1
|
Tekedar HC, Karsi A, Reddy JS, Nho SW, Kalindamar S, Lawrence ML. Comparative Genomics and Transcriptional Analysis of Flavobacterium columnare Strain ATCC 49512. Front Microbiol 2017; 8:588. [PMID: 28469601 PMCID: PMC5395568 DOI: 10.3389/fmicb.2017.00588] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Flavobacterium columnare is a Gram-negative fish pathogen causing columnaris disease in wild and cultured fish species. Although the pathogen is widespread in aquatic environments and fish worldwide, little is known about biology of F. columnare and mechanisms of columnaris disease pathogenesis. Previously we presented the complete genome sequence of F. columnare strain ATCC 49512. Here we present a comparison of the strain ATCC 49512 genome to four other Flavobacterium genomes. In this analysis, we identified predicted proteins whose functions indicate F. columnare is capable of denitrification, which would enable anaerobic growth in aquatic pond sediments. Anaerobic growth of F. columnare ATCC 49512 with nitrate supplementation was detected experimentally. F. columnare ATCC 49512 had a relatively high number of insertion sequences and genomic islands compared to the other Flavobacterium species, suggesting a larger degree of horizontal gene exchange and genome plasticity. A type VI subtype III secretion system was encoded in F. columnare along with F. johnsoniae and F. branchiophilum. RNA sequencing proved to be a valuable technique to improve annotation quality; 41 novel protein coding regions were identified, 16 of which had a non-traditional start site (TTG, GTG, and CTT). Candidate small noncoding RNAs were also identified. Our results improve our understanding of F. columnare ATCC 49512 biology, and our results support the use of RNA sequencing to improve annotation of bacterial genomes, particularly for type strains.
Collapse
Affiliation(s)
- Hasan C Tekedar
- College of Veterinary Medicine, Mississippi State UniversityMississippi State, MS, USA
| | - Attila Karsi
- College of Veterinary Medicine, Mississippi State UniversityMississippi State, MS, USA
| | - Joseph S Reddy
- Mayo Clinic, Department of Health Sciences ResearchJacksonville, FL, USA
| | - Seong W Nho
- College of Veterinary Medicine, Mississippi State UniversityMississippi State, MS, USA
| | - Safak Kalindamar
- College of Veterinary Medicine, Mississippi State UniversityMississippi State, MS, USA
| | - Mark L Lawrence
- College of Veterinary Medicine, Mississippi State UniversityMississippi State, MS, USA
| |
Collapse
|
2
|
Prevalence of Antimicrobial Resistant and Virulent Salmonella spp. in Treated Effluent and Receiving Aquatic Milieu of Wastewater Treatment Plants in Durban, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:9692-713. [PMID: 26295245 PMCID: PMC4555307 DOI: 10.3390/ijerph120809692] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/17/2015] [Accepted: 08/12/2015] [Indexed: 12/29/2022]
Abstract
In this study, we evaluated the impact of treated wastewater effluent from two wastewater treatment plants on the physicochemical parameters and Salmonella spp. load of receiving rivers. Presumptive Salmonella spp. were obtained at all sampled points including the discharge points, with counts ranging from 0 to 4.14 log cfu/mL at both plants. Turbidity, chemical and biological oxygen demand were found to be high and mostly above the required limit for treated wastewater discharge. However, recorded nitrate and phosphate values were very low. Of the 200 confirmed Salmonella spp. isolates recovered from the treated effluent and receiving surface waters, 93% harbored the spiC gene, 84% harbored the misL gene, and 87.5% harbored the orfL gene while 87% harbored the pipD gene. The antibiotic resistance profile revealed that the isolates were resistant to sulfamethoxazole, nalidixic acid and streptomycin, but susceptible to quinolones and third generation β-lactams. These results indicate that in South Africa treated effluents are still a major source of contamination of rivers with pathogens such as Salmonella. Appropriate steps by the regulatory authorities and workers at the treatment plants are needed to enforce stipulated guidelines in order to prevent pollution of surface water resources due to the discharge of poorly treated effluents.
