1
|
Tamano K, Takayama H. Double knockout of two target genes via genome co-editing using a nitrate transporter gene nrtA and a putative thiamine transporter gene thiI as selectable markers in Aspergillus oryzae. J Biosci Bioeng 2024; 138:36-43. [PMID: 38653596 DOI: 10.1016/j.jbiosc.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Genome co-editing technology is effective in breeding filamentous fungi for applications in the fermentation industry, achieving site-directed mutagenesis, the status of non-genetically modified organisms (non-GMOs), and wild-type-like growth phenotype. Prior to this study, thiI gene was found as a selectable marker for such genome co-editing in the filamentous fungus Aspergillus oryzae, while it cannot be reused via marker recycling. Therefore, we aimed to identify another marker gene to knock out another target gene via genome co-editing in A. oryzae. In this study, we focused on the membrane transporter gene nrtA (AO090012000623), which promotes uptake of nitrate (NO3-). It is known that, in nrtA knockout strain, chlorate (ClO3-), an analog of nitrate with antifungal activity, cannot be imported into the cytosol, which enables the mutant to grow in the presence of chlorate. Based on this information, knockout of the target gene wA was attempted using both nrtA- and wA-specific single-guide RNAs via genome co-editing with KClO3 supplementation in A. oryzae laboratory strain RIB40 and industrial strain KBN616. Resultantly, wA knockout mutant was generated, and nrtA was identified as a selectable marker. Moreover, this genome co-editing system using nrtA was compatible with that using thiI, and thus, a double knockout mutant of two target genes wA and yA was constructed in RIB40 while maintaining non-GMO status and wild-type-like growth. As nrtA homologs have been found in several industrial Aspergillus species, genome co-editing using homolog genes as selectable markers is plausible, which would contribute to the widespread breeding of industrial strains of Aspergilli.
Collapse
Affiliation(s)
- Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan; AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, 5-20, Building 63, Nishi-Waseda Campus, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Haruka Takayama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
2
|
Tsigoias S, Kouderis C, Mylona-Kosmas A, Kalampounias AG. Intermolecular Hydrogen Bonding in Associated Fluids: The Case of Isopentyl Alcohol Dissolved in Carbon Tetrachloride. Molecules 2023; 28:6285. [PMID: 37687113 PMCID: PMC10488694 DOI: 10.3390/molecules28176285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Fourier-transform infrared (FTIR) spectra of isopentyl-alcohol dissolved in carbon tetrachloride (CCl4) were recorded as a function of concentration and temperature. Dilute isopentyl alcohol/CCl4 solutions were prepared in alcohol at concentrations of 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.001 and 0.0005 M. Infrared absorption measurements were taken within a temperature range of 17-67 °C below the boiling point of the solutions. Decomposition of the spectral features corresponding to associated and unassociated species was performed to quantitatively follow the effect of temperature and concentration on intermolecular hydrogen bonding (HB) in isopentyl alcohol. The spectral feature in the 3600-3650 cm-1 frequency range attributed to the free OH stretching band was studied in detail to determine changes based on concentration and temperature variations. Computational methodologies were applied to evaluate the energetics and vibrational properties of the species involved in the structure in the gaseous state where no interactions are present. The results are discussed in view of relevant structural models to gain quantitative information concerning the effect of concentration and temperature on intermolecular hydrogen bonding.
Collapse
Affiliation(s)
- Stefanos Tsigoias
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | | | - Agni Mylona-Kosmas
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Angelos G. Kalampounias
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), GR-45110 Ioannina, Greece
| |
Collapse
|
3
|
Venugopalan LP, Aimanianda V, Namperumalsamy VP, Prajna L, Kuppamuthu D, Jayapal JM. Comparative proteome analysis identifies species-specific signature proteins in Aspergillus pathogens. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12559-4. [PMID: 37166481 DOI: 10.1007/s00253-023-12559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Aspergillus flavus and Aspergillus fumigatus are important human pathogens that can infect the lung and cornea. During infection, Aspergillus dormant conidia are the primary morphotype that comes in contact with the host. As the conidial surface-associated proteins (CSPs) and the extracellular proteins during the early stages of growth play a crucial role in establishing infection, we profiled and compared these proteins between a clinical strain of A. flavus and a clinical strain of A. fumigatus. We identified nearly 100 CSPs in both Aspergillus, and these non-covalently associated surface proteins were able to stimulate the neutrophils to secrete interleukin IL-8. Mass spectrometry analysis identified more than 200 proteins in the extracellular space during the early stages of conidial growth and germination (early exoproteome). The conidial surface proteins and the early exoproteome of A. fumigatus were enriched with immunoreactive proteins and those with pathogenicity-related functions while that of the A. flavus were primarily enzymes involved in cell wall reorganization and binding. Comparative proteome analysis of the CSPs and the early exoproteome between A. flavus and A. fumigatus enabled the identification of a common core proteome and potential species-specific signature proteins. Transcript analysis of selected proteins indicate that the transcript-protein level correlation does not exist for all proteins and might depend on factors such as membrane-anchor signals and protein half-life. The probable signature proteins of A. flavus and A. fumigatus identified in this study can serve as potential candidates for developing species-specific diagnostic tests. KEY POINTS: • CSPs and exoproteins could differentiate A. flavus and A. fumigatus. • A. fumigatus conidial surface harbored more antigenic proteins than A. flavus. • Identified species-specific signature proteins of A. flavus and A. fumigatus.
