1
|
Vaz-Salgado MA, Albarran V, Pozas J, Ferreiro R, Pachón V, Longo F, Rodriguez M, Barreto E, Earl J. Single nucleotide polymorphisms: impact on susceptibility to chemotherapy in patients with colorectal cancer. Future Sci OA 2024; 10:2428077. [PMID: 39576003 PMCID: PMC11587850 DOI: 10.1080/20565623.2024.2428077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) in enzyme-coding genes play a role in susceptibility to anti-cancer therapy. MATERIALS & METHODS A prospective study was performed of the relationship between enzyme activity and treatment response, drug toxicity and hypersensitivity reactions in 51 patients with colorectal cancer treated with fluoropyrimidine-based chemotherapy. SNP analysis was performed in 22 enzyme-coding genes with a previously described role in treatment efficacy. RESULTS SLC6 and MTHR enzyme activity was related with rates of progressive disease, GSTP1 activity with anti-EGFR antibodies-related skin toxicity, CYP3A5 and MTHR with chemotherapy dose reduction, CYP2B6, IL10, MTHR and TYMS activity with the risk of drug hypersensitivity reactions. CONCLUSION Pharmacogenetics is a valuable predictive marker in oncology, related to chemotherapy treatment response, toxicity and hypersensitivity.
Collapse
Affiliation(s)
- M. Angeles Vaz-Salgado
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Victor Albarran
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Reyes Ferreiro
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Vanessa Pachón
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Federico Longo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Mercedes Rodriguez
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Emma Barreto
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
- University of Alcalá, Madrid, Spain
| | - Julie Earl
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| |
Collapse
|
2
|
Pan X, Xiao X, Ding Y, Shu Y, Zhang W, Huang L. Neurological adverse events associated with oxaliplatin: A pharmacovigilance analysis based on FDA adverse event reporting system. Front Pharmacol 2024; 15:1431579. [PMID: 39045045 PMCID: PMC11263116 DOI: 10.3389/fphar.2024.1431579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Objective This study aimed to explore the neurological adverse events of oxaliplatin through the Food and Drug Administration Adverse Event Reporting System (FAERS) database and to provide reference for safe clinical drug use. Methods The adverse events report data of oxaliplatin from the first quarter of 2019 (1 January 2019) to the third quarter of 2023 (30 September 2023) were extracted from FAERS database, and the adverse events signal intensity was determined using the reporting odds ratio, proportional reporting ratio, information component, and empirical Bayes geometric mean methods. Time-to-onset and univariate logistic regression analysis were performed to describe the characteristics and risk factors of oxaliplatin-associated neurological adverse events. Results A total of 4,471 cases of oxaliplatin-associated neurological adverse events were identified, with 318 neurological adverse events being documented, among which 87 adverse events satisfied the thresholds of four methodologies. The median time-to-onset of oxaliplatin-associated neurological adverse events was 2 days (interquartile range 0-36 days). Among the factors significantly influencing oxaliplatin-related neurological adverse events, male sex and combination medication decreased the risk of neurological adverse events, while higher cumulative dose increased the risk. Conclusion The real-world neurotoxicity spectrum of oxaliplatin and its characteristics and influencing factors were obtained through data mining of FAERS, providing valuable insights for healthcare professionals to effectively manage the risk of neurological adverse events associated with oxaliplatin in clinical practice.
Collapse
Affiliation(s)
- Xianglin Pan
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangtian Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Ding
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yamin Shu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Drummond ISA, de Oliveira JNS, Niella RV, Silva ÁJC, de Oliveira IS, de Souza SS, da Costa Marques CS, Corrêa JMX, Silva JF, de Lavor MSL. Evaluation of the Therapeutic Potential of Amantadine in a Vincristine-Induced Peripheral Neuropathy Model in Rats. Animals (Basel) 2024; 14:1941. [PMID: 38998053 PMCID: PMC11240452 DOI: 10.3390/ani14131941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to evaluate the therapeutic potential of amantadine in a vincristine-induced peripheral neuropathy model in rats. Forty-eight male Wistar rats were used. The treated groups received oral amantadine at doses of 2, 5, 12, 25 and 50 mg/kg, with daily applications for 14 days. The mechanical paw withdrawal threshold was measured using a digital analgesimeter. Immunohistochemical analysis of IL-6, TNFα, MIP1α, IL-10, CX3CR1, CXCR4, SOD, CAT and GPx, and enzymatic activity analysis of CAT, SOD and GPx were performed, in addition to quantitative PCR of Grp78, Chop, Ho1, Perk, Bax, Bcl-xL, Casp 3, Casp 9, IL-6, IL-10, IL-18 and IL-1β. The results showed an increase in nociceptive thresholds in animals that received 25 mg/kg and 50 mg/kg amantadine. Immunohistochemistry showed a decrease in the immunostaining of IL-6, TNFα, MIP1α and CX3CR1, and an increase in IL-10. CAT and SOD showed an increase in both immunochemistry and enzymatic analysis. qPCR revealed a reduced expression of genes related to endoplasmic reticulum stress and regulation in the expression of immunological and apoptotic markers. Amantadine demonstrated antinociceptive, anti-inflammatory and antioxidant effects in the vincristine-induced peripheral neuropathy model in rats, suggesting that amantadine may be considered an alternative approach for the treatment of vincristine-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
| | | | - Raquel Vieira Niella
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Álvaro José Chávez Silva
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Iago Santos de Oliveira
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Sophia Saraiva de Souza
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Claire Souza da Costa Marques
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Janaina Maria Xavier Corrêa
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Juneo Freitas Silva
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| |
Collapse
|
4
|
Bonomo R, Canta A, Chiorazzi A, Carozzi VA, Meregalli C, Pozzi E, Alberti P, Frampas CF, Van der Veen DR, Marmiroli P, Skene DJ, Cavaletti G. Effect of age on metabolomic changes in a model of paclitaxel-induced peripheral neurotoxicity. J Peripher Nerv Syst 2024; 29:58-71. [PMID: 38126610 DOI: 10.1111/jns.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND AIMS Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the most common dose-limiting side effects of paclitaxel (PTX) treatment. Many age-related changes have been hypothesized to underlie susceptibility to damage or impaired regeneration/repair after nerve injury. The results of these studies, however, are inconclusive and other potential biomarkers of nerve impairment need to be investigated. METHODS Twenty-four young (2 months) and 24 adult (9 months) Wistar male rats were randomized to either PTX treatment (10 mg/kg i.v. once/week for 4 weeks) or vehicle administration. Neurophysiological and behavioral tests were performed at baseline, after 4 weeks of treatment and 2-week follow-up. Skin biopsies and nerve specimens collected from sacrificed animals were examined for intraepidermal nerve fiber (IENF) density assessment and nerve morphology/morphometry. Blood and liver samples were collected for targeted metabolomics analysis. RESULTS At the end of treatment, the neurophysiological studies revealed a reduction in sensory nerve action potential amplitude (p < .05) in the caudal nerve of young PTX-animals, and in both the digital and caudal nerve of adult PTX-animals (p < .05). A significant decrease in the mechanical threshold was observed only in young PTX-animals (p < .001), but not in adult PTX-ones. Nevertheless, both young and adult PTX-rats had reduced IENF density (p < .0001), which persisted at the end of follow-up period. Targeted metabolomics analysis showed significant differences in the plasma metabolite profiles between PTX-animals developing peripheral neuropathy and age-matched controls, with triglycerides, diglycerides, acylcarnitines, carnosine, long chain ceramides, sphingolipids, and bile acids playing a major role in the response to PTX administration. INTERPRETATION Our study identifies for the first time multiple related metabolic axes involved in PTX-induced peripheral neurotoxicity, and suggests age-related differences in CIPN manifestations and in the metabolic profile.
Collapse
Affiliation(s)
- Roberta Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- School of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Cecile F Frampas
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Daan R Van der Veen
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
5
|
Hajareh Haghighi F, Binaymotlagh R, Fratoddi I, Chronopoulou L, Palocci C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023; 9:953. [PMID: 38131939 PMCID: PMC10742474 DOI: 10.3390/gels9120953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer is the second leading cause of death globally, but conventional anticancer drugs have side effects, mainly due to their non-specific distribution in the body in both cancerous and healthy cells. To address this relevant issue and improve the efficiency of anticancer drugs, increasing attention is being devoted to hydrogel drug-delivery systems for different kinds of cancer treatment due to their high biocompatibility and stability, low side effects, and ease of modifications. To improve the therapeutic efficiency and provide multi-functionality, different types of nanoparticles (NPs) can be incorporated within the hydrogels to form smart hydrogel nanocomposites, benefiting the advantages of both counterparts and suitable for advanced anticancer applications. Despite many papers on non-peptide hydrogel nanocomposites, there is limited knowledge about peptide-based nanocomposites, specifically in anti-cancer drug delivery. The aim of this short but comprehensive review is, therefore, to focus attention on the synergies resulting from the combination of NPs with peptide-based hydrogels. This review, which includes a survey of recent advances in this kind of material, does not aim to be an exhaustive review of hydrogel technology, but it instead highlights recent noteworthy publications and discusses novel perspectives to provide valuable insights into the promising synergic combination of peptide hydrogels and NPs for the design of novel anticancer drug delivery systems.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Chen Y, Liu S, Papageorgiou LG, Theofilatos K, Tsoka S. Optimisation Models for Pathway Activity Inference in Cancer. Cancers (Basel) 2023; 15:1787. [PMID: 36980673 PMCID: PMC10046797 DOI: 10.3390/cancers15061787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND With advances in high-throughput technologies, there has been an enormous increase in data related to profiling the activity of molecules in disease. While such data provide more comprehensive information on cellular actions, their large volume and complexity pose difficulty in accurate classification of disease phenotypes. Therefore, novel modelling methods that can improve accuracy while offering interpretable means of analysis are required. Biological pathways can be used to incorporate a priori knowledge of biological interactions to decrease data dimensionality and increase the biological interpretability of machine learning models. METHODOLOGY A mathematical optimisation model is proposed for pathway activity inference towards precise disease phenotype prediction and is applied to RNA-Seq datasets. The model is based on mixed-integer linear programming (MILP) mathematical optimisation principles and infers pathway activity as the linear combination of pathway member gene expression, multiplying expression values with model-determined gene weights that are optimised to maximise discrimination of phenotype classes and minimise incorrect sample allocation. RESULTS The model is evaluated on the transcriptome of breast and colorectal cancer, and exhibits solution results of good optimality as well as good prediction performance on related cancer subtypes. Two baseline pathway activity inference methods and three advanced methods are used for comparison. Sample prediction accuracy, robustness against noise expression data, and survival analysis suggest competitive prediction performance of our model while providing interpretability and insight on key pathways and genes. Overall, our work demonstrates that the flexible nature of mathematical programming lends itself well to developing efficient computational strategies for pathway activity inference and disease subtype prediction.