Collapse
|
3
|
Mukherjee M, Kakarla P, Kumar S, Gonzalez E, Floyd JT, Inupakutika M, Devireddy AR, Tirrell SR, Bruns M, He G, Lindquist IE, Sundararajan A, Schilkey FD, Mudge J, Varela MF. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae.. ACTA ACUST UNITED AC 2014; 2:1-15. [PMID: 25722857 PMCID: PMC4338557 DOI: 10.7243/2052-7993-2-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae. Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence-related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations.
Collapse
Affiliation(s)
- Munmun Mukherjee
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Prathusha Kakarla
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Sanath Kumar
- QC Laboratory, Harvest and Post Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India
| | - Esmeralda Gonzalez
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Jared T Floyd
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Madhuri Inupakutika
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Amith Reddy Devireddy
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Selena R Tirrell
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Merissa Bruns
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Guixin He
- University of Massachusetts Lowell, Department of Clinical Laboratory and Nutritional Sciences, Lowell, MA 01854, USA
| | | | | | - Faye D Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, 87505, USA
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, 87505, USA
| | - Manuel F Varela
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| |
Collapse
|
4
|
Radhakrishnan A, Ananthasubramanian M. Characterization and lytic activity of Pseudomonas fluorescens phages from sewage. Braz J Microbiol 2012; 43:356-62. [PMID: 24031839 PMCID: PMC3768991 DOI: 10.1590/s1517-838220120001000042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas fluorescens phages from sewage were tested against P. fluorescens isolates of soil and sewage. The phages were characterized as to host range, morphology, structural proteins and genome fingerprint. Of the seven phages isolated, one was found to be abundant in sewage (5.9×107 pfu/mL), having broad host range, and distinct protein and DNA profile when compared to the other six phages. DNA restriction and protein profiles of the phages and their morphology indicate the diversity in the sewage environment. None of the isolates from the rhizosphere regions of various cultivated soils were susceptible to phages isolated from sewage.
Collapse
|
5
|
Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 2011; 35:707-35. [DOI: 10.1111/j.1574-6976.2010.00261.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
6
|
Abstract
In recent years, the importance of horizontal gene transfer (HGT) in bacterial evolution has been elevated to such a degree that many bacteriologists now question the very existence of bacterial species. If gene transfer is as rampant as comparative genomic studies have suggested, how could bacterial species survive such genomic fluidity? And yet, most bacteriologists recognize, and name, as species, clusters of bacterial isolates that share complex phenotypic properties. The Core Genome Hypothesis (CGH) has been proposed to explain this apparent paradox of fluid bacterial genomes associated with stable phenotypic clusters. It posits that there is a core of genes responsible for maintaining the species-specific phenotypic clusters observed throughout bacterial diversity and argues that, even in the face of substantial genomic fluidity, bacterial species can be rationally identified and named.
Collapse
Affiliation(s)
- Margaret A Riley
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | | |
Collapse
|
7
|
Abstract
Classical bacterial enrichment devised by Sergius Winogradsky (1856-1953) and Martinus Beijerinck (1851-1931) can be modified to enrich for bacteria-specific viruses. In this chapter simple protocols are presented for the enrichment of phages from water samples, such as sewage, and soil.
Collapse
Affiliation(s)
- Rohan Van Twest
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
8
|
Briandet R, Lacroix-Gueu P, Renault M, Lecart S, Meylheuc T, Bidnenko E, Steenkeste K, Bellon-Fontaine MN, Fontaine-Aupart MP. Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Appl Environ Microbiol 2008; 74:2135-43. [PMID: 18245240 PMCID: PMC2292585 DOI: 10.1128/aem.02304-07] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/25/2008] [Indexed: 11/20/2022] Open
Abstract
In the natural environment, most of the phages that target bacteria are thought to exist in biofilm ecosystems. The purpose of this study was to gain a clearer understanding of the reactivity of these viral particles when they come into contact with bacteria embedded in biofilms. Experimentally, we quantified lactococcal c2 phage diffusion and reaction through model biofilms using in situ fluorescence correlation spectroscopy with two-photon excitation. Correlation curves for fluorescently labeled c2 phage in nonreacting Stenotrophomonas maltophilia biofilms indicated that extracellular polymeric substances did not provide significant resistance to phage penetration and diffusion, even though penetration and diffusion were sometimes restricted because of the noncontractile tail of the viral particle. Fluctuations in the fluorescence intensity of the labeled phage were detected throughout the thickness of biofilms formed by c2-sensitive and c2-resistant strains of Lactococcus lactis but could never be correlated with time, revealing that the phage was immobile. This finding confirmed that recognition binding receptors for the viral particles were present on the resistant bacterial cell wall. Taken together, our results suggest that biofilms may act as "active" phage reservoirs that can entrap and amplify viral particles and protect them from harsh environments.
