1
|
Montemagno C, Luciano F, Pagès G. Opposing Roles of Vascular Endothelial Growth Factor C in Metastatic Dissemination and Resistance to Radio/Chemotherapy: Discussion of Mechanisms and Therapeutic Strategies. Methods Mol Biol 2022; 2475:1-23. [PMID: 35451746 DOI: 10.1007/978-1-0716-2217-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many cancers can be cured by combining surgery with healthy margins, radiation therapy and chemotherapies. However, when the pathology becomes metastatic, cancers can be incurable. The best situation involves "chronicization" of the pathology even for several years. However, most of the time, patients die within a few months. To disseminate throughout the body, cancer cells must enter the vascular network and seed in another organ. However, during the initiation of cancer processes, the tumor is avascular. Later, the production of angiogenic factors causes tumor neovascularization and subsequent growth and spread, and the presence of blood and/or lymphatic vessels is associated with high grade tumors. Moreover, during tumor development, cancer cells enter lymphatic vessels and disseminate via the lymphatic network. Hence, blood and lymphatic vessels are considered as main routes of metastatic dissemination and cancer aggressiveness. Therefore, anti-angiogenic drugs entered in the therapeutic arsenal from 2004. Despite undeniable effects however, they are far from curative and only prolong survival by a few months.Recently, the concepts of angio/lymphangiogenesis were revisited by analyzing the role of blood and lymphatic vessels at the initiation steps of tumor development. During this period, cancer cells enter lymphatic vessels and activate immune cells within lymph nodes to initiate an antitumor immune response. Moreover, the presence of blood vessels at the proximity of the initial nodule allows immune cells to reach the tumor and eliminate cancer cells. Therefore, blood and lymphatic networks have a beneficial role during a defined time window. Considering only their detrimental effects is a concern. Hence, administration of anti-angio/lymphangiogenic therapies should be revisited to avoid the destruction of networks involved in antitumor immune response. This review mainly focuses on one of the main drivers of lymphangiogenesis, the VEGFC and its beneficial and pejorative roles according to the grade of aggressive tumors.
Collapse
Affiliation(s)
- Christopher Montemagno
- LIA ROPSE, Laboratoire International Associé, Centre Scientifique de Monaco, Université Côte d'Azur, Nice, France
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Frédéric Luciano
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Gilles Pagès
- LIA ROPSE, Laboratoire International Associé, Centre Scientifique de Monaco, Université Côte d'Azur, Nice, France.
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France.
- Centre Antoine Lacassagne, Nice, France.
| |
Collapse
|
2
|
Cowman S, Fan YN, Pizer B, Sée V. Decrease of Nibrin expression in chronic hypoxia is associated with hypoxia-induced chemoresistance in some brain tumour cells. BMC Cancer 2019; 19:300. [PMID: 30943920 PMCID: PMC6446413 DOI: 10.1186/s12885-019-5476-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/14/2019] [Indexed: 12/03/2022] Open
Abstract
Background Solid tumours are less oxygenated than normal tissues. This is called tumour hypoxia and leads to resistance to radiotherapy and chemotherapy. The molecular mechanisms underlying such resistance have been investigated in a range of tumour types, including the adult brain tumours glioblastoma, yet little is known for paediatric brain tumours. Medulloblastoma (MB) is the most common malignant brain tumour in children. We aimed to elucidate the impact of hypoxia on the sensitivity of MB cells to chemo- and radiotherapy. Methods We used two MB cell line (D283-MED and MEB-Med8A) and a widely used glioblastoma cell line (U87MG) for comparison. We applied a range of molecular and cellular techniques to measure cell survival, cell cycle progression, protein expression and DNA damage combined with a transcriptomic micro-array approach in D283-MED cells, for global gene expression analysis in acute and chronic hypoxic conditions. Results In D283-MED and U87MG, chronic hypoxia (5 days), but not acute hypoxia (24 h) induced resistance to chemotherapy and X-ray irradiation. This acquired resistance upon chronic hypoxia was present but less pronounced in MEB-Med8A cells. Using transcriptomic analysis in D283-MED cells, we found a large transcriptional remodelling upon long term hypoxia, in particular the expression of a number of genes involved in detection and repair of double strand breaks (DSB) was altered. The levels of Nibrin (NBN) and MRE11, members of the MRN complex (MRE11/Rad50/NBN) responsible for DSB recognition, were significantly down-regulated. This was associated with a reduction of Ataxia Telangiectasia Mutated (ATM) activation by etoposide, indicating a profound dampening of the DNA damage signalling in hypoxic conditions. As a consequence, p53 activation by etoposide was reduced, and cell survival enhanced. Whilst U87MG shared the same dampened p53 activity, upon chemotherapeutic drug treatment in chronic hypoxic conditions, these cells used a different mechanism, independent of the DNA damage pathway. Conclusion Together our results demonstrate a new mechanism explaining hypoxia-induced resistance involving the alteration of the response to DSB in D283-MED cells, but also highlight the cell type to cell type diversity and the necessity to take into account the differing tumour genetic make-up when considering re-sensitisation therapeutic protocols. Electronic supplementary material The online version of this article (10.1186/s12885-019-5476-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Cowman
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK
| | - Yuen Ngan Fan
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK.,University of Manchester, Faculty of Biology, Medicine and Health, M13 9PT, Manchester, UK
| | - Barry Pizer
- University of Liverpool and Alder Hey Children's NHS Foundation Trust, member of Liverpool Health Partners., Liverpool, UK
| | - Violaine Sée
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK.