Collapse
Affiliation(s)
- Lakshmi Prabha Venugopalan
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
- Present address: Centre for Biotechnology, Anna University, Chennai, India
| | - Vishukumar Aimanianda
- Unité des Aspergillus, Institut Pasteur, 75015, Paris, France
- Present address: Unité de recherche Mycologie Moléculaire, UMR2000, Institut Pasteur, 75015, Paris, France
| | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
| | - Dharmalingam Kuppamuthu
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
| | - Jeya Maheshwari Jayapal
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India.
| |
Collapse
|
4
|
Zhao Y, Liu S, Lu Z, Zhao B, Wang S, Zhang C, Xiao D, Foo JL, Yu A. Hybrid promoter engineering strategies in Yarrowia lipolytica: isoamyl alcohol production as a test study. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:149. [PMID: 34215293 PMCID: PMC8252286 DOI: 10.1186/s13068-021-02002-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND In biological cells, promoters drive gene expression by specific binding of RNA polymerase. They determine the starting position, timing and level of gene expression. Therefore, rational fine-tuning of promoters to regulate the expression levels of target genes for optimizing biosynthetic pathways in metabolic engineering has recently become an active area of research. RESULTS In this study, we systematically detected and characterized the common promoter elements in the unconventional yeast Yarrowia lipolytica, and constructed an artificial hybrid promoter library that covers a wide range of promoter strength. The results indicate that the hybrid promoter strength can be fine-tuned by promoter elements, namely, upstream activation sequences (UAS), TATA box and core promoter. Notably, the UASs of Saccharomyces cerevisiae promoters were reported for the first time to be functionally transferred to Y. lipolytica. Subsequently, using the production of a versatile platform chemical isoamyl alcohol as a test study, the hybrid promoter library was applied to optimize the biosynthesis pathway expression in Y. lipolytica. By expressing the key pathway gene, ScARO10, with the promoter library, 1.1-30.3 folds increase in the isoamyl alcohol titer over that of the control strain Y. lipolytica Po1g KU70∆ was achieved. Interestingly, the highest titer increase was attained with a weak promoter PUAS1B4-EXPm to express ScARO10. These results suggest that our hybrid promoter library can be a powerful toolkit for identifying optimum promoters for expressing metabolic pathways in Y. lipolytica. CONCLUSION We envision that this promoter engineering strategy and the rationally engineered promoters constructed in this study could also be extended to other non-model fungi for strain improvement.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Shiqi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Baixiang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Shuhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Jee Loon Foo
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, 117456 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| |
Collapse
|
5
|
Li CX, Zhao S, Luo XM, Feng JX. Weighted Gene Co-expression Network Analysis Identifies Critical Genes for the Production of Cellulase and Xylanase in Penicillium oxalicum. Front Microbiol 2020; 11:520. [PMID: 32292397 PMCID: PMC7118919 DOI: 10.3389/fmicb.2020.00520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/10/2020] [Indexed: 11/25/2022] Open
Abstract
Genes involved in cellular processes undergo environment-dependent co-regulation, but the co-expression patterns of fungal cellulase and xylanase-encoding genes remain unclear. Here, we identified two novel carbon sources, methylcellulose and 2-hydroxyethyl cellulose, which efficiently induced the secretion of cellulases and xylanases in Penicillium oxalicum. Comparative transcriptomic analyses identified carbon source-specific transcriptional patterns, mainly including major cellulase and xylanase-encoding genes, genes involved in glycolysis/gluconeogenesis and the tricarboxylic acid cycle, and genes encoding transcription factors, transporters and G protein-coupled receptors. Moreover, the weighted correlation network analysis of time-course transcriptomes, generated 17 highly connected modules. Module MEivory, comprising 120 members, included major cellulase and xylanase-encoding genes, genes encoding the key regulators PoxClrB and PoxXlnR, and a cellodextrin transporter POX06051/CdtC, which were tightly correlated with the filter-paper cellulase, carboxymethylcellulase and xylanase activities in P. oxalicum. An expression kinetic analysis indicated that members in MEivory were activated integrally by carbon sources, but their expressional levels were carbon source- and/or induction duration-dependent. Three uncharacterized regulatory genes in MEivory were identified, which regulate the production of cellulases and xylanases in P. oxalicum. These findings provide insights into the mechanisms associated with the synthesis and secretion of fungal cellulases and xylanases, and a guide for P. oxalicum application in biotechnology.
Collapse
Affiliation(s)
- Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Bai J, Yan D, Zhang T, Guo Y, Liu Y, Zou Y, Tang M, Liu B, Wu Q, Yu S, Tang Y, Hu Y. A Cascade of Redox Reactions Generates Complexity in the Biosynthesis of the Protein Phosphatase-2 Inhibitor Rubratoxin A. Angew Chem Int Ed Engl 2017; 56:4782-4786. [DOI: 10.1002/anie.201701547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yongzhi Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yunbao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Mancheng Tang
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Qiong Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Shishan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| |
Collapse
|
7
|
Bai J, Yan D, Zhang T, Guo Y, Liu Y, Zou Y, Tang M, Liu B, Wu Q, Yu S, Tang Y, Hu Y. A Cascade of Redox Reactions Generates Complexity in the Biosynthesis of the Protein Phosphatase-2 Inhibitor Rubratoxin A. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yongzhi Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yunbao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Mancheng Tang
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Qiong Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Shishan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| |
Collapse
|
8
|
Wang Z, Jin K, Xia Y. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients. BMC Genomics 2016; 17:586. [PMID: 27506833 PMCID: PMC4979188 DOI: 10.1186/s12864-016-2971-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
Background Most fungi, including entomopathogenic fungi, have two different conidiation patterns, normal and microcycle conidiation, under different culture conditions, eg, in media containing different nutrients. However, the mechanisms underlying the conidiation pattern shift are poorly understood. Results In this study, Metarhizium acridum undergoing microcycle conidiation on sucrose yeast extract agar (SYA) medium shifted to normal conidiation when the medium was supplemented with sucrose, nitrate, or phosphate. By linking changes in nutrients with the conidiation pattern shift and transcriptional changes, we obtained conidiation pattern shift libraries by Solexa/Illumina deep-sequencing technology. A comparative analysis demonstrated that the expression of 137 genes was up-regulated during the shift to normal conidiation, while the expression of 436 genes was up-regulated at the microcycle conidiation stage. A comparison of subtractive libraries revealed that 83, 216, and 168 genes were related to sucrose-induced, nitrate-induced, and phosphate-induced conidiation pattern shifts, respectively. The expression of 217 genes whose expression was specific to microcycle conidiation was further analyzed by the gene expression profiling via multigene concatemers method using mRNA isolated from M. acridum grown on SYA and the four normal conidiation media. The expression of 142 genes was confirmed to be up-regulated on standard SYA medium. Of these 142 genes, 101 encode hypothetical proteins or proteins of unknown function, and only 41 genes encode proteins with putative functions. Of these 41 genes, 18 are related to cell growth, 10 are related to cell proliferation, three are related to the cell cycle, three are related to cell differentiation, two are related to cell wall synthesis, two are related to cell division, and seven have other functions. These results indicate that the conidiation pattern shift in M. acridum mainly results from changes in cell growth and proliferation. Conclusions The results indicate that M. acridum shifts conidiation pattern from microcycle conidiation to normal conidiation when there is increased sucrose, nitrate, or phosphate in the medium during microcycle conidiation. The regulation of conidiation patterning is a complex process involving the cell cycle and metabolism of M. acridum. This study provides essential information about the molecular mechanism of the induction of the conidiation pattern shift by single nutrients. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2971-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenglong Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
9
|
