory pressures were performed in all patients. Forced vital capacity, forced expiratory volume at the first and second peak expiratory flow, sniff effort from FRC level (SNIP), maximal inspiratory and expiratory pressure at mouth (MIP/MEP), maximal transdiaphragmatic pressure (Pdimx) were considered. TMS was performed, recording by surface electrodes from hemidiaphragm, bilaterally. Latency of cortical and spinal motor-evoked potentials (Cx-MEP/Sp-MEP) and central motor conduction time (CMCT) were measured. None of the patients showed altered spirometry and gas levels. Seven patients showed decreased Pdimx and eight of MEP values. Four patients showed a delayed Sp-MEP. In one patient the Cx-MEP was abolished while the mean values of both Cx-MEP and CMCT were significantly increased (19.2+/-4.1 ms, P<0.0001; 10.8+/-4.8 ms, P<0.0001). Cx-MEP and CMCT did not show significant correlations with any of the respiratory measures. The patients with prolonged Sp-MEP, showed longer disease duration, lower Norris score, lower Pdimx and MEP values. In conclusion, cortico-diaphragmatic study is a sensitive measure to reveal subclinical diaphragmatic impairment although not correlated to respiratory measures.
Collapse
Affiliation(s)
- Giacinta Miscio
- Department of Neurology and Neurorehabilitation, Istituto Auxologico Italiano, IRCCS, Piancavallo (VB), Italy.
| | | | | | | | | | | | | |
Collapse
|