1
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
2
|
Küsters K, Saborowski R, Wagner C, Hamel R, Spöring JD, Wiechert W, Oldiges M. Construction and characterization of BsGDH-CatIB variants and application as robust and highly active redox cofactor regeneration module for biocatalysis. Microb Cell Fact 2022; 21:108. [PMID: 35655182 PMCID: PMC9161568 DOI: 10.1186/s12934-022-01816-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Catalytically active inclusion bodies (CatIBs) are known for their easy and cost efficient production, recyclability as well as high stability and provide an alternative purely biological technology for enzyme immobilization. Due to their ability to self-aggregate in a carrier-free, biodegradable form, no further laborious immobilization steps or additional reagents are needed. These advantages put CatIBs in a beneficial position in comparison to traditional immobilization techniques. Recent studies outlined the impact of cooperative effects of the linker and aggregation inducing tag on the activity level of CatIBs, requiring to test many combinations to find the best performing CatIB variant. RESULTS Here, we present the formation of 14 glucose dehydrogenase CatIB variants of Bacillus subtilis, a well-known enzyme in biocatalysis due to its capability for substrate coupled regeneration of reduced cofactors with cheap substrate glucose. Nine variants revealed activity, with highest productivity levels for the more rigid PT-Linker combinations. The best performing CatIB, BsGDH-PT-CBDCell, was characterized in more detail including long-term storage at -20 °C as well as NADH cofactor regeneration performance in repetitive batch experiments with CatIB recycling. After freezing, BsGDH-PT-CBDCell CatIB only lost approx. 10% activity after 8 weeks of storage. Moreover, after 11 CatIB recycling cycles in repetitive batch operation 80% of the activity was still present. CONCLUSIONS This work presents a method for the effective formation of a highly active and long-term stable BsGDH-CatIB as an immobilized enzyme for robust and convenient NADH regeneration.
Collapse
Affiliation(s)
- Kira Küsters
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Ronja Saborowski
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christian Wagner
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Rebecca Hamel
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan-Dirk Spöring
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52074, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Rollin JA, Bomble YJ, St. John PC, Stark AK. Biochemical Production with Purified Cell-Free Systems. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2018.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Effects of NADH Availability on 3-Phenyllactic Acid Production by Lactobacillus plantarum Expressing Formate Dehydrogenase. Curr Microbiol 2019; 76:706-712. [PMID: 30963198 DOI: 10.1007/s00284-019-01681-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
It is well known that cofactors play a key role in the production of different compounds in bioconversion processes, while the high cost of cofactors limits their usage in industrial applications. In the present study, a NADH regeneration system was successfully developed in Lactobacillus plantarum by expressing the fdh gene coding for formate dehydrogenase (FDH) from Candida boidinii. Results indicated that the FDH was expressed with the highest activity of 0.82 U/mg of protein when cells entered early stationary phase. In addition, the expression of FDH increased the intracellular level of NADH and NADH/NAD+ ratio in L. plantarum, and therefore, enhanced the NADH-dependent production of 3-phenyllactic acid (PLA) in repeated and fed-batch bioconversions. In brief, the results demonstrate that the NADH regeneration by expressing FDH is a promising strategy for producing NADH-dependent microbial metabolites in L. plantarum.