Collapse
Affiliation(s)
- R Briandet
- UMR763 BHM INRA-AgroParisTech, 25 Avenue République, 91300 Massy, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen Q, Savarino SJ, Venkatesan MM. Subtractive hybridization and optical mapping of the enterotoxigenic Escherichia coli H10407 chromosome: isolation of unique sequences and demonstration of significant similarity to the chromosome of E. coli K-12. MICROBIOLOGY-SGM 2006; 152:1041-1054. [PMID: 16549668 DOI: 10.1099/mic.0.28648-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a primary cause of diarrhoea in infants in developing countries and in travellers to endemic regions. While several virulence genes have been identified on ETEC plasmids, little is known about the ETEC chromosome, although it is expected to share significant homology in backbone sequences with E. coli K-12. In the absence of genomic sequence information, the subtractive hybridization method and the more recently described optical mapping technique were carried out to determine the degree of genomic variation between virulent ETEC strain H10407 and the non-pathogenic E. coli K-12 strain MG1655. In one round of PCR-based suppression subtractive hybridization, 153 fragments representing sequences unique to strain H10407 were identified. blast searches indicated that few unique sequences showed homology to known pathogenicity island genes identified in related E. coli pathogens. A total of 65 fragments contained sequences that were either linked to hypothetical proteins or showed no homology to any known sequence in the database. The remaining sequences were either phage or prophage related or displayed homology to classifiable genes that function in various aspects of bacterial metabolism. The 153 unique sequences showed variable distribution across different ETEC strains including ETEC strain B7A, which is attenuated in virulence and lacked several H10407-specific sequences. Restriction-enzyme-based optical maps of strain H10407 were compared to in silico restriction maps of strain MG1655 and related E. coli pathogens. The 5.1 Mb ETEC chromosome was approximately 500 kb greater in length than the chromosome of E. coli K-12, collinear with it and indicated several discrete regions where insertions and/or deletions had occurred relative to the chromosome of strain MG1655. No major inversions, transpositions or gross rearrangements were observed on the ETEC chromosome. Based on comparisons with known genomic sequences and related optical-map-based restriction site similarity, the sequence of the H10407 chromosome is expected to demonstrate approximately 96 % identity with that of E. coli K-12.
Collapse
Affiliation(s)
- Qing Chen
- Department of Enteric Infections, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stephen J Savarino
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Malabi M Venkatesan
- Department of Enteric Infections, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
10
|
Prigent M, Leroy M, Confalonieri F, Dutertre M, DuBow MS. A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara Desert. Extremophiles 2005; 9:289-96. [PMID: 15947866 DOI: 10.1007/s00792-005-0444-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The surface sands of the Sahara Desert are exposed to extremes of ultraviolet light irradiation, desiccation and temperature variation. Nonetheless, the presence of bacteria has recently been demonstrated in this environment by cultivation methods and by 16S rDNA analyses from total DNA isolated from surface sands. To discern the presence of bacteriophages in this harsh environment, we searched for extracellular phages and intracellularly located phages present as prophages or within pseudolysogens. Mild sonication of the sand, in different liquid culture media, incubated with and without Mitomycin-C, was followed by differential centrifugation to enrich for dsDNA phages. The resulting preparations, examined by electron microscopy, revealed the presence of virus-like particles with a diversity of morphotypes representative of all three major double-stranded DNA bacteriophage families (Myoviridae, Siphoviridae and Podoviridae). Moreover, pulsed-field gel electrophoresis of DNA, extracted from the enriched bacteriophage preparations, revealed the presence of distinct bands suggesting the presence of putative dsDNA phage genomes ranging in size from 45 kb to 270 kb. Characterization of the bacteriophages present in the surface sands of the Sahara Desert extends the range of environments from which bacteriophages can be isolated, and provides an important point of departure for the study of phages in extreme terrestrial environments.
