1
|
Hotta N, Kotaka A, Matsumura K, Sasano Y, Hata Y, Harada T, Sugiyama M, Harashima S, Ishida H. Effect of yeast chromosome II aneuploidy on malate production in sake brewing. J Biosci Bioeng 2024; 137:24-30. [PMID: 37989703 DOI: 10.1016/j.jbiosc.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Chromosome aneuploidy is a common phenomenon in industrial yeast. Aneuploidy is considered one of the strategies to enhance the industrial properties of Saccharomyces cerevisiae strains. However, the effects of chromosomal aneuploidy on the brewing properties of sake have not been extensively studied. In this study, sake brewing was performed using a series of genome-wide segmental duplicated laboratory S. cerevisiae strains, and the effects of each segmentally duplicated region on sake brewing were investigated. We found that the duplication of specific chromosomal regions affected the production of organic acids and aromatic compounds in sake brewing. As organic acids significantly influence the taste of sake, we focused on the segmental duplication of chromosome II that alters malate levels. Sake yeast Kyokai No. 901 strains with segmental chromosome II duplication were constructed using a polymerase chain reaction-mediated chromosomal duplication method, and sake was brewed using the resultant aneuploid sake yeast strains. The results showed the possibility of developing sake yeast strains exhibiting low malate production without affecting ethanol production capacity. Our study revealed that aneuploidy in yeast alters the brewing properties; in particular, the aneuploidy of chromosome II alters malate production in sake brewing. In conclusion, aneuploidization can be a novel and useful tool to breed sake yeast strains with improved traits, possessing industrial significance.
Collapse
Affiliation(s)
- Natsuki Hotta
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan.
| | - Atsushi Kotaka
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Kengo Matsumura
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Yu Sasano
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Tomoka Harada
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| | - Minetaka Sugiyama
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| | - Satoshi Harashima
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| |
Collapse
|
2
|
Negoro H, Ishida H. Development of sake yeast breeding and analysis of genes related to its various phenotypes. FEMS Yeast Res 2022; 22:6825454. [PMID: 36370450 DOI: 10.1093/femsyr/foac057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sake is a traditional Japanese alcoholic beverage made from rice and water, fermented by the filamentous fungi Aspergillus oryzae and the yeast Saccharomyces cerevisiae. Yeast strains, also called sake yeasts, with high alcohol yield and the ability to produce desired flavor compounds in the sake, have been isolated from the environment for more than a century. Furthermore, numerous methods to breed sake yeasts without genetic modification have been developed. The objectives of breeding include increasing the efficiency of production, improving the aroma and taste, enhancing safety, imparting functional properties, and altering the appearance of sake. With the recent development of molecular biology, the suitable sake brewing characteristics in sake yeasts, and the causes of acquisition of additional phenotypes in bred yeasts have been elucidated genetically. This mini-review summarizes the history and lineage of sake yeasts, their genetic characteristics, the major breeding methods used, and molecular biological analysis of the acquired strains. The data in this review on the metabolic mechanisms of sake yeasts and their genetic profiles will enable the development of future strains with superior phenotypes.
Collapse
Affiliation(s)
- Hiroaki Negoro
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| |
Collapse
|
3
|
Takagi H, Yamamoto K, Matsuo Y, Furuie M, Kasayuki Y, Ohtani R, Shiotani M, Hasegawa T, Ohnishi T, Ohashi M, Johzuka K, Kurata A, Uegaki K. Influence of mutation in the regulatory domain of α-isopropylmalate synthase from Saccharomyces cerevisiae on its activity and feedback inhibition. Biosci Biotechnol Biochem 2022; 86:755-762. [PMID: 35333283 DOI: 10.1093/bbb/zbac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 11/14/2022]
Abstract
Isoamyl alcohol (i-AmOH) is produced from α-ketoisocaproate in the l-leucine biosynthetic pathway in yeast and controlled by the negative feedback regulation of α-isopropylmalate synthase (IPMS), which senses the accumulation of l-leucine. It is known that i-AmOH production increases when mutations in the regulatory domain reduce the susceptibility to feedback inhibition. However, the impact of mutations in this domain on the IPMS activity has not been examined. In this study, we obtained 5 IPMS mutants, encoding the LEU4 gene, N515D/S520P/S542F/A551D/A551V, that are tolerant to 5,5,5-trifluoro-dl-leucine. All mutant proteins were purified and examined for both IPMS activity and negative feedback activity by in vitro experiments. The results showed that not only the negative-feedback regulation by l-leucine was almost lost in all mutants, but also the IPMS activity was greatly decreased and the difference in IPMS activity among Leu4 mutants in the presence of l-leucine was significantly correlated with i-AmOH production.