Collapse
Affiliation(s)
- Yongnan Chen
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London WC2B 4BG, UK
| | - Songsong Liu
- School of Management, Harbin Institute of Technology, Harbin 150001, China
| | - Lazaros G Papageorgiou
- The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Konstantinos Theofilatos
- King's College London British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE1 7EH, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London WC2B 4BG, UK
| |
Collapse
|
7
|
La Verde N, Damia G, Garrone O, Santini D, Fabi A, Ciccarese M, Generali DG, Nunzi M, Poletto E, Ferraris E, Cretella E, Scandurra G, Meattini I, Bertolini AS, Cavanna L, Collovà E, Romagnoli E, Rulli E, Legramandi L, Guffanti F, Bramati A, Moretti A, Cassano A, Vici P, Torri V, Farina G. Tolerability of Eribulin and correlation between polymorphisms and neuropathy in an unselected population of female patients with metastatic breast cancer: results of the multicenter, single arm, phase IV PAINTER study. Breast Cancer Res 2022; 24:71. [PMID: 36307826 PMCID: PMC9615373 DOI: 10.1186/s13058-022-01560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastatic breast cancer (MBC) is an incurable disease and its treatment focuses on prolonging patients' (pts) overall survival (OS) and improving their quality of life. Eribulin is a microtubule inhibitor that increases OS in pre-treated MBC pts. The most common adverse events (AEs) are asthenia, neutropenia and peripheral neuropathy (PN). METHODS PAINTER is a single arm, phase IV study, aimed at evaluating the tolerability of eribulin in MBC pts. Secondary objectives were the description of treatment efficacy and safety, the assessment of the incidence and severity of PN and its association with genetic polymorphisms. Genomic DNA was isolated from blood samples and 15 Single Nucleotide Polymorphisms (SNPs) were genotyped by Taqman specific assays. The association between PN and SNPs were evaluated by Fisher exact test. RESULTS Starting from May 2014 until June 2018 180 pts were enrolled in this study by 20 Italian centers. 170 of these pts could be evaluated for efficacy and toxicity and 159 for polymorphisms analysis. The median age of pts was 60 years old and the biological subtypes were luminal type (64.7%), Her2 positive (18.3%) and triple negative (17%). Pts were pretreated with a median of 5 lines for MBC. The median follow up of this study was 15.4 months with a median number of 4.5 cycles administered (minimum-maximum 1-23). The median overall survival was 12 months. 48.8% of pts experienced a dose reduction, mainly for neutropenia (23.9%) and liver toxicity (12%). 65 pts (38.2%) reported at least one severe toxicity. Neutropenia and neurotoxicity were the most frequent severe AEs (15.3% and 14.7%, respectively); other reported toxicities were osteo-muscular, abdominal or tumor site pain (19.4%), liver toxicity (6.6%), pulmonary toxicity (6.5%) and dermatological toxicity (3.6%). Among the 15 evaluated SNPs, an association with PN was found for rs2233335 and rs7214723. CONCLUSIONS Eribulin is a well-tolerated treatment option in MBC. Schedule and dosage modifications were common, but toxicity rarely led to treatment discontinuation. SNPs rs2233335 (G/T and T/T) in the NDRG1 gene and rs7214723 (CC and CT) in the CAMKK1 gene were associated with PN. These findings, if validated, could allow a tailored treatment with eribulin in cancer patients. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT02864030.
Collapse
Affiliation(s)
- Nicla La Verde
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ornella Garrone
- Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Santini
- Oncologia Medica Università Campus Biomedico, Rome, Italy
- UOC Oncologia Universitaria, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Alessandra Fabi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Daniele Giulio Generali
- U.O. Multidisciplinare Di Patologia Mammaria E Ricerca, Traslazionale Azienda Socio-Sanitaria Territoriale Di Cremona, Cremona, Italy
| | - Martina Nunzi
- Dept. of Oncology Medical and Translational Oncology Unit, Azienda Ospedaliera S.Maria, Terni, Italy
| | - Elena Poletto
- ASUFC Presidio Ospedaliero Universitario S.M. Misericordia, Udine, Italy
| | - Elisa Ferraris
- Division of Medical Oncology, IRCCS San Matteo University Hospital Foundation, Pavia, Italy
| | | | | | - Icro Meattini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | | | - Luigi Cavanna
- Oncology Haematology Department, ASL Piacenza, Piacenza, Italy
| | - Elena Collovà
- ASST Ovest Milanese, Ospedale Di Legnano, Legnano, MI, Italy
| | | | - Eliana Rulli
- Laboratory of Methodology for Clinical Research, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lorenzo Legramandi
- Laboratory of Methodology for Clinical Research, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Molecular Pharmacology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Annalisa Bramati
- Department of Oncology, Fatebenefratelli Hospital, ASST Fatebenefratelli-Sacco, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| | - Anna Moretti
- Department of Oncology, Fatebenefratelli Hospital, ASST Fatebenefratelli-Sacco, Piazza Principessa Clotilde 3, 20121, Milan, Italy.
| | - Alessandra Cassano
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Patrizia Vici
- Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valter Torri
- Department of Oncology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gabriella Farina
- Department of Oncology, Fatebenefratelli Hospital, ASST Fatebenefratelli-Sacco, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| |
Collapse
|
8
|
Kanai M, Kawaguchi T, Kotaka M, Manaka D, Hasegawa J, Takagane A, Munemoto Y, Kato T, Eto T, Touyama T, Matsui T, Shinozaki K, Matsumoto S, Mizushima T, Mori M, Sakamoto J, Ohtsu A, Yoshino T, Saji S, Matsuda F. Large-Scale Prospective Genome-Wide Association Study of Oxaliplatin in Stage II/III Colon Cancer and Neuropathy. Ann Oncol 2021; 32:1434-1441. [PMID: 34391895 DOI: 10.1016/j.annonc.2021.08.1745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
IMPORTANCE The severity of oxaliplatin (L-OHP)-induced peripheral sensory neuropathy (PSN) exhibits substantial interpatient variability, and some patients suffer from long-term, persisting PSN. OBJECTIVE To identify single-nucleotide polymorphisms (SNPs) predicting L-OHP-induced PSN using a genome-wide association study (GWAS) approach. DESIGN, SETTING, PARTICIPANTS A large prospective GWAS including 1,379 patients with stage II/III colon cancer who received L-OHP-based adjuvant chemotherapy (mFOLFOX6/CAPOX) under the phase II (JOIN/JFMC41) or the phase III (ACHIVE/JFMC47) trial. MAIN OUTCOMES AND MEASURES First, GWAS comparison of worst grade PSN (grade 0/1 vs. 2/3) was performed. Next, to minimize the impact of ambiguity in PSN grading, extreme PSN phenotypes were selected and analyzed by GWAS. SNPs that could predict time to recovery from PSN were also evaluated. In addition, SNPs associated with L-OHP-induced allergic reactions (AR) and time to disease recurrence were explored. RESULTS No SNPs exceeded the genome-wide significance (p < 5.0 × 10-8) in either GWAS comparison of worst grade PSN, extreme PSN phenotypes, or time to recovery from PSN. Association study focusing on AR or time to disease recurrence also failed to reveal any significant SNPs. CONCLUSION AND RELEVANCE Our results highlight the challenges of utilizing SNPs for predicting susceptibility to L-OHP-induced PSN in daily clinical practice.
Collapse
Affiliation(s)
- M Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - T Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Kotaka
- Gastrointestinal Cancer Center, Sano Hospital, Kobe, Japan
| | - D Manaka
- Department of Surgery, Gastrointestinal Center, Kyoto-Katsura Hospital, Kyoto, Japan
| | - J Hasegawa
- Department of Surgery, Osaka Rosai Hospital, Osaka, Japan
| | - A Takagane
- Department of Surgery, Hakodate Goryoukaku Hospital, Hokkaido, Japan
| | - Y Munemoto
- Department of Surgery, Fukui Ken Saiseikai Hospital, Fukui, Japan
| | - T Kato
- Department of Surgery, Kansai Rosai Hospital, Hyogo, Japan
| | - T Eto
- Department of Gastroenterology, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - T Touyama
- Department of Surgery, Nakagami Hospital, Okinawa, Japan
| | - T Matsui
- Department of Gastroenterological Surgery, Aichi Cancer Center Aichi Hospital, Aichi, Japan
| | - K Shinozaki
- Division of Clinical Oncology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - S Matsumoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - M Mori
- Department of Surgery and Science, Kyushu University, Fukuoka, Japan
| | - J Sakamoto
- Japanese Foundation for Multidisciplinary Treatment of Cancer, Tokyo, Japan; Tokai Central Hospital, Kakamigahara, Japan
| | - A Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - T Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - S Saji
- Japanese Foundation for Multidisciplinary Treatment of Cancer, Tokyo, Japan
| | - F Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Merheb D, Dib G, Zerdan MB, Nakib CE, Alame S, Assi HI. Drug-Induced Peripheral Neuropathy: Diagnosis and Management. Curr Cancer Drug Targets 2021; 22:49-76. [PMID: 34288840 DOI: 10.2174/1568009621666210720142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023]
Abstract
Peripheral neuropathy comes in all shapes and forms and is a disorder which is found in the peripheral nervous system. It can have an acute or chronic onset depending on the multitude of pathophysiologic mechanisms involving different parts of nerve fibers. A systematic approach is highly beneficial when it comes to cost-effective diagnosis. More than 30 causes of peripheral neuropathy exist ranging from systemic and auto-immune diseases, vitamin deficiencies, viral infections, diabetes, etc. One of the major causes of peripheral neuropathy is drug induced disease, which can be split into peripheral neuropathy caused by chemotherapy or by other medications. This review deals with the latest causes of drug induced peripheral neuropathy, the population involved, the findings on physical examination and various workups needed and how to manage each case.