Collapse
Affiliation(s)
- Magali Prigent
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
11
|
Van Dessel W, Van Mellaert L, Liesegang H, Raasch C, De Keersmaeker S, Geukens N, Lammertyn E, Streit W, Anné J. Complete genomic nucleotide sequence and analysis of the temperate bacteriophage VWB. Virology 2005; 331:325-37. [PMID: 15629775 DOI: 10.1016/j.virol.2004.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 09/21/2004] [Accepted: 10/16/2004] [Indexed: 11/24/2022]
Abstract
The entire double-stranded DNA genome of the Streptomyces venezuelae bacteriophage VWB was sequenced and analyzed. Its size is 49,220 bp with an overall molar G + C content of 71.2 mol%. Sixty-one potential open reading frames were identified and annotated using several complementary bioinformatics tools. Clusters of functionally related putative genes were defined, supporting a refined version of the modular theory of phage evolution.
Collapse
Affiliation(s)
- W Van Dessel
- Laboratorium voor Bacteriologie, Katholieke Universiteit Leuven, Rega Instituut, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Webb JS, Lau M, Kjelleberg S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 2004; 186:8066-73. [PMID: 15547279 PMCID: PMC529096 DOI: 10.1128/jb.186.23.8066-8073.2004] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A current question in biofilm research is whether biofilm-specific genetic processes can lead to differentiation in physiology and function among biofilm cells. In Pseudomonas aeruginosa, phenotypic variants which exhibit a small-colony phenotype on agar media and a markedly accelerated pattern of biofilm development compared to that of the parental strain are often isolated from biofilms. We grew P. aeruginosa biofilms in glass flow cell reactors and observed that the emergence of small-colony variants (SCVs) in the effluent runoff from the biofilms correlated with the emergence of plaque-forming Pf1-like filamentous phage (designated Pf4) from the biofilm. Because several recent studies have shown that bacteriophage genes are among the most highly upregulated groups of genes during biofilm development, we investigated whether Pf4 plays a role in SCV formation during P. aeruginosa biofilm development. We carried out immunoelectron microscopy using anti-Pf4 antibodies and observed that SCV cells, but not parental-type cells, exhibited high densities of Pf4 filaments on the cell surface and that these filaments were often tightly interwoven into complex latticeworks surrounding the cells. Moreover, infection of P. aeruginosa planktonic cultures with Pf4 caused the emergence of SCVs within the culture. These SCVs exhibited enhanced attachment, accelerated biofilm development, and large regions of dead and lysed cells inside microcolonies in a manner identical to that of SCVs obtained from biofilms. We concluded that Pf4 can mediate phenotypic variation in P. aeruginosa biofilms. We also performed partial sequencing and analysis of the Pf4 replicative form and identified a number of open reading frames not previously recognized in the genome of P. aeruginosa, including a putative postsegregational killing operon.
