• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4669527)   Today's Articles (5736)
For: Sonoyama N, Kirii M, Sakata T. Electrochemical reduction of CO2 at metal-porphyrin supported gas diffusion electrodes under high pressure CO2. Electrochem commun 1999. [DOI: 10.1016/s1388-2481(99)00041-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
Number Cited by Other Article(s)
1
Pauly M, White E, Deegbey M, Fosu EA, Keller L, McGuigan S, Dianat G, Gabilondo E, Wong JC, Murphey CGE, Shang B, Wang H, Cahoon JF, Sampaio R, Kanai Y, Parsons G, Jakubikova E, Maggard PA. Coordination of copper within a crystalline carbon nitride and its catalytic reduction of CO2. Dalton Trans 2024;53:6779-6790. [PMID: 38535981 DOI: 10.1039/d4dt00359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
2
Bai J, Wang W, Liu J. Bioinspired Hydrophobicity for Enhancing Electrochemical CO2 Reduction. Chemistry 2023;29:e202302461. [PMID: 37702459 DOI: 10.1002/chem.202302461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
3
Saxena A, Kapila S, Medvedeva JE, Nath M. Copper Cobalt Selenide as a Bifunctional Electrocatalyst for the Selective Reduction of CO2 to Carbon-Rich Products and Alcohol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892829 DOI: 10.1021/acsami.3c00488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
4
Electrochemical reduction of CO2 to useful fuel: recent advances and prospects. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
5
Koolen CD, Luo W, Züttel A. From Single Crystal to Single Atom Catalysts: Structural Factors Influencing the Performance of Metal Catalysts for CO2 Electroreduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
6
Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022;61:e202205301. [DOI: 10.1002/anie.202205301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 01/03/2023]
7
Yang ZW, Chen JM, Qiu LQ, Xie WJ, He LN. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
8
Liu C, Mei X, Han C, Gong X, Song P, Xu W. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
9
Sun Q, Jia C, Zhao Y, Zhao C. Single atom-based catalysts for electrochemical CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64000-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
10
Lei K, Yu Xia B. Electrocatalytic CO 2 Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials. Chemistry 2022;28:e202200141. [DOI: 10.1002/chem.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/12/2022]
11
Ge L, Rabiee H, Li M, Subramanian S, Zheng Y, Lee JH, Burdyny T, Wang H. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
12
Wang W, Zhang K, Xu T, Yao Y. Local environment-mediated efficient electrocatalysis of CO2 to CO on Zn nanosheets. Dalton Trans 2022;51:17081-17088. [DOI: 10.1039/d2dt03112d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
13
Chanda D, Tufa RA, Aili D, Basu S. Electroreduction of CO2to ethanol by electrochemically deposited Cu-lignin complexes on Ni foam electrodes. NANOTECHNOLOGY 2021;33:055403. [PMID: 34654005 DOI: 10.1088/1361-6528/ac302b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
14
Molecular Electrochemical Reduction of CO2 beyond Two Electrons. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
15
Iwase K, Ebner K, Diercks JS, Saveleva VA, Ünsal S, Krumeich F, Harada T, Honma I, Nakanishi S, Kamiya K, Schmidt TJ, Herranz J. Effect of Cobalt Speciation and the Graphitization of the Carbon Matrix on the CO2 Electroreduction Activity of Co/N-Doped Carbon Materials. ACS APPLIED MATERIALS & INTERFACES 2021;13:15122-15131. [PMID: 33764754 DOI: 10.1021/acsami.0c21920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
16
Friedman A, Elbaz L. Heterogeneous electrocatalytic reduction of carbon dioxide with transition metal complexes. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
17
Kamiya K, Fujii K, Sugiyama M, Nakanishi S. CO2 Electrolysis in Integrated Artificial Photosynthesis Systems. CHEM LETT 2021. [DOI: 10.1246/cl.200691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
18
Kour G, Mao X, Du A. First principles studies of mononuclear and dinuclear Pacman complexes for electrocatalytic reduction of CO2. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01757d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
19
