Masiwal R, Sharma C, Ranjan A, Radhakrishnan SR, Shukla DK, Bambal VK, Uniyal SK. Long-term variability of trace gases over the Indian Western Himalayan Region.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;
806:150127. [PMID:
34583076 DOI:
10.1016/j.scitotenv.2021.150127]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The four-year continuous measurements of CO, NOx, NH3, SO2, and O3 were carried at a high altitude site (32.12°N, 76.56°E at 1347 m AMSL) of the Indian Western Himalayan area to study the mixing ratios of these gases for understanding the changing trends of these trace gases over the region. Each of these trace gases showed significant daily and monthly variabilities. The highest variability was recorded in the monthly mean values of O3 as it varied from 10 to 63 ppb during the study period. All the trace gases except CO showed maximum variability in the pre-monsoon seasons due to the strong advection and vertical circulation of air masses at the site. The seasonal mean maxima of CO were recorded during the monsoon season, while the mean maxima of NH3 were recorded during the post-monsoon seasons. The meteorological parameters have been found to influence the mixing ratios of trace gases. The least variability in the mean seasonal mixing ratios of SO2 during the study period indicated the constant point source of SO2 near the site. The trajectories analysis revealed that the area receives maximum air masses from the southeast to the west directions where a number of the coal-based thermal power plants, industries, cement plants, and agricultural fields are also located. The influence of valley-to-mountain circulations was also observed at the site, resulting in the transport of pollutant-rich air masses from local and distant sources to the site. A comparison of the mixing ratios of different trace gases obtained in the present study is also made with the values reported for other high altitude stations in the world.
Collapse