1
|
Kamran SC, Goldberg SI, Kuhlthau KA, Lawell MP, Weyman EA, Gallotto SL, Hess CB, Huang MS, Friedmann AM, Abrams AN, MacDonald SM, Pulsifer MB, Tarbell NJ, Ebb DH, Yock TI. Quality of life in patients with proton-treated pediatric medulloblastoma: Results of a prospective assessment with 5-year follow-up. Cancer 2018; 124:3390-3400. [PMID: 29905942 DOI: 10.1002/cncr.31575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/28/2018] [Accepted: 05/09/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND To the authors' knowledge, health-related quality of life (HRQOL) outcomes are not well described in patients with medulloblastoma. The use of proton radiotherapy (RT) may translate into an improved HRQOL. In the current study, the authors report long-term HRQOL in patients with proton-treated pediatric medulloblastoma. METHODS The current study was a prospective cohort HRQOL study of patients with medulloblastoma who were treated with proton RT and enrolled between August 5, 2002, and October 8, 2015. Both child report and parent-proxy report Pediatric Quality of Life Inventory (PedsQL) surveys were collected at baseline during RT and annually thereafter (score range on surveys of 0-100, with higher scores indicating better HRQOL). Patients were dichotomized by clinical/treatment variables and subgroups were compared. Mixed-model analysis was performed to determine the longitudinal trajectory of PedsQL scores. The Student t test was used to compare long-term HRQOL measures with published means from a healthy child population. RESULTS Survey data were evaluable for 116 patients with a median follow-up of 5 years (range, 1-10.6 years); the median age at the time of diagnosis was 7.6 years (range, 2.1-18.1 years). At baseline, children reported a total core score (TCS) of 65.9, which increased by 1.8 points annually (P<.001); parents reported a TCS of 59.1, which increased by 2.0 points annually. Posterior fossa syndrome adversely affected baseline scores, but these scores significantly improved with time. At the time of last follow-up, children reported a TCS of 76.3, which was 3.3 points lower than that of healthy children (P = .09); parents reported a TCS of 69, which was 11.9 points lower than that of parents of healthy children (P<.001). Increased follow-up time from diagnosis correlated with improved HRQOL scores. CONCLUSIONS HRQOL scores appear to increase over time after treatment in children treated with proton RT for medulloblastoma but remain lower compared with those of parent-proxy reports as well as published means from a healthy normative sample of children. Additional follow-up may translate into continued improvements in HRQOL. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Sophia C Kamran
- Harvard Radiation Oncology Program, Boston, Massachusetts.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Saveli I Goldberg
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Karen A Kuhlthau
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Miranda P Lawell
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth A Weyman
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sara L Gallotto
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Clayton B Hess
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mary S Huang
- Department of Pediatric Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Alison M Friedmann
- Department of Pediatric Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Annah N Abrams
- Department of Child Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Margaret B Pulsifer
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Nancy J Tarbell
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - David H Ebb
- Department of Pediatric Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
2
|
Abstract
Denser ionisation clustering and complex DNA damage in proton Bragg peaks far exceeds that seen with conventional X-rays. This results in more efficient cell sterilisation, quantified by the relative biological effectiveness (RBE). Currently, a 1.1 RBE is used to determine the clinical proton doses by dividing the usual X-rays dose by this amount. This number, derived from short-term experiments, has been criticised as being irrelevant to late normal tissue (NT) effects following radiotherapy and included many control irradiations using lower voltage X-rays (with elevated RBE values) than those used in the clinic. In principle, an increased RBE could be used for each organ at risk, by using extensions of the clinically successful linear quadratic model. Protons undoubtedly reduce or eliminate NT radiation dose in tissues distantly located from a tumour, but the necessity to include NT margins around a tumour can result in a higher volume of NT than tumour being irradiated. Deleterious side-effects can follow if the NT RBE exceeds 1.1, including in tissue very close to these margins and which are only partially spared. Use of a constant 1.1 RBE can ‘overdose’ NT, which may require a greater dose reduction such as 1.2 in the brain; some tumours may be ‘under-dosed’ (since they might require a lesser or no reduction in dose). More sophisticated proton experiments show that RBE values of 1.1–1.5 and higher occur in some situations. There are now mathematical models of varying degrees of complexity that can estimate the RBE from the dose, LET and the low-LET radiosensitivities. True multidisciplinary cooperation is required to implement such new ideas in proton therapy in order to improve safety and effectiveness.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, The University of Oxford, ORCRB - Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|