1
|
Cabrera-Andrade A, López-Cortés A, Munteanu CR, Pazos A, Pérez-Castillo Y, Tejera E, Arrasate S, González-Díaz H. Perturbation-Theory Machine Learning (PTML) Multilabel Model of the ChEMBL Dataset of Preclinical Assays for Antisarcoma Compounds. ACS OMEGA 2020; 5:27211-27220. [PMID: 33134682 PMCID: PMC7594149 DOI: 10.1021/acsomega.0c03356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Sarcomas are a group of malignant neoplasms of connective tissue with a different etiology than carcinomas. The efforts to discover new drugs with antisarcoma activity have generated large datasets of multiple preclinical assays with different experimental conditions. For instance, the ChEMBL database contains outcomes of 37,919 different antisarcoma assays with 34,955 different chemical compounds. Furthermore, the experimental conditions reported in this dataset include 157 types of biological activity parameters, 36 drug targets, 43 cell lines, and 17 assay organisms. Considering this information, we propose combining perturbation theory (PT) principles with machine learning (ML) to develop a PTML model to predict antisarcoma compounds. PTML models use one function of reference that measures the probability of a drug being active under certain conditions (protein, cell line, organism, etc.). In this paper, we used a linear discriminant analysis and neural network to train and compare PT and non-PT models. All the explored models have an accuracy of 89.19-95.25% for training and 89.22-95.46% in validation sets. PTML-based strategies have similar accuracy but generate simplest models. Therefore, they may become a versatile tool for predicting antisarcoma compounds.
Collapse
Affiliation(s)
- Alejandro Cabrera-Andrade
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
- Carrera
de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
- RNASA-IMEDIR,
Computer Sciences Faculty, University of
A Coruña, A Coruña 15071, Spain
| | - Andrés López-Cortés
- RNASA-IMEDIR,
Computer Sciences Faculty, University of
A Coruña, A Coruña 15071, Spain
- Centro
de Investigación Genética y Genómica, Facultad
de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito 170129, Ecuador
| | - Cristian R. Munteanu
- RNASA-IMEDIR,
Computer Sciences Faculty, University of
A Coruña, A Coruña 15071, Spain
- Biomedical
Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña 15006, Spain
- Centro de
Investigación en Tecnologías de la Información
y las Comunicaciones (CITIC), Campus de
Elviña s/n, A Coruña 15071, Spain
| | - Alejandro Pazos
- RNASA-IMEDIR,
Computer Sciences Faculty, University of
A Coruña, A Coruña 15071, Spain
- Biomedical
Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña 15006, Spain
| | - Yunierkis Pérez-Castillo
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
- Escuela
de Ciencias Físicas y Matemáticas, Universidad de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
| | - Eduardo Tejera
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
- Facultad
de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
| | - Sonia Arrasate
- Department
of Organic Chemistry II and Basque Center for Biophysics, University of Basque Country UPV/EHU, Leioa 48940, Biscay, Spain
| | - Humbert González-Díaz
- Department
of Organic Chemistry II and Basque Center for Biophysics, University of Basque Country UPV/EHU, Leioa 48940, Biscay, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48011, Biscay, Spain
| |
Collapse
|
2
|
Wu Y, Chen H, Li R, Wang X, Li H, Xin J, Liu Z, Wu S, Jiang W, Zhu L. Cucurbitacin-I induces hypertrophy in H9c2 cardiomyoblasts through activation of autophagy via MEK/ERK1/2 signaling pathway. Toxicol Lett 2016; 264:87-98. [DOI: 10.1016/j.toxlet.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
|
3
|
Ettlin RA, Kuroda J, Plassmann S, Prentice DE. Successful drug development despite adverse preclinical findings part 1: processes to address issues and most important findings. J Toxicol Pathol 2010; 23:189-211. [PMID: 22272031 PMCID: PMC3234634 DOI: 10.1293/tox.23.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/06/2010] [Indexed: 01/08/2023] Open
Abstract
Unexpected adverse preclinical findings (APFs) are not infrequently encountered during drug development. Such APFs can be functional disturbances such as QT prolongation, morphological toxicity or carcinogenicity. The latter is of particular concern in conjunction with equivocal genotoxicity results. The toxicologic pathologist plays an important role in recognizing these effects, in helping to characterize them, to evaluate their risk for man, and in proposing measures to mitigate the risk particularly in early clinical trials. A careful scientific evaluation is crucial while termination of the development of a potentially useful drug must be avoided. This first part of the review discusses processes to address unexpected APFs and provides an overview over typical APFs in particular classes of drugs. If the mode of action (MoA) by which a drug candidate produces an APF is known, this supports evaluation of its relevance for humans. Tailor-made mechanistic studies, when needed, must be planned carefully to test one or several hypotheses regarding the potential MoA and to provide further data for risk evaluation. Safety considerations are based on exposure at no-observed-adverse-effect levels (NOAEL) of the most sensitive and relevant animal species and guide dose escalation in clinical trials. The availability of early markers of toxicity for monitoring of humans adds further safety to clinical studies. Risk evaluation is concluded by a weight of evidence analysis (WoE) with an array of parameters including drug use, medical need and alternatives on the market. In the second part of this review relevant examples of APFs will be discussed in more detail.
Collapse
Affiliation(s)
- Robert A. Ettlin
- Ettlin Consulting Ltd., 14 Mittelweg, 4142 Muenchenstein,
Switzerland
| | - Junji Kuroda
- KISSEI Pharmaceutical Co., Ltd., 2320–1 Maki, Hotaka, Azumino,
Nagano 399-8305, Japan
| | - Stephanie Plassmann
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| | - David E. Prentice
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| |
Collapse
|
6
|
Newell DR, Silvester J, McDowell C, Burtles SS. The Cancer Research UK experience of pre-clinical toxicology studies to support early clinical trials with novel cancer therapies. Eur J Cancer 2004; 40:899-906. [PMID: 15120045 DOI: 10.1016/j.ejca.2003.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 12/31/2003] [Indexed: 11/24/2022]
Abstract
Pre-clinical toxicology studies in rodents and Phase I clinical trial data are summarised for 14 novel anticancer therapies. With only one exception, an antifolate antimetabolite, rodent toxicology predicted a safe Phase I trial starting dose and the majority of the dose limiting toxicities, in particular haematological toxicity. For targeted agents with well-defined pharmacodynamic markers, illustrated in the current study by 3 anti-endocrine drugs and one resistance modifier, the definition of a maximum tolerated dose can be avoided. Together with earlier data, the current study confirms that pre-clinical toxicology studies in a non-rodent species are not routinely needed for the safe conduct of early clinical trials with new cancer chemotherapies.
Collapse
Affiliation(s)
- D R Newell
- Drug Development Office, Cancer Research UK, PO Box 123, WC2A 3PX London, UK
| | | | | | | |
Collapse
|
7
|
Tomaszewski JE. Multi-species toxicology approaches for oncology drugs. Eur J Cancer 2004; 40:907-13. [PMID: 15120046 DOI: 10.1016/j.ejca.2003.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 11/21/2003] [Indexed: 11/16/2022]
Abstract
The Toxicology and Pharmacology Branch (T&PB) of the National Cancer Institute (NCI) performs pharmacological and toxicological evaluations of new oncology agents according to an agent-directed paradigm in which all studies are tailored to each agent. The United States Food and Drug Administration (US FDA) requires that preclinical toxicology studies be conducted in two species, a rodent and a non-rodent for all small molecules, and T&PB has successfully used this formula. While pharmacokinetic (PK) studies are considered optional, T&PB routinely develops new methods for plasma/tissue drug analysis and employs this methodology throughout development to determine kinetics in various species and toxicokinetics in the toxicity studies. In the current era of molecular target-based development, the T&PB also develops or employs methodology to evaluate effects of the new chemical entity on appropriate biomarkers in tumour and normal tissues. In this comprehensive programme, T&PB is able to correlate safety and toxicity with both plasma drug levels and biomarker modulation in two species for a seamless entry into Phase I.
Collapse
Affiliation(s)
- Joseph E Tomaszewski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Executive Plaza North, Room 8034, 6130 Executive Boulevard, Rockville, MD 20852, USA.
| |
Collapse
|