Collapse
Affiliation(s)
- Jeremy S Webb
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
13
|
Ren CP, Chaudhuri RR, Fivian A, Bailey CM, Antonio M, Barnes WM, Pallen MJ. The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J Bacteriol 2004; 186:3547-60. [PMID: 15150243 PMCID: PMC415751 DOI: 10.1128/jb.186.11.3547-3560.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 02/12/2004] [Indexed: 11/20/2022] Open
Abstract
ETT2 is a second cryptic type III secretion system in Escherichia coli which was first discovered through the analysis of genome sequences of enterohemorrhagic E. coli O157:H7. Comparative analyses of Escherichia and Shigella genome sequences revealed that the ETT2 gene cluster is larger than was previously thought, encompassing homologues of genes from the Spi-1, Spi-2, and Spi-3 Salmonella pathogenicity islands. ETT2-associated genes, including regulators and chaperones, were found at the same chromosomal location in the majority of genome-sequenced strains, including the laboratory strain K-12. Using a PCR-based approach, we constructed a complete tiling path through the ETT2 gene cluster for 79 strains, including the well-characterized E. coli reference collection supplemented with additional pathotypes. The ETT2 gene cluster was found to be present in whole or in part in the majority of E. coli strains, whether pathogenic or commensal, with patterns of distribution and deletion mirroring the known phylogenetic structure of the species. In almost all strains, including enterohemorrhagic E. coli O157:H7, ETT2 has been subjected to varying degrees of mutational attrition that render it unable to encode a functioning secretion system. A second type III secretion system-associated locus that likely encodes the ETT2 translocation apparatus was found in some E. coli strains. Intact versions of both ETT2-related clusters are apparently present in enteroaggregative E. coli strain O42.
Collapse
Affiliation(s)
- Chuan-Peng Ren
- Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Middendorf B, Hochhut B, Leipold K, Dobrindt U, Blum-Oehler G, Hacker J. Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol 2004; 186:3086-96. [PMID: 15126470 PMCID: PMC400636 DOI: 10.1128/jb.186.10.3086-3096.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 01/28/2004] [Indexed: 11/20/2022] Open
Abstract
The uropathogenic Escherichia coli strain 536 carries at least five genetic elements on its chromosome that meet all criteria characteristic of pathogenicity islands (PAIs). One main feature of these distinct DNA regions is their instability. We applied the so-called island-probing approach and individually labeled all five PAIs of E. coli 536 with the counterselectable marker sacB to evaluate the frequency of PAI-negative colonies under the influence of different environmental conditions. Furthermore, we investigated the boundaries of these PAIs. According to our experiments, PAI II536 and PAI III536 were the most unstable islands followed by PAI I536 and PAI V536, whereas PAI IV536 was stable. In addition, we found that deletion of PAI II536 and PAI III536 was induced by several environmental stimuli. Whereas excision of PAI I536, PAI II536, and PAI V536 was based on site-specific recombination between short direct repeat sequences at their boundaries, PAI III536 was deleted either by site-specific recombination or by homologous recombination between two IS100-specific sequences. In all cases, deletion is thought to lead to the formation of nonreplicative circular intermediates. Such extrachromosomal derivatives of PAI II536 and PAI III536 were detected by a specific PCR assay. Our data indicate that the genome content of uropathogenic E. coli can be modulated by deletion of PAIs.
Collapse
Affiliation(s)
- Barbara Middendorf
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Wertz JE, Goldstone C, Gordon DM, Riley MA. A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 2003; 16:1236-48. [PMID: 14640415 DOI: 10.1046/j.1420-9101.2003.00612.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A molecular phylogeny for seven taxa of enteric bacteria (Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Hafnia alvei, Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia plymuthica) was made from multiple isolates per taxa taken from a collection of environmental enteric bacteria. Sequences from five housekeeping genes (gapA, groEL, gyrA, ompA, and pgi) and the 16S rRNA gene were used to infer individual gene trees and were concatenated to infer a composite molecular phylogeny for the species. The isolates from each taxa formed tight species clusters in the individual gene trees, suggesting the existence of 'genotypic' clusters that correspond to traditional species designations. These sequence data and the resulting gene trees and consensus tree provide the first data set with which to assess the utility of the recently proposed core genome hypothesis (CGH). The CGH provides a genetically based approach to applying the biological species concept to bacteria.