Collapse
Affiliation(s)
- Hironobu Takagi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Kazuki Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Yoshifumi Matsuo
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Miki Furuie
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Yasuha Kasayuki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Rina Ohtani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Mizuki Shiotani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Tetsuya Hasegawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Toru Ohnishi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Masataka Ohashi
- Nara Prefecture Institute of Industrial Development, 129-1 Kashiwagi, Nara, Japan
| | - Katsuki Johzuka
- Astrobiology Center, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Aichi, Japan
| | - Atsushi Kurata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Koichi Uegaki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara, Japan
| |
Collapse
|
4
|
Vicente J, Baran Y, Navascués E, Santos A, Calderón F, Marquina D, Rauhut D, Benito S. Biological management of acidity in wine industry: A review. Int J Food Microbiol 2022; 375:109726. [DOI: 10.1016/j.ijfoodmicro.2022.109726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
5
|
Fujimaru Y, Kusaba Y, Zhang N, Dai H, Yamamoto Y, Takasaki M, Kakeshita T, Kitagaki H. Extra copy of the mitochondrial cytochrome-c peroxidase gene confers a pyruvate-underproducing characteristic of sake yeast through respiratory metabolism. J Biosci Bioeng 2021; 131:640-646. [PMID: 33597082 DOI: 10.1016/j.jbiosc.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
The mechanism of pyruvate-underproduction of aneuploid sake yeast was investigated in this study. In our previous report, we revealed that an increase in chromosome XI decreases pyruvate productivity of sake yeast. In this report, we found that increased copy number of CCP1, which is located on chromosome XI and encodes cytochrome-c peroxidase, decreased the pyruvate productivity of sake yeasts. Introducing an extra copy of CCP1 activated respiratory metabolism governed by Hap4 and increased reactive oxygen species. Therefore, it was concluded that increased copy number of CCP1 on chromosome XI activated respiratory metabolism and decreased pyruvate levels in an aneuploid sake yeast. This is the first report that describes a mechanism underlying the improvement of brewery yeast by chromosomal aneuploidy.
Collapse
Affiliation(s)
- Yuki Fujimaru
- Graduate School of Health Sciences, Koji Ceramide Research Project, Saga University, 1, Honjo-cho, Saga city, Saga 840-8502, Japan
| | - Yuki Kusaba
- Graduate School of Health Sciences, Koji Ceramide Research Project, Saga University, 1, Honjo-cho, Saga city, Saga 840-8502, Japan
| | - Nairui Zhang
- Graduate School of Health Sciences, Koji Ceramide Research Project, Saga University, 1, Honjo-cho, Saga city, Saga 840-8502, Japan
| | - Huanghuang Dai
- Graduate School of Health Sciences, Koji Ceramide Research Project, Saga University, 1, Honjo-cho, Saga city, Saga 840-8502, Japan
| | - Yuki Yamamoto
- Graduate School of Health Sciences, Koji Ceramide Research Project, Saga University, 1, Honjo-cho, Saga city, Saga 840-8502, Japan
| | - Mitsuhiro Takasaki
- Organization of General Education, Saga University, 1, Honjo-cho, Saga city, Saga 840-8502, Japan
| | - Tetsuro Kakeshita
- Faculty of Science and Engineering, Saga University, 1, Honjo-cho, Saga city, Saga 840-8502, Japan
| | - Hiroshi Kitagaki
- Graduate School of Health Sciences, Koji Ceramide Research Project, Saga University, 1, Honjo-cho, Saga city, Saga 840-8502, Japan.
| |
Collapse
|
6
|
Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae. J Biosci Bioeng 2018; 125:211-217. [DOI: 10.1016/j.jbiosc.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 11/22/2022]
|
7
|
Negoro H, Kotaka A, Matsumura K, Tsutsumi H, Sahara H, Hata Y. Breeding of high malate‐producing diploid sake yeast with a homozygous mutation in the
VID24
gene. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroaki Negoro
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| | - Atsushi Kotaka
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| | - Kengo Matsumura
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| | - Hiroko Tsutsumi
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| | - Hiroshi Sahara
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co. Ltd 101 Shimotoba‐koyanagi‐cho, Fushimi‐ku Kyoto 612‐8385 Japan
| |
Collapse
|
8
|
Negoro H, Kotaka A, Matsumura K, Tsutsumi H, Hata Y. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae. J Biosci Bioeng 2016; 121:665-671. [DOI: 10.1016/j.jbiosc.2015.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 10/23/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
|
9
|
Kuda T, Sarengaole, Takahashi H, Kimura B. Alcohol-brewing properties of acid- and bile-tolerant yeasts co-cultured with lactic acid bacteria isolated from traditional handmade domestic dairy products from Inner Mongolia. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.07.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Song G, Dickins BJA, Demeter J, Engel S, Dunn B, Cherry JM. AGAPE (Automated Genome Analysis PipelinE) for pan-genome analysis of Saccharomyces cerevisiae. PLoS One 2015; 10:e0120671. [PMID: 25781462 PMCID: PMC4363492 DOI: 10.1371/journal.pone.0120671] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/25/2015] [Indexed: 11/24/2022] Open
Abstract
The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community.
Collapse
Affiliation(s)
- Giltae Song
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Benjamin J. A. Dickins
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Janos Demeter
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stacia Engel
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Barbara Dunn
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - J. Michael Cherry
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
11
|
Su J, Wang T, Wang Y, Li YY, Li H. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry. Appl Microbiol Biotechnol 2014; 98:2395-413. [DOI: 10.1007/s00253-014-5508-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/24/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
|
12
|
Kosugi S, Kiyoshi K, Oba T, Kusumoto K, Kadokura T, Nakazato A, Nakayama S. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains. J Biosci Bioeng 2013; 117:39-44. [PMID: 23867095 DOI: 10.1016/j.jbiosc.2013.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
Abstract
We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+).
Collapse
Affiliation(s)
- Shingo Kosugi
- Department of Fermentation Science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keiji Kiyoshi
- Department of Fermentation Science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takahiro Oba
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Kurume, Fukuoka 839-0861, Japan
| | - Kenichi Kusumoto
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Kurume, Fukuoka 839-0861, Japan
| | - Toshimori Kadokura
- Department of Fermentation Science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsumi Nakazato
- Department of Fermentation Science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunichi Nakayama
- Department of Fermentation Science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
13
|
Kitagaki H, Kitamoto K. Breeding Research on Sake Yeasts in Japan: History, Recent Technological Advances, and Future Perspectives. Annu Rev Food Sci Technol 2013; 4:215-35. [DOI: 10.1146/annurev-food-030212-182545] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroshi Kitagaki
- Department of Environmental Sciences, Faculty of Agriculture, Saga University, Saga 840-8502, Japan;
- Department of Biochemistry and Applied Biosciences, United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan
| | - Katsuhiko Kitamoto
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|
14
|
Yoshida S, Yokoyama A. Identification and characterization of genes related to the production of organic acids in yeast. J Biosci Bioeng 2012; 113:556-61. [DOI: 10.1016/j.jbiosc.2011.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/15/2011] [Accepted: 12/26/2011] [Indexed: 12/15/2022]
|
15
|
A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol 2012; 78:4008-16. [PMID: 22447585 DOI: 10.1128/aem.00165-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sake yeast cells have defective entry into the quiescent state, allowing them to sustain high fermentation rates. To reveal the underlying mechanism, we investigated the PAS kinase Rim15p, which orchestrates initiation of the quiescence program in Saccharomyces cerevisiae. We found that Rim15p is truncated at the carboxyl terminus in modern sake yeast strains as a result of a frameshift mutation. Introduction of this mutation or deletion of the full-length RIM15 gene in a laboratory strain led to a defective stress response, decreased synthesis of the storage carbohydrates trehalose and glycogen, and impaired G(1) arrest, which together closely resemble the characteristic phenotypes of sake yeast. Notably, expression of a functional RIM15 gene in a modern sake strain suppressed all of these phenotypes, demonstrating that dysfunction of Rim15p prevents sake yeast cells from entering quiescence. Moreover, loss of Rim15p or its downstream targets Igo1p and Igo2p remarkably improved the fermentation rate in a laboratory strain. This finding verified that Rim15p-mediated entry into quiescence plays pivotal roles in the inhibition of ethanol fermentation. Taken together, our results suggest that the loss-of-function mutation in the RIM15 gene may be the key genetic determinant of the increased ethanol production rates in modern sake yeast strains.
Collapse
|
16
|
Kitagaki H, Kato T, Isogai A, Mikami S, Shimoi H. Inhibition of mitochondrial fragmentation during sake brewing causes high malate production in sake yeast. J Biosci Bioeng 2008; 105:675-8. [DOI: 10.1263/jbb.105.675] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 02/27/2008] [Indexed: 01/01/2023]
|
17
|
Yamada T, Furukawa K, Hara S, Mizoguchi H. Effect of amino acids on peptide transport in sake yeast. J Biosci Bioeng 2005; 99:383-9. [PMID: 16233806 DOI: 10.1263/jbb.99.383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 01/08/2005] [Indexed: 11/17/2022]
Abstract
The PTR 2 gene of Saccharomyces cerevisiae encodes a major peptide permease responsible for the uptake of low-molecular-weight peptides consisting of two or three amino acids. We show that the PTR 2 gene of sake yeast encodes a major peptide permease in the main mash of sake brewing. The peptide uptake activity in sake yeast is decreased by the addition of certain types of amino acids, particularly asparagine, serine and lysine. Northern blot analysis suggested that asparagine and serine repress the expression of the PTR 2 gene, but lysine decreases the peptide transport activity without repressing PTR 2 gene transcription. The deletion analysis of the PTR 2 promoter region confirmed these suggestions and revealed that the cis-element involved in the regulation of the PTR 2 gene by amino acids is located in the region from residue --400 to the start codon.