Shiraishi Y, Yoshizaki Y, Ono T, Yamato H, Okutsu K, Tamaki H, Futagami T, Yoshihiro S, Takamine K. Characteristic odour compounds inshochuderived from ricekoji. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yohei Shiraishi
- Bio'c, Co., Ltd; 111-1 Uchida, Muro-cho Toyohashi City Aichi 441-8087 Japan
- Division of Shochu Fermentation Technology, Education and Research Centre for Fermentation Studies, Faculty of Agriculture; Kagoshima University; 1-21-24 Korimoto Kagoshima City 890-0065 Japan
| | - Yumiko Yoshizaki
- Division of Shochu Fermentation Technology, Education and Research Centre for Fermentation Studies, Faculty of Agriculture; Kagoshima University; 1-21-24 Korimoto Kagoshima City 890-0065 Japan
| | - Toshifumi Ono
- Division of Shochu Fermentation Technology, Education and Research Centre for Fermentation Studies, Faculty of Agriculture; Kagoshima University; 1-21-24 Korimoto Kagoshima City 890-0065 Japan
| | - Hiroaki Yamato
- Division of Shochu Fermentation Technology, Education and Research Centre for Fermentation Studies, Faculty of Agriculture; Kagoshima University; 1-21-24 Korimoto Kagoshima City 890-0065 Japan
| | - Kayu Okutsu
- Division of Shochu Fermentation Technology, Education and Research Centre for Fermentation Studies, Faculty of Agriculture; Kagoshima University; 1-21-24 Korimoto Kagoshima City 890-0065 Japan
| | - Hisanori Tamaki
- Division of Shochu Fermentation Technology, Education and Research Centre for Fermentation Studies, Faculty of Agriculture; Kagoshima University; 1-21-24 Korimoto Kagoshima City 890-0065 Japan
| | - Taiki Futagami
- Division of Shochu Fermentation Technology, Education and Research Centre for Fermentation Studies, Faculty of Agriculture; Kagoshima University; 1-21-24 Korimoto Kagoshima City 890-0065 Japan
| | - Sameshima Yoshihiro
- Division of Shochu Fermentation Technology, Education and Research Centre for Fermentation Studies, Faculty of Agriculture; Kagoshima University; 1-21-24 Korimoto Kagoshima City 890-0065 Japan
| | - Kazunori Takamine
- Division of Shochu Fermentation Technology, Education and Research Centre for Fermentation Studies, Faculty of Agriculture; Kagoshima University; 1-21-24 Korimoto Kagoshima City 890-0065 Japan
| |
Collapse
|
10
|
Takahashi K, Kohno H. Different Polar Metabolites and Protein Profiles between High- and Low-Quality Japanese Ginjo Sake. PLoS One 2016; 11:e0150524. [PMID: 26939054 PMCID: PMC4777507 DOI: 10.1371/journal.pone.0150524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/14/2016] [Indexed: 01/10/2023] Open
Abstract
Japanese ginjo sake is a premium refined sake characterized by a pleasant fruity apple-like flavor and a sophisticated taste. Because of technical difficulties inherent in brewing ginjo sake, off-flavors sometimes occur. However, the metabolites responsible for off-flavors as well as those present or absent in higher quality ginjo sake remain uncertain. Here, the relationship between 202 polar chemical compounds in sake identified using capillary electrophoresis coupled with time-of-flight mass spectrometry and its organoleptic properties, such as quality and off-flavor, was examined. First, we found that some off-flavored sakes contained higher total amounts of metabolites than other sake samples. The results also identified that levels of 2-oxoglutaric acid and fumaric acid, metabolites in the tricarboxylic acid cycle, were highly but oppositely correlated with ginjo sake quality. Similarly, pyridoxine and pyridoxamine, co-enzymes for amino transferase, were also highly but oppositely correlated with ginjo sake quality. Additionally, pyruvic acid levels were associated with good quality as well. Compounds involved in the methionine salvage cycle, oxidative glutathione derivatives, and amino acid catabolites were correlated with low quality. Among off-flavors, an inharmonious bitter taste appeared attributable to polyamines. Furthermore, protein analysis displayed that a diversity of protein components and yeast protein (triosephosphate isomerase, TPI) leakage was linked to the overall metabolite intensity in ginjo sake. This research provides insight into the relationship between sake components and organoleptic properties.