Collapse
Affiliation(s)
- Diala Merheb
- Department of Internal Medicine, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Georgette Dib
- Department of Internal Medicine, Division of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada Alame
- Department of Pediatrics, Clemenceau Medical Center, Faculty of Medical Sciences, Lebanese University, Beirut,, Lebanon
| | - Hazem I Assi
- Department of Internal Medicine Naef K. Basile Cancer Institute American University of Beirut Medical Center Riad El Solh 1107 2020 Beirut, Lebanon
| |
Collapse
|
10
|
Miao H, Li R, Chen D, Hu J, Chen Y, Xu C, Wen Z. Protective Effects of Vitamin E on Chemotherapy-Induced Peripheral Neuropathy: A Meta-Analysis of Randomized Controlled Trials. ANNALS OF NUTRITION AND METABOLISM 2021; 77:127-137. [PMID: 34148036 DOI: 10.1159/000515620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN) is a common symptom, but prophylactic measures cannot still be carried out effectively. In addition, the efficacy of vitamin E in preventing peripheral neurotoxicity caused by chemotherapy is inconclusive. Therefore, we collected the relevant randomized controlled trials (RCTs) and performed a meta-analysis to examine whether the vitamin E has a positive effect in CIPN. METHODS We searched PubMed, EMBASE, Cochrane, and other databases in December 2019 for eligible trials. Two reviewers conducted the analysis independently when studies were homogeneous enough. RESULTS Eight RCTs, involving 488 patients, were identified. Upon pooling these RCTs, patients who received vitamin E supplementation of 600 mg/day had a lower incidence of CIPN (risk ratio [RR] 0.31; 95% confidence interval [CI] 0.14-0.65; p = 0.002) than the placebo group. Vitamin E played a key role in decreasing the incidence of peripheral neuropathy in the cisplatin chemotherapy group (RR 0.28; 95% CI 0.14-0.54; p = 0.0001). Moreover, vitamin E supplementation significantly decreased patients' sural amplitude after 3 rounds of chemotherapy (RR -2.66; 95% CI -5.09 to -0.24; p = 0.03) in contrast with that of placebo supplementation, while no significant difference was observed when patients were treated with vitamin E after 6 rounds of chemotherapy. In addition, the vitamin E-supplemented group had better improvement in the neurotoxicity score and lower incidence of reflexes and distal paraesthesias than the control group. CONCLUSION Available data in this meta-analysis showed that vitamin E supplementation can confer modest improvement in the prevention of CIPN.
Collapse
Affiliation(s)
- Huikai Miao
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rongzhen Li
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongni Chen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Hu
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Youfang Chen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunmei Xu
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,
| | - Zhesheng Wen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
11
|
Doshi TL, Dworkin RH, Polomano RC, Carr DB, Edwards RR, Finnerup NB, Freeman RL, Paice JA, Weisman SJ, Raja SN. AAAPT Diagnostic Criteria for Acute Neuropathic Pain. PAIN MEDICINE 2021; 22:616-636. [PMID: 33575803 DOI: 10.1093/pm/pnaa407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Acute neuropathic pain is a significant diagnostic challenge, and it is closely related to our understanding of both acute pain and neuropathic pain. Diagnostic criteria for acute neuropathic pain should reflect our mechanistic understanding and provide a framework for research on and treatment of these complex pain conditions. METHODS The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership with the U.S. Food and Drug Administration (FDA), the American Pain Society (APS), and the American Academy of Pain Medicine (AAPM) collaborated to develop the ACTTION-APS-AAPM Pain Taxonomy (AAAPT) for acute pain. A working group of experts in research and clinical management of neuropathic pain was convened. Group members used literature review and expert opinion to develop diagnostic criteria for acute neuropathic pain, as well as three specific examples of acute neuropathic pain conditions, using the five dimensions of the AAAPT classification of acute pain. RESULTS AAAPT diagnostic criteria for acute neuropathic pain are presented. Application of these criteria to three specific conditions (pain related to herpes zoster, chemotherapy, and limb amputation) illustrates the spectrum of acute neuropathic pain and highlights unique features of each condition. CONCLUSIONS The proposed AAAPT diagnostic criteria for acute neuropathic pain can be applied to various acute neuropathic pain conditions. Both the general and condition-specific criteria may guide future research, assessment, and management of acute neuropathic pain.
Collapse
Affiliation(s)
- Tina L Doshi
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert H Dworkin
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, and Department of Neurology, Center for Human Experimental Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rosemary C Polomano
- Division of Biobehavioral Health Sciences, University of Pennsylvania-School of Nursing, Philadelphia, Pennsylvania, USA
| | - Daniel B Carr
- Public Health and Community Medicine Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, and Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Roy L Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Judith A Paice
- Cancer Pain Program, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J Weisman
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Departments of Anesthesiology and Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Bonomo R, Cavaletti G. Clinical and biochemical markers in CIPN: A reappraisal. Rev Neurol (Paris) 2021; 177:890-907. [PMID: 33648782 DOI: 10.1016/j.neurol.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The increased survival of cancer patients has raised growing public health concern on associated long-term consequences of antineoplastic treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is a primarily sensory polyneuropathy, which may be accompanied by pain, autonomic disturbances, and motor deficit. About 70% of treated cancer patients might develop CIPN during or after the completion of chemotherapy, and in most of them such complication persists after six months from the treatment. The definition of the potential risk of development and resolution of CIPN according to a clinical and biochemical profile would be certainly fundamental to tailor chemotherapy regimen and dosage on individual susceptibility. In recent years, patient-reported and clinician-related tools along with quality of life instruments have been featured as primary outcomes in clinical setting and randomized trials. New studies on metabolomics markers are further pursuing accurate and easily accessible indicators of peripheral nerve damage. The aim of this review is to outline the strengths and pitfalls of current knowledge on CIPN, and to provide a framework for future potential developments of standardized protocols involving clinical and biochemical markers for CIPN assessment and monitoring.
Collapse
Affiliation(s)
- R Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
13
|
Spalato M, Italiano A. The safety of current pharmacotherapeutic strategies for osteosarcoma. Expert Opin Drug Saf 2021; 20:427-438. [PMID: 33478264 DOI: 10.1080/14740338.2021.1881060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Peri-operative chemotherapy is the backbone of treatment for patients with osteosarcoma. Methotrexate, cisplatinum, doxorubicin and ifosfamide are the main drugs used in chemotherapy regimens used for osteosarcoma.Areas covered: We have reviewed here the relevant literature related to the incidence and management of acute and late toxicities of systemic treatment used for the management of patients with osteosarcoma.Expert opinion: Early diagnosis and appropriate management of acute and late toxicities of chemotherapy is crucial for an efficient care of osteosarcoma patients. Although the incidence and management of chemotherapy-related acute toxicities are well known by most oncologists, the use of high doses of methotrexate have the potential to cause fatal toxicities and, therefore, needs careful monitoring. Moreover, the diagnosis of late toxicities is more challenging and requires long-term follow-up for an appropriate management.
Collapse
Affiliation(s)
| | - Antoine Italiano
- Sarcoma Unit, Institut Bergonié, Bordeaux, France.,University of Bordeaux, Faculty of Medicine, Bordeaux, France
| |
Collapse
|
14
|
Wu C, Wang C, Sun L, Xu K, Zhong W. PLGA nanoparticle-reinforced supramolecular peptide hydrogels for local delivery of multiple drugs with enhanced synergism. SOFT MATTER 2020; 16:10528-10536. [PMID: 33073837 DOI: 10.1039/d0sm01152e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Localized drug delivery offers great therapeutic efficacy at local tissues while avoiding the systemic toxicity of drugs. Yet it demands the development of structurally-stable drug carrier systems with excellent injectability, as well as the capability to facilitate controlled release of multiple drugs. Herein, we describe the design and synthesis of a supramolecular hydrogel (Cis/Peptide@NP/Irino) for the combined delivery of cisplatin (Cis) and irinotecan (Irino). The self-assembled hydrogel consisted of an inner phase of irinotecan-loaded PLGA nanoparticles (NP/Irino) and an outer phase of cisplatin-loaded peptide nanofibers (Cis/Peptide). Through the structural reinforcement of PLGA nanoparticles, the Cis/Peptide@NP/Irino hydrogel exhibited better mechanical properties than Cis/Peptide or Peptide hydrogels. With excellent shear-thinning properties, it facilitated the development of a localized drug delivery system with an improved retention time in vivo. The hydrogel incorporated two anticancer drugs, Cis and Irino, at the Peptide and PLGA domains, respectively, and exhibited a faster release of Cis prior to the continuous release of Irino in vitro. Furthermore, the Cis/Peptide@NP/Irino formulation showed a better inhibition efficacy against the proliferation of cancerous A549 cells, with the synergism of Cis and Irino exceeding that of the simple solution mixtures, which was plausibly due to the enhanced cellular uptake of drugs through endocytosis. We believe that structurally-stable supramolecular hydrogels show great promise in the local delivery of various drug combinations for cancer therapy.
Collapse
Affiliation(s)
- Can Wu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | | | | | | | | |
Collapse
|
15
|
Pozzi E, Fumagalli G, Chiorazzi A, Canta A, Cavaletti G. Genetic factors influencing the development of vincristine-induced neurotoxicity. Expert Opin Drug Metab Toxicol 2020; 17:215-226. [PMID: 33283553 DOI: 10.1080/17425255.2021.1855141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: One of the most common side effects during vincristine (VCR) use is the establishment of VCR-induced peripheral neuropathy (VIPN). Among several risk factors that can influence the development of VIPN, such as cumulative dose and patient's age, sex, ethnicity, and genetic variants, this review is focused on the genetic variability. Areas covered: A literature research was performed firstly using the following PubMed search string ((((CIPN OR (vincristine AND neurotoxicity OR (vincristine AND neuropathy))) AND (polymorphisms OR (genetic variants OR (genetic factors OR (genetic profile OR (pharmacogenetics OR (genome-wide OR (genetic risk OR (expression genotype))))))))))) but also other relevant papers cited by the selected articles were included. Based on the obtained results, we identified two main categories of genes: genes involved in pharmacokinetics (genes related to metabolism and transport) or pharmacodynamics (genes related to mechanism of action) of VCR. Expert opinion: Despite several clinical retrospective studies investigating the possible correlations between patient genotype and VIPN onset, contrasting and inconsistent results are reported. In conclusion, given the clinical relevance of VIPN, further and more focused research would be fundamental in order to identify genetic variants able to predict its development and to allow a safer management of treated patients.
Collapse
Affiliation(s)
- Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| |
Collapse
|
16
|
Alberti P. A review of novel biomarkers and imaging techniques for assessing the severity of chemotherapy-induced peripheral neuropathy. Expert Opin Drug Metab Toxicol 2020; 16:1147-1158. [DOI: 10.1080/17425255.2021.1842873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy and NeuroMI (Milan Center for Neuroscience), Milan, Italy
| |
Collapse
|
17
|
Neurotoxicity of antineoplastic drugs: Mechanisms, susceptibility, and neuroprotective strategies. Adv Med Sci 2020; 65:265-285. [PMID: 32361484 DOI: 10.1016/j.advms.2020.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
This review summarizes the adverse effects on the central and/or peripheral nervous systems that may occur in response to antineoplastic drugs. In particular, we describe the neurotoxic side effects of the most commonly used drugs, such as platinum compounds, doxorubicin, ifosfamide, 5-fluorouracil, vinca alkaloids, taxanes, methotrexate, bortezomib and thalidomide. Neurotoxicity may result from direct action of compounds on the nervous system or from metabolic alterations produced indirectly by these drugs, and either the central nervous system or the peripheral nervous system, or both, may be affected. The incidence and severity of neurotoxicity are principally related to the dose, to the duration of treatment, and to the dose intensity, though other factors, such as age, concurrent pathologies, and genetic predisposition may enhance the occurrence of side effects. To avoid or reduce the onset and severity of these neurotoxic effects, the use of neuroprotective compounds and/or strategies may be helpful, thereby enhancing the therapeutic effectiveness of antineoplastic drug.