Shafaque HW, Lee C, Fahy KF, Lee JK, LaManna JM, Baltic E, Hussey DS, Jacobson DL, Bazylak A. Boosting Membrane Hydration for High Current Densities in Membrane Electrode Assembly CO2 Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2020;12:54585-54595. [PMID: 33236877 DOI: 10.1021/acsami.0c14832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
20
KAMIYA K. Development of Robust Electrocatalysts Comprising Single-atom Sites with Designed Coordination Environments. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
21
Sinha S, Zhang R, Warren JJ. Low Overpotential CO2 Activation by a Graphite-Adsorbed Cobalt Porphyrin. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
22
Bonetto R, Altieri R, Tagliapietra M, Barbon A, Bonchio M, Robert M, Sartorel A. Electrochemical Conversion of CO2 to CO by a Competent FeI Intermediate Bearing a Schiff Base Ligand. CHEMSUSCHEM 2020;13:4111-4120. [PMID: 32657523 DOI: 10.1002/cssc.202001143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/27/2020] [Indexed: 06/11/2023]
23
Kaneko M, Ishihara K, Nakanishi S. Redox-Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020;16:e2001849. [PMID: 32734709 DOI: 10.1002/smll.202001849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
24
Boutin E, Merakeb L, Ma B, Boudy B, Wang M, Bonin J, Anxolabéhère-Mallart E, Robert M. Molecular catalysis of CO2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem Soc Rev 2020;49:5772-5809. [PMID: 32697210 DOI: 10.1039/d0cs00218f] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
25
Kamiya K. Selective single-atom electrocatalysts: a review with a focus on metal-doped covalent triazine frameworks. Chem Sci 2020;11:8339-8349. [PMID: 34123097 PMCID: PMC8163356 DOI: 10.1039/d0sc03328f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]  Open
26
Song RB, Zhu W, Fu J, Chen Y, Liu L, Zhang JR, Lin Y, Zhu JJ. Electrode Materials Engineering in Electrocatalytic CO2 Reduction: Energy Input and Conversion Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020;32:e1903796. [PMID: 31573709 DOI: 10.1002/adma.201903796] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/05/2019] [Indexed: 06/10/2023]
27
Yang C, Li S, Zhang Z, Wang H, Liu H, Jiao F, Guo Z, Zhang X, Hu W. Organic-Inorganic Hybrid Nanomaterials for Electrocatalytic CO2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020;16:e2001847. [PMID: 32510861 DOI: 10.1002/smll.202001847] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/28/2020] [Indexed: 05/03/2023]
28
Electrochemical Reactors for CO2 Conversion. Catalysts 2020. [DOI: 10.3390/catal10050473] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]  Open
29
Li J, Kuang Y, Meng Y, Tian X, Hung WH, Zhang X, Li A, Xu M, Zhou W, Ku CS, Chiang CY, Zhu G, Guo J, Sun X, Dai H. Electroreduction of CO2 to Formate on a Copper-Based Electrocatalyst at High Pressures with High Energy Conversion Efficiency. J Am Chem Soc 2020;142:7276-7282. [DOI: 10.1021/jacs.0c00122] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
30
Gotico P, Halime Z, Aukauloo A. Recent advances in metalloporphyrin-based catalyst design towards carbon dioxide reduction: from bio-inspired second coordination sphere modifications to hierarchical architectures. Dalton Trans 2020;49:2381-2396. [PMID: 32040100 DOI: 10.1039/c9dt04709c] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Franco F, Rettenmaier C, Jeon HS, Roldan Cuenya B. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem Soc Rev 2020;49:6884-6946. [DOI: 10.1039/d0cs00835d] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
32
Molecular Catalysis for Utilizing CO2 in Fuel Electro-Generation and in Chemical Feedstock. Catalysts 2019. [DOI: 10.3390/catal9090760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]  Open
33
CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat Commun 2019;10:3602. [PMID: 31399585 PMCID: PMC6689005 DOI: 10.1038/s41467-019-11542-w] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/19/2019] [Indexed: 11/13/2022]  Open
34
Chiong MR, Paraan FNC. Controlling the nucleophilic properties of cobalt salen complexes for carbon dioxide capture. RSC Adv 2019;9:23254-23260. [PMID: 35514489 PMCID: PMC9067277 DOI: 10.1039/c9ra01990a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022]  Open
35