Collapse
Affiliation(s)
- Tasuku Yamada
- General Research Laboratory of Kiku-Masamune Sake Brewing Co., Ltd., 1-8-6 Uozaki-nishimachi, Higashinada-ku, Kobe 658-0026, Japan.
| | | | | | | |
Collapse
|
18
|
Kurita O, Nakabayashi T, Saitho K. Isolation and characterization of a high-acetate-producing sake yeastsaccharomyces cerevisiae. J Biosci Bioeng 2003; 95:65-71. [PMID: 16233368 DOI: 10.1016/s1389-1723(03)80150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Accepted: 09/19/2002] [Indexed: 10/27/2022]
Abstract
The result of sensory evaluation of sake showed that acetic acid imparted desirable acidity when the proportion of acetic acid to lactic acid was about 1/3, even if the concentration of acetic acid was 0.75 g/l. Glycerol balanced the acidity and brought about a harmony between sweetness and acidity in sake. A high-acetate producing sake yeast (MHA-3) was isolated from mutants having low NADH dehydrogenase (NDE) activity. MHA-3 produced 15 times more acetate and 5 times more lactate than the parental strain Kyokai no. 901 (K-901) in a small-scale sake brewing test using 10 kg of rice. In addition, the concentrations of glycerol in sake brewed with MHA-3 were approximately 1.5-fold higher than in that brewed with K-901. The proportion of acetic acid to lactic acid was about 1/3 in sake fermented with MHA-3 and it exhibited a good balance between sweetness and acidity. The activities of glycerol-3-phosphate dehydrogenase (GPD) and aldehyde dehydrogenase (ALD) in MHA-3 were 1.4-fold and 3.1-fold, respectively, higher than those in K-901 while the activity of NDE was 40% that of K-901. MHA-3 accumulated higher amounts of acetate and glycerol than K-901 in static YNB10 medium. The concentrations of acetic acid produced, depending on the quantity of yeast cells added, increased in conjunction with increases in glycerol produced. We suggest that NDE might be linked with GPD and that the nde mutants, which can be used in sake brewing, produced higher amounts of acetate and glycerol.
Collapse
Affiliation(s)
- Osamu Kurita
- Industrial Research Division, Mie Prefectural Science and Technology Promotion Center, 5-5-45 Takajaya, Tsu, Mie 514-0819, Japan.
| | | | | |
Collapse
|
19
|
Yano S, Asano T, Kurose N, Hiramatsu J, Shimoi H, Ito K. Characterization of an α-ketoglutarate-resistant sake yeast mutant with high organic acid productivity. J Biosci Bioeng 2003; 96:332-6. [PMID: 16233532 DOI: 10.1016/s1389-1723(03)90132-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 06/19/2003] [Indexed: 11/20/2022]
Abstract
A yeast with high organic acid productivity was isolated from alpha-ketoglutarate-resistant mutants obtained by mutagenizing a sake yeast, Kyokai no. 701 (K-701). The new strain, 20G-R39, produces about twice as much malate and succinate as the parental strain. DNA microarray analyses revealed that the transcriptional levels of genes involved in the TCA cycle, oxidative phosphorylation, and respiration were higher in strain 20G-R39 than in strain K-701. Expression of these genes is regulated by the Hap2/3/4/5p complex, and especially by expression of the HAP4 gene. In a Northern blot analysis, the transcriptional level of the HAP4 gene was higher in strain 20G-R39 than in strain K-701. We constructed a plasmid that expresses the HAP4 gene constitutively and introduced it into strain K-701. The HAP4-overexpression-strain produced more malate and succinate than strain K-701 both in YPD medium and in a sake brewing test. These results indicate that strain 20G-R39 produces more organic acids than strain K-701 because strain 20G-R39 has a higher level of expression of the HAP4 gene than strain K-701.
Collapse
Affiliation(s)
- Shuntaro Yano
- Alcoholic Beverages and Foods Research Laboratories, Takara Shuzo Co. Ltd., 3-4-1 Seta, Otsu, Shiga 520-2193, Japan.
| | | | | | | | | | | |
Collapse
|