Collapse
|
18
|
Management of Oxaliplatin-Induced Peripheral Sensory Neuropathy. Cancers (Basel) 2020; 12:cancers12061370. [PMID: 32471028 PMCID: PMC7352541 DOI: 10.3390/cancers12061370] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Oxaliplatin-induced peripheral neurotoxicity (OIPN) is a severe and potentially permanent side effect of cancer treatment affecting the majority of oxaliplatin-treated patients, mostly with the onset of acute symptoms, but also with the establishment of a chronic sensory loss that is supposed to be due to dorsal root ganglia neuron damage. The pathogenesis of acute as well as chronic OIPN is still not completely known, and this is a limitation in the identification of effective strategies to prevent or limit their occurrence. Despite intense investigation at the preclinical and clinical levels, no treatment can be suggested for the prevention of OIPN, and only limited evidence for the efficacy of duloxetine in the treatment setting has been provided. In this review, ongoing neuroprotection clinical trials in oxaliplatin-treated patients will be analyzed with particular attention paid to the hypothesis leading to the study, to the trial strengths and weaknesses, and to the outcome measures proposed to test the efficacy of the therapeutic approach. It can be concluded that (1) prevention and treatment of OIPN still remains an important and unmet clinical need, (2) further, high-quality research is mandatory in order to achieve reliable and effective results, and (3) dose and schedule modification of OHP-based chemotherapy is currently the most effective approach to limit the severity of OIPN.
Collapse
|
19
|
Staff NP, Cavaletti G, Islam B, Lustberg M, Psimaras D, Tamburin S. Platinum-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst 2020; 24 Suppl 2:S26-S39. [PMID: 31647151 DOI: 10.1111/jns.12335] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Platinum-induced peripheral neurotoxicity (PIPN) is a common side effect of platinum-based chemotherapy that may cause dose reduction and discontinuation, with oxaliplatin being more neurotoxic. PIPN includes acute neurotoxicity restricted to oxaliplatin, and chronic non-length-dependent sensory neuronopathy with positive and negative sensory symptoms and neuropathic pain in both upper and lower limbs. Chronic sensory axonal neuropathy manifesting as stocking-and-glove distribution is also frequent. Worsening of neuropathic symptoms after completing the last chemotherapy course may occur. Motor and autonomic involvement is uncommon. Ototoxicity is frequent in children and more commonly to cisplatin. Platinum-based compounds result in more prolonged neuropathic symptoms in comparison to other chemotherapy agents. Patient reported outcomes questionnaires, clinical evaluation and instrumental tools offer complementary information in PIPN. Electrodiagnostic features include diffusely reduced/abolished sensory action potentials, in keeping with a sensory neuronopathy. PIPN is dependent on cumulative dose but there is a large variability in its occurrence. The search for additional risk factors for PIPN has thus far yielded no consistent findings. There are currently no neuroprotective strategies to reduce the risk of PIPN, and symptomatic treatment is limited to duloxetine that was found effective in a single phase III intervention study. This review critically examines the pathogenesis, incidence, risk factors (both clinical and pharmacogenetic), clinical phenotype and management of PIPN.
Collapse
Affiliation(s)
- Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Badrul Islam
- Laboratory Sciences and Services Division, The International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Maryam Lustberg
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Dimitri Psimaras
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol 2020; 324:113121. [PMID: 31758983 PMCID: PMC6993945 DOI: 10.1016/j.expneurol.2019.113121] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Paclitaxel (Brand name Taxol) is widely used in the treatment of common cancers like breast, ovarian and lung cancer. Although highly effective in blocking tumor progression, paclitaxel also causes peripheral neuropathy as a side effect in 60-70% of chemotherapy patients. Recent efforts by numerous labs have aimed at defining the underlying mechanisms of paclitaxel-induced peripheral neuropathy (PIPN). In vitro models using rodent dorsal root ganglion neurons, human induced pluripotent stem cells, and rodent in vivo models have revealed a number of molecular pathways affected by paclitaxel within axons of sensory neurons and within other cell types, such as the immune system and peripheral glia, as well skin. These studies revealed that paclitaxel induces altered calcium signaling, neuropeptide and growth factor release, mitochondrial damage and reactive oxygen species formation, and can activate ion channels that mediate responses to extracellular cues. Recent studies also suggest a role for the matrix-metalloproteinase 13 (MMP-13) in mediating neuropathy. These diverse changes may be secondary to paclitaxel-induced microtubule transport impairment. Human genetic studies, although still limited, also highlight the involvement of cytoskeletal changes in PIPN. Newly identified molecular targets resulting from these studies could provide the basis for the development of therapies with which to either prevent or reverse paclitaxel-induced peripheral neuropathy in chemotherapy patients.
Collapse
Affiliation(s)
- Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, IN 46202, USA
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
21
|
Tian W, Czopka T, López-Schier H. Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration. Commun Biol 2020; 3:49. [PMID: 32001778 PMCID: PMC6992705 DOI: 10.1038/s42003-020-0776-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Protecting the nervous system from chronic effects of physical and chemical stress is a pressing clinical challenge. The obligate pro-degenerative protein Sarm1 is essential for Wallerian axon degeneration. Thus, blocking Sarm1 function is emerging as a promising neuroprotective strategy with therapeutic relevance. Yet, the conditions that will most benefit from inhibiting Sarm1 remain undefined. Here we combine genome engineering, pharmacology and high-resolution intravital videmicroscopy in zebrafish to show that genetic elimination of Sarm1 increases Schwann-cell resistance to toxicity by diverse chemotherapeutic agents after axonal injury. Synthetic degradation of Sarm1-deficient axons reversed this effect, suggesting that glioprotection is a non-autonomous effect of delayed axon degeneration. Moreover, loss of Sarm1 does not affect macrophage recruitment to nerve-wound microenvironment, injury resolution, or neural-circuit repair. These findings anticipate that interventions aimed at inhibiting Sarm1 can counter heightened glial vulnerability to chemical stressors and may be an effective strategy to reduce chronic consequences of neurotrauma.
Collapse
Affiliation(s)
- Weili Tian
- Sensory Biology & Organogenesis, Helmholtz Zentrum Munich, Munich, Germany
| | - Tim Czopka
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
22
|
Le-Rademacher JG, Lopez CL, Kanwar R, Major-Elechi B, Abyzov A, Banck MS, Therneau TM, Sloan JA, Loprinzi CL, Beutler AS. Neurological safety of oxaliplatin in patients with uncommon variants in Charcot-Marie-tooth disease genes. J Neurol Sci 2020; 411:116687. [PMID: 32018185 DOI: 10.1016/j.jns.2020.116687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Oxaliplatin therapy can be complicated by chemotherapy-induced peripheral neuropathy (CIPN). Other neurotoxic chemotherapies have been linked to single nucleotide variants (SNV) in Charcot-Marie-Tooth disease (CMT) genes. Whether oxaliplatin carries increased risks of CIPN due to SNV in CMT-associated genes is unknown. 353 patients receiving oxaliplatin in NCCTG N08CB were serially evaluated for CIPN using a validated patient-reported outcome (PRO) instrument, the CIPN20 questionnaire (sensory scale). 49 canonical CMT-associated genes were analyzed for rare and common SNV by nextgen sequencing. The 157 patients with the highest and lowest susceptibility to CIPN (cases and controls) harbored 270 non-synonymous SNV in CMT-associated genes (coding regions). 143 of these were rare, occurring only once ("singletons"). CIPN cases had 0.84 singletons per patient compared with 0.98 in controls. An imbalance in favor of cases was noted only in few genes including PRX, which was previously highlighted as a candidate CIPN gene in patients receiving paclitaxel. However, the imbalance was only modest (5 singleton SNV in cases and 2 in controls). Therefore, while singleton SNV were common, they did overall not portend an increased risk of CIPN. Furthermore, testing CMT-associated genes using recurrent non-synonymous SNV did not reveal any significant association with CIPN. Genetic analysis of patients from N08CB provides clinical guidance that oxaliplatin chemotherapy decisions should not be altered by the majority of SNV that may be encountered in CMT-associated genes when common genetic tests are performed, such as exome or genome sequencing. Oxaliplatin's CIPN risk appears unrelated to CMT-associated genes.
Collapse
Affiliation(s)
- Jennifer G Le-Rademacher
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Camden L Lopez
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA
| | - Rahul Kanwar
- Center for Individualized Medicine, Rochester, MN, USA
| | - Brittny Major-Elechi
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA.
| | - Alexej Abyzov
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Center for Individualized Medicine, Rochester, MN, USA
| | - Michaela S Banck
- Mayo Clinic Cancer Center, Rochester, MN, USA; Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Terry M Therneau
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA
| | - Jeff A Sloan
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | - Charles L Loprinzi
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Andreas S Beutler
- Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Rochester, MN, USA; Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Ibrahim EY, Ehrlich BE. Prevention of chemotherapy-induced peripheral neuropathy: A review of recent findings. Crit Rev Oncol Hematol 2020; 145:102831. [PMID: 31783290 PMCID: PMC6982645 DOI: 10.1016/j.critrevonc.2019.102831] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse effect of chemotherapy that is frequently experienced by patients receiving treatment for cancer. CIPN is caused by many of the most commonly used chemotherapeutic agents, including taxanes, vinca alkaloids, and bortezomib. Pain and sensory abnormalities may persist for months, or even years after the cessation of chemotherapy. The management of CIPN is a significant challenge, as it is not possible to predict which patients will develop symptoms, the timing for the appearance of symptoms can develop anytime during the chemotherapy course, there are no early indications that warrant a reduction in the dosage to halt CIPN progression, and there are no drugs approved to prevent or alleviate CIPN. This review focuses on the etiology of CIPN and will highlight the various approaches developed for prevention and treatment. The goal is to guide studies to identify, test, and standardize approaches for managing CIPN.