Collapse
Affiliation(s)
- J E Wertz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
16
|
Broudy TB, Fischetti VA. In vivo lysogenic conversion of Tox(-) Streptococcus pyogenes to Tox(+) with Lysogenic Streptococci or free phage. Infect Immun 2003; 71:3782-6. [PMID: 12819060 PMCID: PMC161974 DOI: 10.1128/iai.71.7.3782-3786.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperate bacteriophage can transfer toxin-encoding genes between bacteria, often resulting in acquired pathogenicity. However, little is known regarding the effects of the eukaryotic host on the phage-pathogen interaction. Using Streptococcus pyogenes as a model, we demonstrate, both in vitro and in vivo, that the eukaryote mediates the efficient induction of toxin-encoding temperate phage and the resultant conversion of Tox(-) flora to Tox(+). Furthermore, we show that both phage induction and subsequent conversion need not happen in the same mammalian host, as host-to-host phage transmission can result in toxigenic conversion within the secondary host. Ultimately, our findings demonstrate that the eukaryotic host serves as an essential component in the phage-mediated evolution of virulence within the microbial population.
Collapse
Affiliation(s)
- Thomas B Broudy
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
17
|
Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WR, Hendrix RW, Hatfull GF. Origins of highly mosaic mycobacteriophage genomes. Cell 2003; 113:171-82. [PMID: 12705866 DOI: 10.1016/s0092-8674(03)00233-2] [Citation(s) in RCA: 486] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacteriophages are the most abundant organisms in the biosphere and play major roles in the ecological balance of microbial life. The genomic sequences of ten newly isolated mycobacteriophages suggest that the bacteriophage population as a whole is amazingly diverse and may represent the largest unexplored reservoir of sequence information in the biosphere. Genomic comparison of these mycobacteriophages contributes to our understanding of the mechanisms of viral evolution and provides compelling evidence for the role of illegitimate recombination in horizontal genetic exchange. The promiscuity of these recombination events results in the inclusion of many unexpected genes including those implicated in mycobacterial latency, the cellular and immune responses to mycobacterial infections, and autoimmune diseases such as human lupus. While the role of phages as vehicles of toxin genes is well established, these observations suggest a much broader involvement of phages in bacterial virulence and the host response to bacterial infections.
Collapse
Affiliation(s)
- Marisa L Pedulla
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
La Ragione RM, Coles KE, Jørgensen F, Humphrey TJ, Woodward MJ. Virulence in the chick model and stress tolerance of Salmonella enterica serovar Orion var. 15+. Int J Med Microbiol 2001; 290:707-18. [PMID: 11310449 DOI: 10.1016/s1438-4221(01)80011-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three Salmonella enterica serovar Orion var. 15+ isolates of distinct provenance were tested for survival in various stress assays. All were less able to survive desiccation than a virulent S. Enteritidis strain, with levels of survival similar to a rpoS mutant of the S. Enteritidis strain, whereas one isolate (F3720) was significantly more acid tolerant. The S. Orion var. 15+ isolates were motile by flagellae and elaborated type-1 and curli-like fimbriae; surface organelles that are considered virulence determinants in Salmonella pathogenesis. Each adhered and invaded HEp-2 tissue culture cells with similar proficiency to the S. Enteritidis control but were significantly less virulent than S. Enteritidis in the one-day-old and seven-day-old chick model. Given an oral dose of 1 x 10(3) cfu to one-day-old chicken, S. Orion var. 15+ isolates colonised 25% of liver and spleens examined at 24 h whereas S. Enteritidis colonised 100% of organs by the same with the same dose. Given an oral dose of 1 x 10(7) cfu at seven-day old, S. Orion var. 15+ failed to colonise livers and spleens in any bird examined at 24 h whereas S. Enteritidis colonised 50% of organs by the same with the same dose. Based on the number of internal organs colonised, one of the three S. Orion var. 15+ isolates tested (strain F3720) was significantly more invasive than the other two (B1 and B7). Also, strain F3720 was shed less than either B1 or B7 supporting the concept that there may be an inverse relationship between the ability to colonise deep tissues and to persist in the gut. These data are discussed in the light that S. Orion var. 15+ is associated with sporadic outbreaks of human infection rather than epidemics.
Collapse
Affiliation(s)
- R M La Ragione
- Department of Bacterial Diseases, Addlestone, Surrey, UK
| | | | | | | | | |
Collapse
|