Collapse
|
5
|
Ji X, Su Z, Wang P, Ma G, Zhang S. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes. ACS NANO 2015; 9:4600-4610. [PMID: 25857747 DOI: 10.1021/acsnano.5b01278] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Enzymatic conversion of carbon dioxide (CO2) to fuel or chemicals is appealing, but is limited by lack of efficient technology for regeneration and reuse of expensive cofactors. Here we show that cationic polyelectrolyte-doped hollow nanofibers, which can be fabricated via a facile coaxial electrospinning technology, provide an ideal scaffold for assembly of cofactor and multienzymes capable of synthesizing methanol from CO2 through a cascade multistep reaction involving cofactor regeneration. Cofactor and four enzymes including formate, formaldehyde, alcohol, and glutamate dehydrogenases were in situ coencapsulated inside the lumen of hollow nanofibers by involving them in the core-phase solution for coaxial electrospinning, in which cationic polyelectrolyte was predissolved. The polyelectrolyte penetrating across the shell of the hollow nanofibers enabled efficient tethering and retention of cofactor inside the lumen via ion-exchange interactions between oppositely charged polyelectrolytes and cofactor. With carbonic anhydrase assembled on the outer surface of the hollow nanofibers for accelerating hydration of CO2, these five-enzymes-cofactor catalyst system exhibited high activity for methanol synthesis. Compared with methanol yield of only 36.17% using free enzymes and cofactor, the hollow nanofiber-supported system afforded a high value up to 103.2%, the highest reported value so far. It was believed that the linear polyelectrolytes acted as spacers to enhance the shuttling of cofactor between enzymes that were coencapsulated within near vicinity, thus improving the efficiency of the system. The immobilized system showed good stability in reusing. About 80% of its original productivity was retained after 10 reusing cycles, with a cofactor-based cumulative methanol yield reached 940.5%.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- †National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Su
- †National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Wang
- †National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- ‡Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Guanghui Ma
- †National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- †National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Kaswurm V, Hecke WV, Kulbe KD, Ludwig R. Guidelines for the Application of NAD(P)H Regenerating Glucose Dehydrogenase in Synthetic Processes. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200959] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Zheng M, Zhang S, Ma G, Wang P. Effect of molecular mobility on coupled enzymatic reactions involving cofactor regeneration using nanoparticle-attached enzymes. J Biotechnol 2011; 154:274-80. [PMID: 21684312 DOI: 10.1016/j.jbiotec.2011.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/06/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
Cofactor-dependent multi-step enzymatic reactions generally require dynamic interactions among cofactor, enzyme and substrate molecules. Maintaining such molecular interactions can be quite challenging especially when the catalysts are tethered to solid state supports for heterogeneous catalysis for either biosynthesis or biosensing. The current work examines the effects of the pattern of immobilization, which presumably impacts molecular interactions on the surface of solid supports, on the reaction kinetics of a multienzymic system including glutamate dehydrogenase, glucose dehydrogenase and cofactor NAD(H). Interestingly, particle collision due to Brownian motion of nanoparticles successfully enabled the coupled reactions involving a regeneration cycle of NAD(H) even when the enzymes and cofactor were immobilized separately onto superparamagnetic nanoparticles (124 nm). The impact of particle motion and collision was evident in that the overall reaction rate was increased by over 100% by applying a moderate alternating magnetic field (500 Hz, 17 Gs), or using additional spacers, both of which could improve the mobility of the immobilized catalysts. We further observed that integrated immobilization, which allowed the cofactor to be placed in the molecular vicinity of enzymes on the same nanoparticles, could enhance the reaction rate by 1.8 fold. These results demonstrated the feasibility in manipulating molecular interactions among immobilized catalyst components by using nanoscale fabrication for efficient multienzymic biosynthesis.
Collapse
Affiliation(s)
- Muqing Zheng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | |
Collapse
|
8
|
Development, Characterization and Performance Evaluation of Positively-Charged Thin Film-Composite Nanofiltration Membrane Containing Fixed Quaternary Ammonium Moieties. SEP SCI TECHNOL 2011. [DOI: 10.1080/01496395.2010.537729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Weckbecker A, Gröger H, Hummel W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:195-242. [PMID: 20182929 DOI: 10.1007/10_2009_55] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.A very promising approach is enzymatic cofactor regeneration. Only a few enzymes are suitable for the regeneration of oxidized nicotinamide cofactors. Glutamate dehydrogenase can be used for the oxidation of NADH as well as NADPH while L: -lactate dehydrogenase is able to oxidize NADH only. The reduction of NAD(+) is carried out by formate and FDH. Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are able to reduce both NAD(+) and NADP(+). Alcohol dehydrogenases (ADHs) are either NAD(+)- or NADP(+)-specific. ADH from horse liver, for example, reduces NAD(+) while ADHs from Lactobacillus strains catalyze the reduction of NADP(+). These enzymes can be applied by their inclusion in whole cell biotransformations with an NAD(P)(+)-dependent primary reaction to achieve in situ the regeneration of the consumed cofactor.Another efficient method for the regeneration of nicotinamide cofactors is the electrochemical approach. Cofactors can be regenerated directly, for example at a carbon anode, or indirectly involving mediators such as redox catalysts based on transition-metal complexes.An increasing number of examples in technical scale applications are known where nicotinamide dependent enzymes were used together with cofactor regenerating enzymes.