Collapse
Affiliation(s)
- Eiman Y Ibrahim
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, 06510, USA.
| | - Barbara E Ehrlich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
24
|
Alberti P. Platinum-drugs induced peripheral neurotoxicity: clinical course and preclinical evidence. Expert Opin Drug Metab Toxicol 2019; 15:487-497. [DOI: 10.1080/17425255.2019.1622679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Paola Alberti
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
25
|
Chemokine CCL2 and its receptor CCR2 in the dorsal root ganglion contribute to oxaliplatin-induced mechanical hypersensitivity. Pain 2019; 159:1308-1316. [PMID: 29554018 DOI: 10.1097/j.pain.0000000000001212] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activation of innate immune mechanisms within the dorsal root ganglion and spinal dorsal horn has been shown to play a key role in the development of neuropathic pain including paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Here, we tested whether similar mechanisms are generalizable to oxaliplatin-induced CIPN. After a single intraperitoneal injection of 3 mg/kg oxaliplatin, mechanical withdrawal threshold and the expression of C-C chemokine ligand 2 (CCL2) and its receptor, CCR2, in the dorsal root ganglion were measured by behavioral testing and immunohistochemical staining, respectively. Mechanical responsiveness increased from the first day after oxaliplatin injection and persisted until day 15, the last day of this experiment. Immunohistochemical showed that the expression of CCL2/CCR2 started to increase by 4 hours after oxaliplatin treatment, was significantly increased at day 4, and then both signals became normalized by day 15. Cotreatment with intrathecal anti-CCL2 antibodies prevented the development of oxaliplatin-induced mechanical hyperresponsiveness, and transiently reversed established hyperalgesia when given 1 week after chemotherapy. This is the first study to demonstrate CCL2/CCR2 signaling in a model of oxaliplatin-related CIPN; and it further shows that blocking of this signal can attenuate the development of oxaliplatin-induced mechanical hyperalgesia. Activation of innate immune mechanisms may therefore be a generalized basis for CIPN irrespective of the specific class of agent.
Collapse
|
26
|
Abstract
Persistent, in particular neuropathic pain affects millions of people worldwide. However, the response rate of patients to existing analgesic drugs is less than 50%. There are several possibilities to increase this response rate, such as optimization of the pharmacokinetic and pharmacodynamic properties of analgesics. Another promising approach is to use prognostic biomarkers in patients to determine the optimal pharmacological therapy for each individual. Here, we discuss recent efforts to identify plasma and CSF biomarkers, as well as genetic biomarkers and sensory testing, and how these readouts could be exploited for the prediction of a suitable pharmacological treatment. Collectively, the information on single biomarkers may be stored in knowledge bases and processed by machine-learning and related artificial intelligence techniques, resulting in the optimal pharmacological treatment for individual pain patients. We highlight the potential for biomarker-based individualized pain therapies and discuss biomarker reliability and their utility in clinical practice, as well as limitations of this approach.
Collapse
|
27
|
Is a pharmacogenomic panel useful to estimate the risk of oxaliplatin-related neurotoxicity in colorectal cancer patients? THE PHARMACOGENOMICS JOURNAL 2019; 19:465-472. [PMID: 30713338 DOI: 10.1038/s41397-019-0078-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/22/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Oxaliplatin-induced peripheral neurotoxicity (OXPN) is a dose-limiting toxicity in colorectal cancer (CRC) patients. Single nucleotide polymorphisms (SNPs) in genes involved in drug transport may lead to higher intracellular oxaliplatin accumulation in the dorsal root ganglia and thus increased risk of OXPN. In this study, a panel of 5 SNPs, namely ABCC2 (-24C > T/rs717620 and c.4544 G > A/rs8187710), ABCG2 (c.421 C > A/rs2231142), ABCB1 (c.3435 C > T/rs1045642) and SLC31A1 (c.-36 + 2451 T > G/rs10981694), was evaluated to assess their association with grade 2-3 OXPN in metastatic CRC patients. SNPs were considered according to a dominant model (heterozygous + homozygous). Germline DNA was available from 120 patients who received oxaliplatin between 2010 and 2016. An external cohort of 80 patients was used to validate our results. At the univariable logistic analyses, there were no significant associations between SNPs and incidence of OXPN. Taking into account the strength of observed association between OXPN and the SNPs, a clinical risk score was developed as linear predictor from a multivariable logistic model including all the SNPs together. This score was significantly associated with grade 2-3 OXPN (p = 0.036), but the external calibration was not satisfactory due to relevant discrepancies between the two series. Our data suggest that the concomitant evaluation of multiple SNPs in oxaliplatin transporters is an exploratory strategy that may deserve further investigation for treatment customization in CRC patients.
Collapse
|
28
|
Groen CM, Podratz JL, Treb K, Windebank AJ. Drosophila strain specific response to cisplatin neurotoxicity. Fly (Austin) 2019; 12:174-182. [PMID: 30668272 DOI: 10.1080/19336934.2019.1565257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Drosophila melanogaster has recently been developed as a simple, in vivo, genetic model of chemotherapy-induced peripheral neuropathy. Flies treated with the chemotherapy agent cisplatin display both a neurodegenerative phenotype and cell death in rapidly dividing follicles, mimicking the cell specific responses seen in humans. Cisplatin induces climbing deficiencies and loss of fertility in a dose dependent manner. Drosophila sensitivity to cisplatin in both cell types is affected by genetic background. We show that mutation or RNAi-based knockdown of genes known to be associated with CIPN incidence in humans affect sensitivity of flies to CIPN. Drosophila is a promising model with which to study the effect of genetics on sensitivity to CIPN.
Collapse
Affiliation(s)
| | - Jewel L Podratz
- a Department of Neurology , Mayo Clinic , Rochester , MN , USA
| | - Kevin Treb
- b Department of Medical Physics , University of Wisconsin , Madison , WI , USA
| | | |
Collapse
|
29
|
Cerles O, Gonçalves TC, Chouzenoux S, Benoit E, Schmitt A, Bennett Saidu NE, Kavian N, Chéreau C, Gobeaux C, Weill B, Coriat R, Nicco C, Batteux F. Preventive action of benztropine on platinum-induced peripheral neuropathies and tumor growth. Acta Neuropathol Commun 2019; 7:9. [PMID: 30657060 PMCID: PMC6337872 DOI: 10.1186/s40478-019-0657-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
The endogenous cholinergic system plays a key role in neuronal cells, by suppressing neurite outgrowth and myelination and, in some cancer cells, favoring tumor growth. Platinum compounds are widely used as part of first line conventional cancer chemotherapy; their efficacy is however limited by peripheral neuropathy as a major side-effect. In a multiple sclerosis mouse model, benztropine, that also acts as an anti-histamine and a dopamine re-uptake inhibitor, induced the differentiation of oligodendrocytes through M1 and M3 muscarinic receptors and enhanced re-myelination. We have evaluated whether benztropine can increase anti-tumoral efficacy of oxaliplatin, while preventing its neurotoxicity.We showed that benztropine improves acute and chronic clinical symptoms of oxaliplatin-induced peripheral neuropathies in mice. Sensory alterations detected by electrophysiology in oxaliplatin-treated mice were consistent with a decreased nerve conduction velocity and membrane hyperexcitability due to alterations in the density and/or functioning of both sodium and potassium channels, confirmed by action potential analysis from ex-vivo cultures of mouse dorsal root ganglion sensory neurons using whole-cell patch-clamp. These alterations were all prevented by benztropine. In oxaliplatin-treated mice, MBP expression, confocal and electronic microscopy of the sciatic nerves revealed a demyelination and confirmed the alteration of the myelinated axons morphology when compared to animals injected with oxaliplatin plus benztropine. Benztropine also prevented the decrease in neuronal density in the paws of mice injected with oxaliplatin. The neuroprotection conferred by benztropine against chemotherapeutic drugs was associated with a lower expression of inflammatory cytokines and extended to diabetic-induced peripheral neuropathy in mice.Mice receiving benztropine alone presented a lower tumor growth when compared to untreated animals and synergized the anti-tumoral effect of oxaliplatin, a phenomenon explained at least in part by benztropine-induced ROS imbalance in tumor cells.This report shows that blocking muscarinic receptors with benztropine prevents peripheral neuropathies and increases the therapeutic index of oxaliplatin. These results can be rapidly transposable to patients as benztropine is currently indicated in Parkinson's disease in the United States.
Collapse
|
30
|
Chien TJ, Liu CY, Fang CJ, Kuo CY. The Efficacy of Acupuncture in Chemotherapy-Induced Peripheral Neuropathy: Systematic Review and Meta-Analysis. Integr Cancer Ther 2019; 18:1534735419886662. [PMID: 31833790 PMCID: PMC7242803 DOI: 10.1177/1534735419886662] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/22/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) has no cure, but acupuncture may provide relief through its known neuromodulation or neuroendocrine adjustment. This review aimed to assess the efficacy of acupuncture in treating CIPN. Method: A literature review following the PRISMA Statement was performed, searching 7 databases from inception through August 2019. All studies were clinical trials of the effect of acupuncture on CIPN. The methodological quality of these trials was assessed using Cochrane criteria; meta-analysis software (RevMan 5.2) was used to analyze the data. Data Sources: The databases searched were the following: MEDLINE (Ovid), Embase, Cochrane CENTRAL, Scopus, World Health Organization International Clinical Trials Registry Platform, CNKI (China National Knowledge Infrastructure), and Wanfang Med Online. Results: We examined 386 cancer patients from 6 randomized control trials, which had high quality, based on the modified Jadad scale. Meta-analysis showed that acupuncture led to significant improvements in pain scores (-1.21, 95% confidence interval [CI] = -1.61 to -0.82, P < .00001) and nervous system symptoms based on Functional Assessment of Cancer Therapy/Neurotoxicity questionnaire scores (-2.02, 95% CI = -2.21 to -1.84, P < .00001). No significant change was noted in nerve conduction velocity (1.58, 95% CI = -2.67 to 5.83, P = .47). Conclusion: Acupuncture can effectively relieve CIPN pain and functional limitation. The limited number of subjects warrants a larger scale study.