Tawil S, Seelajaroen H, Petsom A, Sariciftci NS, Thamyongkit P. Clam-shaped cyclam-functionalized porphyrin for electrochemical reduction of carbon dioxide. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
36
Yan C, Lin L, Wang G, Bao X. Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(18)63161-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
37
Apaydin DH, Portenkirchner E, Jintanalert P, Strauss M, Luangchaiyaporn J, Sariciftci NS, Thamyongkit P. Synthesis and investigation of tetraphenyltetrabenzoporphyrins for electrocatalytic reduction of carbon dioxide. SUSTAINABLE ENERGY & FUELS 2018;2:2747-2753. [PMID: 31497650 PMCID: PMC6695572 DOI: 10.1039/c8se00422f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/04/2018] [Indexed: 06/10/2023]
38
Yao CL, Li JC, Gao W, Jiang Q. An Integrated Design with new Metal-Functionalized Covalent Organic Frameworks for the Effective Electroreduction of CO2. Chemistry 2018;24:11051-11058. [PMID: 29732631 DOI: 10.1002/chem.201800363] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/29/2018] [Indexed: 11/11/2022]
39
Feng G, Chen W, Wang B, Song Y, Li G, Fang J, Wei W, Sun Y. Oxygenates from the Electrochemical Reduction of Carbon Dioxide. Chem Asian J 2018;13:1992-2008. [PMID: 29845755 DOI: 10.1002/asia.201800637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 01/13/2023]
40
Su P, Iwase K, Harada T, Kamiya K, Nakanishi S. Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO2 electrochemical reduction. Chem Sci 2018;9:3941-3947. [PMID: 29780526 PMCID: PMC5941196 DOI: 10.1039/c8sc00604k] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/16/2018] [Indexed: 12/22/2022]  Open
41
Yao CL, Li JC, Gao W, Jiang Q. Cobalt-porphine catalyzed CO2 electro-reduction: a novel protonation mechanism. Phys Chem Chem Phys 2018;19:15067-15072. [PMID: 28561081 DOI: 10.1039/c7cp01881a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Wu Y, Jiang J, Weng Z, Wang M, Broere DL, Zhong Y, Brudvig GW, Feng Z, Wang H. Electroreduction of CO2 Catalyzed by a Heterogenized Zn-Porphyrin Complex with a Redox-Innocent Metal Center. ACS CENTRAL SCIENCE 2017;3:847-852. [PMID: 28852698 PMCID: PMC5571454 DOI: 10.1021/acscentsci.7b00160] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Indexed: 05/10/2023]
43
Zhang L, Zhao ZJ, Gong J. Nanostrukturierte Materialien für die elektrokatalytische CO2-Reduktion und ihre Reaktionsmechanismen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612214] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
44
Zhang L, Zhao ZJ, Gong J. Nanostructured Materials for Heterogeneous Electrocatalytic CO2Reduction and their Related Reaction Mechanisms. Angew Chem Int Ed Engl 2017;56:11326-11353. [DOI: 10.1002/anie.201612214] [Citation(s) in RCA: 633] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Indexed: 12/22/2022]
45
Hoffman ZB, Gray TS, Moraveck KB, Gunnoe TB, Zangari G. Electrochemical Reduction of Carbon Dioxide to Syngas and Formate at Dendritic Copper–Indium Electrocatalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01161] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
46
Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K. Efficient bioelectrocatalytic CO2 reduction on gas-diffusion-type biocathode with tungsten-containing formate dehydrogenase. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]  Open
47
Takeda H, Cometto C, Ishitani O, Robert M. Electrons, Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO2 Reduction. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02181] [Citation(s) in RCA: 455] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
48
New trends in the development of heterogeneous catalysts for electrochemical CO 2 reduction. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.02.006] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
49
Weng Z, Jiang J, Wu Y, Wu Z, Guo X, Materna KL, Liu W, Batista VS, Brudvig GW, Wang H. Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. J Am Chem Soc 2016;138:8076-9. [PMID: 27310487 DOI: 10.1021/jacs.6b04746] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
50
Maurin A, Robert M. Noncovalent Immobilization of a Molecular Iron-Based Electrocatalyst on Carbon Electrodes for Selective, Efficient CO2-to-CO Conversion in Water. J Am Chem Soc 2016;138:2492-5. [PMID: 26886174 DOI: 10.1021/jacs.5b12652] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA