1
|
Hung SK, Yang HJ, Lee MS, Liu DW, Chen LC, Chew CH, Lin CH, Lee CH, Li SC, Hong CL, Yu CC, Yu BH, Hsu FC, Chiou WY, Lin HY. Molecular subtypes of breast cancer predicting clinical benefits of radiotherapy after breast-conserving surgery: a propensity-score-matched cohort study. Breast Cancer Res 2023; 25:149. [PMID: 38066611 PMCID: PMC10709935 DOI: 10.1186/s13058-023-01747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Based on the molecular expression of cancer cells, molecular subtypes of breast cancer have been applied to classify patients for predicting clinical outcomes and prognosis. However, further evidence is needed regarding the influence of molecular subtypes on the efficacy of radiotherapy (RT) after breast-conserving surgery (BCS), particularly in a population-based context. Hence, the present study employed a propensity-score-matched cohort design to investigate the potential role of molecular subtypes in stratifying patient outcomes for post-BCS RT and to identify the specific clinical benefits that may emerge. METHODS From 2006 to 2019, the present study included 59,502 breast cancer patients who underwent BCS from the Taiwan National Health Insurance Research Database. Propensity scores were utilized to match confounding variables between patients with and without RT within each subtype of breast cancer, namely luminal A, luminal B/HER2-negative, luminal B/HER2-positive, basal-like, and HER2-enriched ones. Several clinical outcomes were assessed, in terms of local recurrence (LR), regional recurrence (RR), distant metastasis (DM), disease-free survival (DFS), and overall survival (OS). RESULTS After post-BCS RT, patients with luminal A and luminal B/HER2-positive breast cancers exhibited a decrease in LR (adjusted hazard ratio [aHR] = 0.18, p < 0.0001; and, 0.24, p = 0.0049, respectively). Furthermore, reduced RR and improved DFS were observed in patients with luminal A (aHR = 0.15, p = 0.0004; and 0.29, p < 0.0001), luminal B/HER2-negative (aHR = 0.06, p = 0.0093; and, 0.46, p = 0.028), and luminal B/HER2-positive (aHR = 0.14, p = 0.01; and, 0.38, p < 0.0001) breast cancers. Notably, OS benefits were found in patients with luminal A (aHR = 0.62, p = 0.002), luminal B/HER2-negative (aHR = 0.30, p < 0.0001), basal-like (aHR = 0.40, p < 0.0001), and HER2-enriched (aHR = 0.50, p = 0.03), but not luminal B/HER2-positive diseases. Remarkably, when considering DM, luminal A patients who received RT demonstrated a lower cumulative incidence of DM than those without RT (p = 0.02). CONCLUSION In patients with luminal A breast cancer who undergo BCS, RT could decrease the likelihood of tumor metastasis. After RT, the tumor's hormone receptor status may predict tumor control regarding LR, RR, and DFS. Besides, the HER2 status of luminal breast cancer patients may serve as an additional predictor of OS after post-BCS RT. However, further prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Departments of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chun-Hung Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of General Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Cheng-Hung Lee
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of General Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Szu-Chin Li
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chung-Lin Hong
- Division of Hematology-Oncology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Chih-Chia Yu
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ben-Hui Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chiayi, Taiwan.
| |
Collapse
|
2
|
Radiation Potentiates Monocyte Infiltration into Tumors by Ninjurin1 Expression in Endothelial Cells. Cells 2020; 9:cells9051086. [PMID: 32353975 PMCID: PMC7291157 DOI: 10.3390/cells9051086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation is a widely used treatment for cancer patients, with over half the cancer patients receiving radiation therapy during their course of treatment. Considerable evidence from both preclinical and clinical studies show that tumor recurrence gets restored following radiotherapy, due to the influx of circulating cells consisting primarily of monocytes. The attachment of monocyte to endothelial cell is the first step of the extravasation process. However, the exact molecules that direct the transmigration of monocyte from the blood vessels to the tumors remain largely unknown. The nerve injury-induced protein 1 (Ninjurin1 or Ninj1) gene, which encodes a homophilic adhesion molecule and cell surface protein, was found to be upregulated in inflammatory lesions, particularly in macrophages/monocytes, neutrophils, and endothelial cells. More recently Ninj1 was reported to be regulated following p53 activation. Considering p53 has been known to be activated by radiation, we wondered whether Ninj1 could be increased in the endothelial cells by radiation and it might contribute to the recruiting of monocytes in the tumor. Here we demonstrate that radiation-mediated up-regulation of Ninj1 in endothelial cell lines such as human umbilical vein endothelial cells (HUVECs), EA.hy926, and immortalized HUVECs. Consistent with this, we found over-expressed Ninj1 in irradiated xenograft tumors, and increased monocyte infiltration into tumors. Radiation-induced Ninj1 was transcriptionally regulated by p53, as confirmed by transfection of p53 siRNA. In addition, Ninj1 over-expression in endothelial cells accelerated monocyte adhesion. Irradiation-induced endothelial cells and monocyte interaction was inhibited by knock-down of Ninj1. Furthermore, over-expressed Ninj1 stimulated MMP-2 and MMP-9 expression in monocyte cell lines, whereas the MMP-2 and MMP-9 expression were attenuated by Ninj1 knock-down in monocytes. Taken together, we provide evidence that Ninj1 is a key molecule that generates an interaction between endothelial cells and monocytes. This result suggests that radiation-mediated Ninj1 expression in endothelial cells could be involved in the post-radiotherapy recurrence mechanism.
Collapse
|
3
|
Li MY, Liu JQ, Chen DP, Li ZY, Qi B, He L, Yu Y, Yin WJ, Wang MY, Lin L. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways. Cancer Biol Ther 2018; 18:681-693. [PMID: 28799829 DOI: 10.1080/15384047.2017.1360442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant neoplasm of the head and neck which is harmful to human's health. Radiotherapy is commonly used in the treatment of NPC and it induces immediate cell cycle arrest and cell apoptosis. However, the mechanism remains unknown. Evidences suggested the activation of Ataxia telangiectasia mutated (ATM) pathway and Smad pathway are 2 of the important crucial mediators in the function of radiotherapy. In this study, we performed in vitro assays with human nasopharyngeal carcinoma CNE-2 cells and in vivo assays with nude mice to investigate the role of the ATM and Smad pathways in the treatment of nasopharyngeal carcinoma with radiotherapy. The results suggested that radiation induced activation of ATM pathway by inducing expression of p-ATM, p-CHK1, p-CHK2, p15 and inhibiting expression of p-Smad3. In addition, Caspase3 expression was increased while CDC25A was decreased, leading to cell cycle arrest and cell apoptosis. On the other hand, activation of Smad3 can inhibited the ATM pathway and attenuated the efficacy of radiation. In summary, we suggest that both ATM and Smad pathways contribute to the cell cycle arrest and cell apoptosis during nasopharyngeal carcinoma cells treated with radiation.
Collapse
Affiliation(s)
- Ming-Yi Li
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China.,b Guangzhou Institute of Oncology , Guangzhou , 510095 , Guangdong , China.,c Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment , Guangzhou , 510095 , Guangdong , China
| | - Jin-Quan Liu
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China.,b Guangzhou Institute of Oncology , Guangzhou , 510095 , Guangdong , China.,c Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment , Guangzhou , 510095 , Guangdong , China
| | - Dong-Ping Chen
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Zhou-Yu Li
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Bin Qi
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Lu He
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Yi Yu
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Wen-Jin Yin
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Meng-Yao Wang
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Ling Lin
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| |
Collapse
|
4
|
Wang DL, Xiao C, Fu G, Wang X, Li L. Identification of potential serum biomarkers for breast cancer using a functional proteomics technology. Biomark Res 2017; 5:11. [PMID: 28293426 PMCID: PMC5348793 DOI: 10.1186/s40364-017-0092-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer is a genetic disease; its development and metastasis depend on the function of many proteins. Human serum contains thousands of proteins; it is a window for the homeostasis of individual's health. Many of the proteins found in the human serum could be potential biomarkers for cancer early detection and drug efficacy evaluation. METHODS In this study, a functional proteomics technology was used to systematically monitor metabolic enzyme and protease activities from resolved serum proteins produced by a modified 2-D gel separation and subsequent Protein Elution Plate, a method collectively called PEP. All the experiments were repeated at least twice to ensure the validity of the findings. RESULTS For the first time, significant differences were found between breast cancer patient serum and normal serum in two families of enzymes known to be involved in cancer development and metastasis: metabolic enzymes and proteases. Multiple enzyme species were identified in the serum assayed directly or after enrichment. Both qualitative and quantitative differences in the metabolic enzyme and protease activity were detected between breast cancer patient and control group, providing excellent biomarker candidates for breast cancer diagnosis and drug development. CONCLUSIONS This study identified several potential functional protein biomarkers from breast cancer patient serum. It also demonstrated that the functional proteomics technology, PEP, can be applied to the analysis of any functional proteins in human serum which contains thousands of proteins. The study indicated that the functional domain of the human serum could be unlocked with the PEP technology, pointing to a novel alternative for the development of diagnosis biomarkers for breast cancer and other diseases.
Collapse
Affiliation(s)
- David L. Wang
- Department of Biology, Vanderbilt University, Nashville, TN USA
| | | | - Guofeng Fu
- Array Bridge Inc., 4320 Forest Park Ave, Suite 303, St. Louis, MO 63108 USA
| | - Xing Wang
- Array Bridge Inc., 4320 Forest Park Ave, Suite 303, St. Louis, MO 63108 USA
| | - Liang Li
- Zibo Central Hospital, Zibo, China
| |
Collapse
|