Collapse
Affiliation(s)
- Tsai-Ju Chien
- Taipei City Hospital, Taipei
- National Yang-Ming University,
Taipei
| | - Chia-Yu Liu
- National Yang-Ming University,
Taipei
- Chang Gung University, Taoyuan
- China Medical University, Taichung
- Flourish Traditional Chinese Medicine
Clinic, Taipei
| | - Ching-Ju Fang
- National Cheng Kung University,
Tainan
- National Cheng Kung University Hospital,
Tainan
| | | |
Collapse
|
31
|
Hsu SY, Huang WS, Lee SH, Chu TP, Lin YC, Lu CH, Beaton RD, Jane SW. Incidence, severity, longitudinal trends and predictors of acute and chronic oxaliplatin-induced peripheral neuropathy in Taiwanese patients with colorectal cancer. Eur J Cancer Care (Engl) 2018; 28:e12976. [PMID: 30536809 DOI: 10.1111/ecc.12976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/01/2018] [Accepted: 10/31/2018] [Indexed: 01/27/2023]
Abstract
The purpose of this study was to evaluate the longitudinal incidence, severity, pattern of changes or predictors of oxaliplatin-induced peripheral neuropathy (OXAIPN) in Taiwanese patients with colorectal cancer. A longitudinal repeated measures study design was employed, and 77 participants were recruited from the colorectal and oncology departments of two teaching medical centres in Taiwan. Physical examinations were performed, and self-reports regarding adverse impacts of OXAIPN and quality of life were obtained at five time points throughout 12 cycles of chemotherapy (C/T). The incidence of OXAIPN increased with C/T cycles (31.1%-81.9%), and the upper limb numbness and cold sensitivity were most significant acute OXAIPN symptoms (29.9%-73.6%). Findings also documented significant increases in overall severity, symptom distress, interference and physical results associated with OXAIPN over the course of C/T. Predictors of OXAIPN severity varied by treatment cycle, including younger patient, higher cumulative dose of oxaliplatin, greater body surface area, receipt of chemotherapy in winter and the occurrence of OXAIPN during prior C/T cycles. The results from this study might help healthcare providers to recognise the symptom characteristics, degree of influences, trends and high-risk group of OXAIPN, facilitating early evaluation and potential interventions to mitigate or prevent negative effects of OXAIPN on patients.
Collapse
Affiliation(s)
- Shu-Yi Hsu
- Department of Internal Medicine, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Wen-Shih Huang
- Division of Colon/Rectal, Department of Surgical Medicine, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Shu-Hui Lee
- Department of Nursing, Chang Gung Memorial Hospital, Lin-Ko, Taiwan
| | - Tsui-Ping Chu
- Department of Nursing, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Yung-Chang Lin
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Lin-Ko, Taiwan
| | - Chang-Hsien Lu
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Randal D Beaton
- Psychosocial & Community Health and Health Services, Schools of Nursing and Public Health, University of Washington, Seattle, Washington
| | - Sui-Whi Jane
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Lin-Ko, Taiwan.,Department of Nursing and Graduate Institute of Nursing, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
32
|
Peng H, Huang Q, Yue H, Li Y, Wu M, Liu W, Zhang G, Fu S, Zhang J. The antitumor effect of cisplatin-loaded thermosensitive chitosan hydrogel combined with radiotherapy on nasopharyngeal carcinoma. Int J Pharm 2018; 556:97-105. [PMID: 30529661 DOI: 10.1016/j.ijpharm.2018.11.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022]
Abstract
Cisplatin-based chemo-radiotherapy (RT) is the most effective treatment in patients with loco-regionally advanced nasopharyngeal carcinoma (NPC). However, traditional chemotherapy drugs have low bioavailability and targeting ability, which reduce their antitumor effects. Therefore, we developed a chitosan/ cis-dichlorodiamineplatinum (CS/DDP) hydrogel-based drug delivery system for the in situ treatment of NPC in combination with RT, and investigated their synergistic antitumor efficacy and underlying mechanism of action. CS/DDP hydrogel remarkably prolonged the survival time (81 days) when combined with RT compared to the control group (P < 0.01). The main mechanism was likely the increase in cancer cell apoptosis (76.23 ± 1.13%, p < 0.01). Furthermore, the CS/DDP hydrogel in combination with RT also increased X-ray-induced DSBs and γ-H2AX foci, induced G2/M phase arrest, inhibited cell proliferation by blocking Ki-67, and decreased CD31+ micro-vessel density (MVD). These results underscore the therapeutic potential of the combination of CS/DDP hydrogel and RT for localized NPC.
Collapse
Affiliation(s)
- Hongju Peng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qi Huang
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang 641000, China
| | - Hongcheng Yue
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuan Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Min Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Wei Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Guangpeng Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Jianwen Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
33
|
Lv F, Ma Y, Zhang Y, Li Z. Relationship between GSTP1 rs1695 gene polymorphism and myelosuppression induced by platinum-based drugs: a meta-analysis. Int J Biol Markers 2018; 33:364-371. [PMID: 30238837 DOI: 10.1177/1724600818792897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although many previous studies have reported the relationship between GSTP1 rs1695 gene polymorphism and myelosuppression induced by platinum-based drugs, the conclusions are not consistent. The aim of the study is to evaluate the association between granulocytopenia and thrombocytopenia induced by platinum-based drugs and GSTP1 rs1695 gene polymorphism by meta-analysis. A literature search was performed using the Pubmed, Embase, CNKI, and Wanfang databases, and the odds ratio (OR) and its 95% confidence interval (CI) were used to evaluate the correlation. Finally,12 case-control studies comprising 1657 patients were included in our study. GSTP1 rs1695 gene polymorphism showed a significant correlation with granulocytopenia induced by platinum-based drugs (dominant genetic model: OR=1.60, 95% CI=1.19. 2.15, P=0.002; recessive genetic model: OR=3.72, 95% CI=1.73, 8.00, P=0.001; allelic genetic model: OR=1.76, 95% CI=1.34, 2.33, P=0.001). This gene polymorphism is not associated with thrombocytopenia (OR=0.87, 95% CI=0.47, 1.60, P=0.649). False-positive report probability showed that the association between polymorphism and adverse reactions is true. Sensitivity analysis showed that the results were stable. However, there was a certain publication bias in the included studies. In conclusion, the GSTP1 rs1695 gene polymorphism is associated with granulocytopenia induced by platinum-based drugs.
Collapse
Affiliation(s)
- Fei Lv
- Department of Oncology, the First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yanju Ma
- Department of Oncology, Liaoning Province Tumor Hospital, Shenyang, People's Republic of China
| | - Ye Zhang
- Department of Oncology, the First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhi Li
- First Department of Cancer Research Institute, the First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
34
|
Ly KNI, Arrillaga-Romany IC. Neurologic Complications of Systemic Anticancer Therapy. Neurol Clin 2018; 36:627-651. [DOI: 10.1016/j.ncl.2018.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Diaz PL, Furfari A, Wan BA, Lam H, Charames G, Drost L, Fefekos A, Ohearn S, Blake A, Asthana R, Chow E, DeAngelis C. Predictive biomarkers of chemotherapy-induced peripheral neuropathy: a review. Biomark Med 2018; 12:907-916. [DOI: 10.2217/bmm-2017-0427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxane treatment during chemotherapy. Identifying predictive biomarkers of CIPN would allow physicians to alter treatment given to patients according to a personal risk of developing this condition. The current literature on CIPN biomarkers is reviewed, identifying biomarkers which have been found to be significantly related to CIPN. Three genetic biomarkers are identified (ARHGEF10 rs9657362, CYP2C8 rs11572080/rs10509681 and FGD4 rs10771973) which have been found to act as predictive CIPN biomarkers in multiple studies. Possible mechanisms underlying the relationship between these single nucleotide polymorphisms and CIPN development are explored. The biomarkers identified in this study should be investigated further to generate predictive biomarkers that may be used in a clinical setting.
Collapse
Affiliation(s)
- Patrick L Diaz
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Anthony Furfari
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Bo Angela Wan
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Henry Lam
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - George Charames
- Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Mount Sinai Services Inc., Toronto, Ontario, M5G 1X5, Canada
- Lunenfeld–Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Leah Drost
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | | | | | - Alexia Blake
- MedReleaf Inc., Markham, Ontario, L3R 6G4, Canada
| | - Rashi Asthana
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Edward Chow
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Carlo DeAngelis
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
- Department of Pharmacy, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
36
|
Minasian LM, Frazier AL, Sung L, O’Mara A, Kelaghan J, Chang KW, Krailo M, Pollock BH, Reaman G, Freyer DR. Prevention of cisplatin-induced hearing loss in children: Informing the design of future clinical trials. Cancer Med 2018; 7:2951-2959. [PMID: 29846043 PMCID: PMC6051159 DOI: 10.1002/cam4.1563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 11/23/2022] Open
Abstract
Cisplatin is an essential chemotherapeutic agent in the treatment of many pediatric cancers. Unfortunately, cisplatin-induced hearing loss (CIHL) is a common, clinically significant side effect with life-long ramifications, particularly for young children. ACCL05C1 and ACCL0431 are two recently completed Children's Oncology Group studies focused on the measurement and prevention of CIHL. The purpose of this paper was to gain insights from ACCL05C1 and ACCL0431, the first published cooperative group studies dedicated solely to CIHL, to inform the design of future pediatric otoprotection trials. Use of otoprotective agents is an attractive strategy for preventing CIHL, but their successful development must overcome a unique constellation of methodological challenges related to translating preclinical research into clinical trials that are feasible, evaluate practical interventions, and limit risk. Issues particularly important for children include use of appropriate methods for hearing assessment and CIHL severity grading, and use of trial designs that are well-informed by preclinical models and suitable for relatively small sample sizes. Increasing interest has made available new funding opportunities for expanding this urgently needed research.
Collapse
Affiliation(s)
| | - A. Lindsay Frazier
- Dana‐Farber Cancer Institute/Boston Children’s Hospital Cancer CenterBostonMAUSA
| | | | | | | | - Kay W. Chang
- Department of OtolaryngologyStanford UniversityPalo AltoCAUSA
| | - Mark Krailo
- Department of Preventive MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Brad H. Pollock
- Department of Public Health SciencesUniversity of CaliforniaDavisCAUSA
| | | | - David R. Freyer
- Division of Hematology, Oncology, and Blood and Bone Marrow TransplantationChildren’s Hospital Los AngelesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
37
|
Cavaletti G, Marmiroli P. Pharmacotherapy options for managing chemotherapy-induced peripheral neurotoxicity. Expert Opin Pharmacother 2017; 19:113-121. [DOI: 10.1080/14656566.2017.1415326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guido Cavaletti
- School of Medicine and Surgery and Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Paola Marmiroli
- School of Medicine and Surgery and Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
38
|
Palugulla S, Thakkar DN, Kayal S, Narayan SK, Dkhar SA. Association of Voltage-Gated Sodium Channel Genetic Polymorphisms with Oxaliplatin-Induced Chronic Peripheral Neuropathy in South Indian Cancer Patients. Asian Pac J Cancer Prev 2017; 18:3157-3165. [PMID: 29172294 PMCID: PMC5773806 DOI: 10.22034/apjcp.2017.18.11.3157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Oxaliplatin is a platinum drug active against digestive tract cancers. Among its side effects, peripheral neuropathy
is one of the dose-limiting toxicities. This affects around 50 to 70% of patients but the pathophysiology of development
of oxaliplatin-induced peripheral neuropathy (OXAIPN) remains unclear. Sodium channels (SCNAs) play major role in
neuronal electrical signaling processes and mutations in SCNAs lead to various neuronal diseases involving the central
and peripheral nervous systems. In this study, we evaluated whether SCNA genetic variants might be associated with
risk of chronic OXAIPN in patients with digestive tract cancers treated with oxaliplatin. Methodology: Blood samples
from 228 digestive tract cancer patients who had received oxaliplatin in adjuvant and neoadjuvant or metastatic settings
were obtained and genomic DNA was extracted by phenol-chloroform extraction. Genotyping was performed with
the real-time polymerase chain reaction (RT-PCR) using validated real-time TaqMan single nucleotide polymorphism
(SNP) genotyping assays. Neuropathy was evaluated and graded according to National Cancer Institute Common
Toxicity Criteria (NCI-CTC) version 4.03. Results: We found that the rs6746030 polymorphic variant of SCN9A was
significantly associated with a higher incidence of chronic OXAIPN (GA+AA vs GG: OR=1.8, 95% CI=1.04-3.4, P=0.04;
dominant model) while the rs6754031 variant was linked with a lower incidence (OR=0.45, 95% CI=0.22-0.77, P=0.005;
dominant model). The SCN 10A polymorphic variant was associated with severity of chronic OXAIPN (P=0.006,
OR=2.0, 95% CI=1.2 - 3.3). Conclusion: The results of the present prospective study provide evidence in support of
a causal relationship between chronic OXAIPN and voltage gated sodium channel polymorphisms. However, further
studies from independent groups are required to validate these results.