Collapse
Affiliation(s)
- Kei Takahashi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739–0046, Japan
- * E-mail:
| | - Hiromi Kohno
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739–0046, Japan
| |
Collapse
|
11
|
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry reveals the correlation between chemical compounds in Japanese sake and its organoleptic properties. J Biosci Bioeng 2016. [DOI: 10.1016/j.jbiosc.2015.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Heard S, Brown NA, Hammond-Kosack K. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One 2015; 10:e0130534. [PMID: 26107498 PMCID: PMC4480369 DOI: 10.1371/journal.pone.0130534] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
Phytopathogenic fungi form intimate associations with host plant species and cause disease. To be successful, fungal pathogens communicate with a susceptible host through the secretion of proteinaceous effectors, hydrolytic enzymes and metabolites. Sclerotinia sclerotiorum and Botrytis cinerea are economically important necrotrophic fungal pathogens that cause disease on numerous crop species. Here, a powerful bioinformatics pipeline was used to predict the refined S. sclerotiorum and B. cinerea secretomes, identifying 432 and 499 proteins respectively. Analyses focusing on S. sclerotiorum revealed that 16% of the secretome encoding genes resided in small, sequence heterogeneous, gene clusters that were distributed over 13 of the 16 predicted chromosomes. Functional analyses highlighted the importance of plant cell hydrolysis, oxidation-reduction processes and the redox state to the S. sclerotiorum and B. cinerea secretomes and potentially host infection. Only 8% of the predicted proteins were distinct between the two secretomes. In contrast to S. sclerotiorum, the B. cinerea secretome lacked CFEM- or LysM-containing proteins. The 115 fungal and oomycete genome comparison identified 30 proteins specific to S. sclerotiorum and B. cinerea, plus 11 proteins specific to S. sclerotiorum and 32 proteins specific to B. cinerea. Expressed sequence tag (EST) and proteomic analyses showed that 246 S. sclerotiorum secretome encoding genes had EST support, including 101 which were only expressed in vitro and 49 which were only expressed in planta, whilst 42 predicted proteins were experimentally proven to be secreted. These detailed in silico analyses of two important necrotrophic pathogens will permit informed choices to be made when candidate effector proteins are selected for function analyses in planta.
Collapse
Affiliation(s)
- Steph Heard
- Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
| | - Neil A. Brown
- Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
| | - Kim Hammond-Kosack
- Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Dombrink-Kurtzman MA. A gene having sequence homology to isoamyl alcohol oxidase is transcribed during patulin production in Penicillium griseofulvum. Curr Microbiol 2007; 56:224-8. [PMID: 18000703 DOI: 10.1007/s00284-007-9061-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 09/24/2007] [Indexed: 11/24/2022]
Abstract
The genes for the patulin biosynthetic pathway are most likely arranged in a cluster, as is often the case for other mycotoxins. With this in mind, GeneWalking has been performed to identify genes both upstream and downstream of the isoepoxydon dehydrogenase (idh) gene. A gene present in Penicillium griseofulvum NRRL 2159A had high sequence homology to the isoamyl alcohol oxidase (iao) gene and was detected downstream of the idh gene and in the same orientation. By virtue of the presence of a signal peptide sequence, the newly identified gene coded for a secreted protein with an FAD-binding domain and potential for N-glycosylation. An open reading frame consisted of 1946 nucleotides, containing four putative introns and encoding a 22 amino acid signal peptide. The 571 amino acid mature protein contained nine cysteine residues and had 11 potential N-linked glycosylation sites. Searches using GenBank indicated that Aspergillus terreus, A. oryzae, A. fumigatus, and Gibberella zeae contain genes coding for a putative isoamyl alcohol oxidase. When the translated query was compared with the translated database, the highest scores were seen with A. clavatus (E value of 0.00), A. fumigatus (E value of 8e(-142)), and A. oryzae and A. terreus (each having an E value of 2e(-141)). Reverse transcription-polymerase chain reaction analysis confirmed that the iao gene was transcribed. The amplified products were sequenced for confirmation of their identities. This is the first report of an isoamyl alcohol oxidase gene in a species of the genus Penicillium.