Collapse
Affiliation(s)
- Andrea Weckbecker
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | | | | |
Collapse
|
10
|
Alteration of coenzyme specificity in halophilic NAD(P)+ glucose dehydrogenase by site-directed mutagenesis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Liu W, Zhang S, Wang P. Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration. J Biotechnol 2008; 139:102-7. [PMID: 19000722 DOI: 10.1016/j.jbiotec.2008.09.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 09/29/2008] [Accepted: 09/29/2008] [Indexed: 11/29/2022]
Abstract
Although there have been a long history of studying and using immobilized enzymes, little has been reported regarding the nature of immobilized cofactors. Herein we report that cofactor NAD(H) covalently attached to silica nanoparticles successfully coordinated with particle-immobilized enzymes and enabled multistep biotransformations. Specifically, silica nanoparticle-attached glutamate dehydrogenase (GLDH), lactate dehydrogenase (LDH) and NAD(H) were prepared and applied to catalyze the coupled reactions for production of alpha-ketoglutarate and lactate with the cofactor regenerated within the reaction cycle. It appeared that particle-particle collision driven by Brownian motion of the nanoparticles provided effective interactions among the catalytic components, and thus realized a dynamic shuttling of the particle-supported cofactor between the two enzymes to keep the reaction cycles continuing. Total turnover numbers (TTNs) as high as 20,000h(-1) were observed for the cofactor. It appeared to us that the use of particle-attached cofactor promises a new biochemical processing strategy for cofactor-dependent biotransformations.
Collapse
Affiliation(s)
- Wenfang Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China
| | | | | |
Collapse
|
12
|
El-Zahab B, Donnelly D, Wang P. Particle-tethered NADH for production of methanol from CO(2) catalyzed by coimmobilized enzymes. Biotechnol Bioeng 2008; 99:508-14. [PMID: 17680680 DOI: 10.1002/bit.21584] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Efficient cofactor regeneration and reuse are highly desired for many important biotransformation applications. Here we show for the first time that cofactor NAD(H) covalently attached to micro particles, which can be easily recovered and reused, effectively mediated multistep reactions catalyzed by enzymes that were also immobilized with the micro particles. Such an immobilized enzyme-cofactor catalytic system was examined for the production of methanol from CO(2) with in situ cofactor regeneration. Four enzymes including formate, formaldehyde, alcohol, and glutamate dehydrogenases were coimmobilized using the same particles as that used for cofactor immobilization (enzymes and cofactor were immobilized separately). Reactions were performed by bubbling CO(2) in a suspension solution of the particle-attached enzymes and cofactor. It appeared that the collision among the particles afforded sufficient interactions between the cofactor and enzymes, and thus enabled the sequential transformation of CO(2) to methanol along with cofactor regeneration. For a 30-min batch reaction, a productivity of 0.02 micromol methanol/h/g-enzyme was achieved. That was lower than but comparable to the 0.04 micromol methanol/h/g-enzyme observed for free enzymes and cofactor at the same reaction conditions. The immobilized system showed fairly good stabilities in reusing. Over 80% of their original productivity was retained after 11 reusing cycles, with a cumulative methanol yield based on the amount of cofactor reached 127%. That was a promising enhancement in cofactor utilization as compared to the single-batch yield of 12% observed with free enzymes and free cofactor.
Collapse
Affiliation(s)
- Bilal El-Zahab
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325-3906, USA
| | | | | |
Collapse
|
13
|
Liu W, Wang P. Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 2007; 25:369-84. [PMID: 17459647 DOI: 10.1016/j.biotechadv.2007.03.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/03/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
Oxidoreductases are attractive catalysts for biosynthesis of chiral compounds and polymers, construction of biosensors, and degradation of environmental pollutants. Their practical applications, however, can be quite challenging since they often require cofactors such as nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). These cofactors are generally expensive. Efficient regeneration of cofactors is therefore critical to the economic viability of industrial-scale biotransformations using oxidoreductases. The chemistry of cofactor regeneration is well known nowadays. The challenge is mostly regarding how to achieve the regeneration with immobilized enzyme systems which are preferred for industrial processes to facilitate the recovery and continuous use of the catalysts. This has become a great hurdle for the industrialization of many promising enzymatic processes, and as a result, most of the biotransformations involving cofactors have been traditionally performed with living cells in industry. Accompanying the rapidly growing interest in industrial biotechnology, immobilized enzyme biocatalyst systems with cofactor regeneration have been the focus for many studies reported since the late 1990s. The current paper reviews the methods of cofactor retention for development of sustainable and regenerative biocatalysts as revealed in these recent studies, with the intent to complement other reviewing articles that are mostly regeneration chemistry-oriented. We classify in this paper the methods of sustainable cofactor regeneration into two categories, namely membrane entrapment and solid-attachment of cofactors.
Collapse
Affiliation(s)
- Wenfang Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|