Collapse
Affiliation(s)
- Sreenivasulu Palugulla
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India.
| | | | | | | | | |
Collapse
|
39
|
Peiró AM, Planelles B, Juhasz G, Bagdy G, Libert F, Eschalier A, Busserolles J, Sperlagh B, Llerena A. Pharmacogenomics in pain treatment. Drug Metab Pers Ther 2017; 31:131-42. [PMID: 27662648 DOI: 10.1515/dmpt-2016-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/08/2016] [Indexed: 11/15/2022]
Abstract
The experience of chronic pain is one of the commonest reasons for seeking medical attention, being a major issue in clinical practice. While pain is a universal experience, only a small proportion of people who felt pain develop pain syndromes. In addition, painkillers are associated with wide inter-individual variability in the analgesic response. This may be partly explained by the presence of single nucleotide polymorphisms in genes encoding molecular entities involved in pharmacodynamics and pharmacokinetics. However, uptake of this information has been slow due in large part to the lack of robust evidences demonstrating clinical utility. Furthermore, novel therapies, including targeting of epigenetic changes and gene therapy-based approaches are further broadening future options for the treatment of chronic pain. The aim of this article is to review the evidences behind pharmacogenetics (PGx) to individualize therapy (boosting the efficacy and minimizing potential toxicity) and genes implicated in pain medicine, in two parts: (i) genetic variability with pain sensitivity and analgesic response; and (ii) pharmacological concepts applied on PGx.
Collapse
|
40
|
Xu S, Tang YY, Yu YX, Yun Q, Yang JP, Zhang H, Peng Q, Sun X, Yang LL, Fu S, Wu JB. Novel composite drug delivery system as a novel radio sensitizer for the local treatment of cervical carcinoma. Drug Deliv 2017; 24:1139-1147. [PMID: 28797171 PMCID: PMC8241059 DOI: 10.1080/10717544.2017.1362676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 01/07/2023] Open
Abstract
In this study, we investigated in vivo radiosensitizing effects of a gel-based dual drug delivery system (DDS) (PECE/DDP + mPEG-PCL/PTX, or PDMP) in a cervical cancer model, and determined its possible mechanisms of action. A xenograft cervical cancer model was used to investigate the radio sensitization effect of PDMP. Mice underwent paclitaxel (PTX) + cisplatin (DDP), PECE, or PDMP treatment followed by single radiation doses ranging from 0 Gy to 20 Gy. Radio sensitization was analyzed by tumor regrowth delay (TGD). The sensitization enhancement ratio (SER) was calculated by the doses needed to yield TGD when using radiation treatment alone and when using radiation plus drug treatment. The impact of irradiation and drugs on TGD was determined, and an optimum radiation dose was chosen for further evaluation of radio sensitizing effects. The data showed that PDMP yielded the highest radio sensitization (SER was 1.3) and a radiation dose of 12 Gy was chosen for further investigation. PDMP + radiotherapy treatment was most effective in inhibiting tumor growth, prolonging survival time, decreasing expression of CD31, CD133, and aldehyde dehydrogenase 1 (ALDH1), inducing G2/M phase arrest, apoptosis, and expression of Ataxia telangiectasia mutated (ATM) and histone H2AX phosphorylation (γ-H2AX). Thus, our data indicated that PDMP is a promising anti-tumor and radio sensitization reagent for the treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Shan Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Oncology, MianYang Central Hospital, Mianyang, Sichuan Province, China
| | - Yu Ying Tang
- MianYang Central Hospital, Mianyang, Sichuan Province, China
| | - Yan Xin Yu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qin Yun
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Pin Yang
- Department of Oncology, The First People's Hospital of Guangyuan, Guangyuan, Sichuan Province, China
| | - Heng Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qiuxia Peng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaoyang Sun
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ling Lin Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Bo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
41
|
Kanat O, Ertas H, Caner B. Platinum-induced neurotoxicity: A review of possible mechanisms. World J Clin Oncol 2017; 8:329-335. [PMID: 28848699 PMCID: PMC5554876 DOI: 10.5306/wjco.v8.i4.329] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Patients treated with platinum-based chemotherapy frequently experience neurotoxic symptoms, which may lead to premature discontinuation of therapy. Despite discontinuation of platinum drugs, these symptoms can persist over a long period of time. Cisplatin and oxaliplatin, among all platinum drugs, have significant neurotoxic potential. A distal dose-dependent symmetrical sensory neuropathy is the most common presentation of platinum neurotoxicity. DNA damage-induced apoptosis of dorsal root ganglion (DRG) neurons seems to be the principal cause of neurological symptoms. However, DRG injury alone cannot explain some unique symptoms such as cold-aggravated burning pain affecting distal extremities that is observed with oxaliplatin administration. In this article, we briefly reviewed potential mechanisms for the development of platinum drugs-associated neurological manifestations.
Collapse
|
42
|
Marmiroli P, Scuteri A, Cornblath DR, Cavaletti G. Pain in chemotherapy-induced peripheral neurotoxicity. J Peripher Nerv Syst 2017; 22:156-161. [PMID: 28600844 DOI: 10.1111/jns.12226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022]
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a potentially dose-limiting side effect of the treatment of several cancers. CIPN is predominantly or exclusively sensory, and it is frequently associated with unpleasant symptoms, overall referred to as "pain." However, given the markedly different clinical presentation and course of CIPN depending on the antineoplastic drug used, the broad term "pain" in the specific context of CIPN needs to be reconsidered and refined. In fact, a precise identification of the features of CIPN has relevant implication in the design of rational-based clinical trials and in the selection of possible active drugs.
Collapse
Affiliation(s)
- Paola Marmiroli
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, MB, Italy
| | - Arianna Scuteri
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, MB, Italy
| | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, MB, Italy
| |
Collapse
|
43
|
Argyriou AA, Bruna J, Genazzani AA, Cavaletti G. Chemotherapy-induced peripheral neurotoxicity: management informed by pharmacogenetics. Nat Rev Neurol 2017; 13:492-504. [PMID: 28664909 DOI: 10.1038/nrneurol.2017.88] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The increasing availability of sophisticated methods to characterize human genetic variation has enabled pharmacogenetic data to be used not only to predict responses to treatment (in the context of so-called personalized medicine), but also to identify patients at high or low risk of specific treatment-related adverse effects. Over the past two decades, extensive attempts have been made to understand the genetic basis of chemotherapy-induced peripheral neurotoxicity (CIPN), one of the most severe non-haematological adverse effects of cancer treatment. Despite substantial efforts, however, the identification of a genetic profile that can detect patients at high risk of CIPN still represents an unmet need, as the information obtained from pharmacogenetic studies published so far is inconsistent at best. Among the reasons for these inconsistencies, methodological flaws and the poor reliability of existing tools for assessing CIPN features and severity are particularly relevant. This Review provides a critical update of the pharmacogenetics of CIPN, focusing on the studies published since 2011. Strategies for improving the reliability of future pharmacogenetic studies of CIPN are also discussed.
Collapse
Affiliation(s)
- Andreas A Argyriou
- Department of Neurology, Saint Andrew's State General Hospital of Patras, Tsertidou 1 Street, 26335, Patras, Greece
| | - Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-ICO l'Hospitalet, Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran i Reynals, 3a planta, Gran Via de l'Hospitalet 199, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red (CIBERNED), 09193 Avinguda de Can Domènech, Bellaterra, Spain
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery and Milan Centre for Neuroscience, School of Medicine - University of Milano-Bicocca, via Cadore 48, 20900, Monza (MB), Italy
| |
Collapse
|
44
|
HLA-G 3'UTR Polymorphisms Predict Drug-Induced G3-4 Toxicity Related to Folinic Acid/5-Fluorouracil/Oxaliplatin (FOLFOX4) Chemotherapy in Non-Metastatic Colorectal Cancer. Int J Mol Sci 2017; 18:ijms18071366. [PMID: 28653974 PMCID: PMC5535859 DOI: 10.3390/ijms18071366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/07/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
Polymorphisms in drug-metabolizing enzymes might not completely explain inter-individual differences in toxicity profiles of patients with colorectal cancer (CRC) that receive folinic acid/5-fluorouracil/oxaliplatin (FOLFOX4). Recent data indicate that the immune system could contribute to FOLFOX4 outcomes. In light of the immune inhibitory nature of human leukocyte antigen-G (HLA-G), a non-classical major histocompatibility complex (MHC) class I molecule, we aimed to identify novel genomic markers of grades 3 and 4 (G3-4) toxicity related to FOLFOX4 therapy in patients with CRC. We retrospectively analyzed data for 144 patients with stages II-III CRC to identify HLA-G 3′ untranslated region (3′UTR) polymorphisms and related haplotypes and evaluate their impact on the risk of developing G3-4 toxicities (i.e., neutropenia, hematological/non-hematological toxicity, neurotoxicity) with logistic regression. The rs1610696-G/G polymorphism was associated with increased risk of G3-4 neutropenia (OR = 3.76, p = 0.015) and neurotoxicity (OR = 8.78, p = 0.016); rs371194629-Ins/Ins was associated with increased risk of neurotoxicity (OR = 5.49, p = 0.027). HLA-G 3′UTR-2, which contains rs1610696-G/G and rs371194629-Ins/Ins polymorphisms, was associated with increased risk of G3-4 neutropenia (OR = 3.92, p = 0.017) and neurotoxicity (OR = 11.29, p = 0.009). A bootstrap analysis confirmed the predictive value of rs1610696 and rs371194629, but the UTR-2 haplotype was validated only for neurotoxicity. This exploratory study identified new HLA-G 3′UTR polymorphisms/haplotypes as potential predictive markers of G3-4 toxicities in CRC.