Collapse
Affiliation(s)
- Mary Ann Dombrink-Kurtzman
- Mycotoxin Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA.
| |
Collapse
|
14
|
Haarmann T, Machado C, Lübbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P. The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. PHYTOCHEMISTRY 2005; 66:1312-20. [PMID: 15904941 DOI: 10.1016/j.phytochem.2005.04.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/24/2005] [Accepted: 04/07/2005] [Indexed: 05/02/2023]
Abstract
The genomic region of Claviceps purpurea strain P1 containing the ergot alkaloid gene cluster [Tudzynski, P., Hölter, K., Correia, T., Arntz, C., Grammel, N., Keller, U., 1999. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol. Gen. Genet. 261, 133-141] was explored by chromosome walking, and additional genes probably involved in the ergot alkaloid biosynthesis have been identified. The putative cluster sequence (extending over 68.5kb) contains 4 different nonribosomal peptide synthetase (NRPS) genes and several putative oxidases. Northern analysis showed that most of the genes were co-regulated (repressed by high phosphate), and identified probable flanking genes by lack of co-regulation. Comparison of the cluster sequences of strain P1, an ergotamine producer, with that of strain ECC93, an ergocristine producer, showed high conservation of most of the cluster genes, but significant variation in the NRPS modules, strongly suggesting that evolution of these chemical races of C. purpurea is determined by evolution of NRPS module specificity.
Collapse
Affiliation(s)
- Thomas Haarmann
- Institut für Botanik, Westf. Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Katsuhiko Kitamoto
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657 Japan
| |
Collapse
|
16
|
Kubodera T, Yamashita N, Nishimura A. Molecular breeding of theMureka-non-forming sake koji mold fromaspergillus oryzae by the disruption of themreA gene. J Biosci Bioeng 2003; 95:40-4. [PMID: 16233364 DOI: 10.1016/s1389-1723(03)80146-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2002] [Accepted: 09/06/2002] [Indexed: 10/27/2022]
Abstract
Mureka-non-forming sake koji molds were constructed from an Aspergillus oryzae industrial strain by the disruption of the mreA gene using a host-vector system with the ptrA gene as a dominant selectable marker. All of the mreA gene disruptants obtained retained the advantages of the host strain in terms of the brewing characteristics, while their isoamyl alcohol oxidase (IAAOD) activities were significantly lower than that of the host strain. Sake brewing was successfully carried out using the koji prepared with the disruptants, followed by storage of the resultant non-pasteurized sake (nama-shu). The isovaleraldehyde (i-Val) concentration in the sake brewed the host strain increased rapidly and reached the threshold values for mureka, 1.8 ppm and 2.6 ppm after storage at 20 degrees C for 42 d and 63 d, respectively, while those of the disruptants were less than 0.5 ppm even after storage at 20 degrees C or 30 degrees C for 63 d. In the sensory evaluation of the sake stored at 20 degrees C or 30 degrees C for 63 d, all members of the panel recognized the strong mureka flavor of the sake brewed with the host strain, while they did not detect this flavor in the sake brewed with the disruptants. Thus, we concluded that the mreA gene disruptants can be used for the production of sake in which mureka is not formed.
Collapse
Affiliation(s)
- Takafumi Kubodera
- Research and Development Department, Hakutsuru Sake Brewing Co., Ltd., 4-5-5 Sumiyoshiminamimachi, Higashinada-Ku, Kobe 658-0041, Japan
| | | | | |
Collapse
|
17
|
Petrovic U, Gunde-Cimerman N, Plemenitas A. Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 2002; 45:665-72. [PMID: 12139614 DOI: 10.1046/j.1365-2958.2002.03021.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of crop plants with increased salt tolerance necessitates the study of naturally salt-tolerant eukaryotic species. We studied the bio-synthesis of glycerol as a compatible solute in the halophilic eukaryotic microorganism, black yeast Hortaea werneckii. A restriction fragment-differential display technique was used to investigate the transcriptome of the organism. Eight differentially expressed genes were identified in response to growth at different salinities. Although the putative functions of their products, P-type ATPase, ubiquinone reductase, aconitase, RNA helicase, Asn-tRNA ligase, isoamyl alcohol oxidase, and phosphatidylinositol-3-kinase, are not intimately related within the cellular machinery, the results presented here are sufficient to propose a model which describes how H. werneckii adapts to extremely high salinities. Some of these mechanisms of adaptation to raised environmental salinity are similar to those in other salt-sensitive species, e.g. glycerol accumulation, there also appear to be novel mechanisms present such as the use of different energy production mechanisms and post-transcriptional regulation of gene expression. Our results have also provided new data on two genes from two other fungal species, the Neurospora crassa B1D1.130 gene and the Aspergillus ustus amdS-A gene.
Collapse
Affiliation(s)
- Uros Petrovic
- University of Ljubljana, Medical Faculty, Institute of Biochemistry, Slovenia
| | | | | |
Collapse
|