Collapse
|
45
|
Starobova H, Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci 2017; 10:174. [PMID: 28620280 PMCID: PMC5450696 DOI: 10.3389/fnmol.2017.00174] [Citation(s) in RCA: 380] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle-leading to cell death and tumor degradation-and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia.,School of Pharmacy, University of QueenslandSt Lucia, QLD, Australia
| |
Collapse
|
46
|
Guo L, Hamre J, Eldridge S, Behrsing HP, Cutuli FM, Mussio J, Davis M. Editor's Highlight: Multiparametric Image Analysis of Rat Dorsal Root Ganglion Cultures to Evaluate Peripheral Neuropathy-Inducing Chemotherapeutics. Toxicol Sci 2017; 156:275-288. [PMID: 28115644 PMCID: PMC5837782 DOI: 10.1093/toxsci/kfw254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major, dose-limiting adverse effect experienced by cancer patients. Advancements in mechanism-based risk mitigation and effective treatments for CIPN can be aided by suitable in vitro assays. To this end, we developed a multiparametric morphology-centered rat dorsal root ganglion (DRG) assay. Morphologic alterations in subcellular structures of neurons and non-neurons were analyzed with an automated microscopy system. Stains for NeuN (a neuron-specific nuclear protein) and Tuj-1 (β-III tubulin) were used to identify neuronal cell nuclei and neuronal cell bodies/neurites, respectively. Vimentin staining (a component of Schwann cell intermediate filaments) was used to label non-neuronal supporting cells. Nuclei that stained with DAPI, but lacked NeuN represented non-neuronal cells. Images were analyzed following 24 h of continuous exposure to CIPN-inducing agents and 72 h after drug removal to provide a dynamic measure of recovery from initial drug effects. Treatment with bortezomib, cisplatin, eribulin, paclitaxel or vincristine induced a dose-dependent loss of neurite/process areas, mimicking the 'dying back' degeneration of axons, a histopathological hallmark of clinical CIPN in vivo. The IC50 for neurite loss was within 3-fold of the maximal clinical exposure (Cmax) for all five CIPN-inducing drugs, but was >4- or ≥ 28-fold of the Cmax for 2 non-CIPN-inducing agents. Compound-specific effects, eg, neurite fragmentation by cisplatin or bortezomib and enlarged neuronal cell bodies by paclitaxel, were also observed. Collectively, these results support the use of a quantitative, morphologic evaluation and a DRG cell culture model to inform risk and examine mechanisms of CIPN.
Collapse
Affiliation(s)
- Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - John Hamre
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892
| | - Holger P. Behrsing
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Facundo M. Cutuli
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Jodie Mussio
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Myrtle Davis
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
47
|
Paice JA, Mulvey M, Bennett M, Dougherty PM, Farrar JT, Mantyh PW, Miaskowski C, Schmidt B, Smith TJ. AAPT Diagnostic Criteria for Chronic Cancer Pain Conditions. THE JOURNAL OF PAIN 2017; 18:233-246. [PMID: 27884691 PMCID: PMC5439220 DOI: 10.1016/j.jpain.2016.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/11/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Chronic cancer pain is a serious complication of malignancy or its treatment. Currently, no comprehensive, universally accepted cancer pain classification system exists. Clarity in classification of common cancer pain syndromes would improve clinical assessment and management. Moreover, an evidence-based taxonomy would enhance cancer pain research efforts by providing consistent diagnostic criteria, ensuring comparability across clinical trials. As part of a collaborative effort between the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) and the American Pain Society (APS), the ACTTION-APS Pain Taxonomy initiative worked to develop the characteristics of an optimal diagnostic system. After the establishment of these characteristics, a working group consisting of clinicians and clinical and basic scientists with expertise in cancer and cancer-related pain was convened to generate core diagnostic criteria for an illustrative sample of 3 chronic pain syndromes associated with cancer (ie, bone pain and pancreatic cancer pain as models of pain related to a tumor) or its treatment (ie, chemotherapy-induced peripheral neuropathy). A systematic review and synthesis was conducted to provide evidence for the dimensions that comprise this cancer pain taxonomy. Future efforts will subject these diagnostic categories and criteria to systematic empirical evaluation of their feasibility, reliability, and validity and extension to other cancer-related pain syndromes. PERSPECTIVE The ACTTION-APS chronic cancer pain taxonomy provides an evidence-based classification for 3 prevalent syndromes, namely malignant bone pain, pancreatic cancer pain, and chemotherapy-induced peripheral neuropathy. This taxonomy provides consistent diagnostic criteria, common features, comorbidities, consequences, and putative mechanisms for these potentially serious cancer pain conditions that can be extended and applied with other cancer-related pain syndromes.
Collapse
Affiliation(s)
- Judith A Paice
- Division of Hematology-Oncology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois.
| | - Matt Mulvey
- Academic Unit of Palliative Care, Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Michael Bennett
- Academic Unit of Palliative Care, Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Patrick M Dougherty
- The Division of Anesthesia and Critical Care Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - John T Farrar
- Department of Epidemiology, Neurology, and Anesthesia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Christine Miaskowski
- Department of Physiological Nursing, University of California, San Francisco, California
| | - Brian Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York
| | - Thomas J Smith
- Department of Oncology, The Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
48
|
Stagg NJ, Shen BQ, Brunstein F, Li C, Kamath AV, Zhong F, Schutten M, Fine BM. Peripheral neuropathy with microtubule inhibitor containing antibody drug conjugates: Challenges and perspectives in translatability from nonclinical toxicology studies to the clinic. Regul Toxicol Pharmacol 2016; 82:1-13. [PMID: 27773754 DOI: 10.1016/j.yrtph.2016.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022]
Abstract
Antibody drug conjugates (ADC) consist of potent cytotoxic drugs conjugated to antibodies via chemical linkers, which enables specific targeting of tumor cells while reducing systemic exposure to the cytotoxic drug and improving the therapeutic window. The valine citrulline monomethyl auristatin E (vcMMAE, conventional linker-drug) ADC platform has shown promising clinical activity in several cancers, but peripheral neuropathy (PN) is a frequent adverse event leading to treatment discontinuation and dose reduction. This was not predicted based on nonclinical toxicology studies in monkeys or rats treated with vcMMAE ADCs. We evaluated four hypotheses for the lack of translatability of PN with vcMMAE ADCs: 1) species differences in exposure; 2) insensitivity of animal models; 3) species differences in target biology and other vcMMAE ADC properties in peripheral nerves and 4) increased susceptibility of patient population. The result of this hypothesis-based approach identified opportunities to improve the predictivity of PN in our animal models by increasing duration of exposure and adding an expanded neurohistopathology assessment of peripheral nerves. The utility of a predictive animal model would be to provide possible mitigation strategies in the clinic with vcMMAE ADCs and help to screen the next generation microtubule inhibitor (MTI) ADCs for reduced PN.
Collapse
Affiliation(s)
- Nicola J Stagg
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Ben-Quan Shen
- Department of Preclinical & Translational Pharmacokinetics & Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Flavia Brunstein
- Drug Safety, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Chunze Li
- Clinical Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amrita V Kamath
- Department of Preclinical & Translational Pharmacokinetics & Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Fiona Zhong
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Melissa Schutten
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bernard M Fine
- Clinical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
49
|
Cavero I, Holzgrefe H. 15 th Annual Meeting of the Safety Pharmacology Society: Focus on traditional sensory systems. J Pharmacol Toxicol Methods 2016; 83:55-71. [PMID: 27659846 DOI: 10.1016/j.vascn.2016.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION This report summarizes and comments key talks on the five traditional senses (ear, vestibular system, vision, taste, olfaction, and touch) which were delivered during the 2015 Annual Meeting of the Safety Pharmacology (SP) Society. AREAS COVERED The functional observational battery (FOB) can detect major candidate drug liabilities only on ear, touch and vision. Anatomy, physiology, pharmacology, and pathology notions on each sensory system introduce speaker talks. Techniques for evaluating drug effects on hearing functions are reviewed. Nonclinical approaches to assess vestibular toxicity leading to balance deficits are presented. Retinal explants studied with multielectrode arrays allow the identification of drug liability sites on the retina. Routinely performed Safety Pharmacology assays are not powered to address candidate drug-induced disturbances on taste and smell. This weakness needs correction since unintended pharmacological impairment of these sensorial functions may have serious health consequences. Neuropathy produced by chemotherapeutic agents may cause multiple sensorial perception distortions. CONCLUSIONS Safety Pharmacology studies should ensure the safety of any candidate drug on the five sensorial systems.
Collapse
|
50
|
Lopes-Júnior LC, Olson K, de Omena Bomfim E, Pereira-da-Silva G, Nascimento LC, de Lima RAG. Translational research and symptom management in oncology nursing. ACTA ACUST UNITED AC 2016; 25:S12, S14, S16 passim. [PMID: 27231745 DOI: 10.12968/bjon.2016.25.10.s12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In recent years, translational research (TR) has become a new approach for bridging basic research and clinical practice. This article examines studies in which the authors used TR to learn more about the underlying causes of selected symptoms, and to discuss these results in the context of cancer nursing and symptom management. A literature review was undertaken, plus critical analysis of the authors. TR conducted by cancer nursing scholars has been relatively limited in the past, but is becoming more common as nurses complete additional academic work in the basic sciences and develop research teams with colleagues of those areas of knowledge. The goal in these studies is to show how a set of variables explains differential interventional effects. The availability of TR provides new evidence for the management of symptoms experienced by individuals with cancer, which could lead to improvements in the care of cancer patients across the world.
Collapse
Affiliation(s)
- Luis Carlos Lopes-Júnior
- Oncology Nurse Expert and PhD candidate, Ribeirão Preto College of Nursing - PAHO/WHO Collaborating Centre for Nursing Research Development, University of São Paulo, Brazil
| | - Karin Olson
- Professor, Faculty of Nursing, University of Alberta, Canada
| | | | - Gabriela Pereira-da-Silva
- Associate Professor, Ribeirão Preto College of Nursing and Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Lucila Castanheira Nascimento
- Associate Professor, of the Department of Maternal-Infant and Public Health Nursing, Ribeirão Preto College of Nursing, Brazil - PAHO/WHO Collaborating Centre for Nursing Research Development, University of São Paulo, Brazil
| | - Regina Aparecida Garcia de Lima
- Full Professor, Department of Maternal-Infant and Public Health Nursing, Ribeirão Preto College of Nursing - PAHO/WHO Collaborating Centre for Nursing Research Development, University of São Paulo, Brazil
| |
Collapse
|