| |
Collapse
|
3
|
Hess CB, Indelicato DJ, Paulino AC, Hartsell WF, Hill-Kayser CE, Perkins SM, Mahajan A, Laack NN, Ermoian RP, Chang AL, Wolden SL, Mangona VS, Kwok Y, Breneman JC, Perentesis JP, Gallotto SL, Weyman EA, Bajaj BVM, Lawell MP, Yeap BY, Yock TI. An Update From the Pediatric Proton Consortium Registry. Front Oncol 2018; 8:165. [PMID: 29881715 PMCID: PMC5976731 DOI: 10.3389/fonc.2018.00165] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Background/objectives The Pediatric Proton Consortium Registry (PPCR) was established to expedite proton outcomes research in the pediatric population requiring radiotherapy. Here, we introduce the PPCR as a resource to the oncology community and provide an overview of the data available for further study and collaboration. Design/methods A multi-institutional registry of integrated clinical, dosimetric, radiographic, and patient-reported data for patients undergoing proton radiation therapy was conceived in May 2010. Massachusetts General Hospital began enrollment in July of 2012. Subsequently, 12 other institutions joined the PPCR and activated patient accrual, with the latest joining in 2017. An optional patient-reported quality of life (QoL) survey is currently implemented at six institutions. Baseline health status, symptoms, medications, neurocognitive status, audiogram findings, and neuroendocrine testing are collected. Treatment details of surgery, chemotherapy, and radiation therapy are documented and radiation plans are archived. Follow-up is collected annually. Data were analyzed 25 September, 2017. Results A total of 1,854 patients have consented and enrolled in the PPCR from October 2012 until September 2017. The cohort is 55% male, 70% Caucasian, and comprised of 79% United States residents. Central nervous system (CNS) tumors comprise 61% of the cohort. The most common CNS histologies are as follows: medulloblastoma (n = 276), ependymoma (n = 214), glioma/astrocytoma (n = 195), craniopharyngioma (n = 153), and germ cell tumors (n = 108). The most common non-CNS tumors diagnoses are as follows: rhabdomyosarcoma (n = 191), Ewing sarcoma (n = 105), Hodgkin lymphoma (n = 66), and neuroblastoma (n = 55). The median follow-up is 1.5 years with a range of 0.14 to 4.6 years. Conclusion A large prospective population of children irradiated with proton therapy has reached a critical milestone to facilitate long-awaited clinical outcomes research in the modern era. This is an important resource for investigators both in the consortium and for those who wish to access the data for academic research pursuits.
Collapse
Affiliation(s)
- Clayton B Hess
- Massachusetts General Hospital, Department of Radiation Oncology, Harvard University, Boston, MA, United States
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, FL, United States
| | - Arnold C Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - William F Hartsell
- Northwestern Medicine, Chicago Proton Center, Chicago, IL, United States
| | | | - Stephanie M Perkins
- Department of Radiation Oncology, Washington University, St Louis, MO, United States
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, NY, United States
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, NY, United States
| | - Ralph P Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, WA, United States
| | - Andrew L Chang
- ProCure Proton Therapy Center, Oklahoma City, OK, United States
| | - Suzanne L Wolden
- ProCure Proton Therapy Center and Memorial Sloan Kettering Cancer Center, Somerset, NJ, United States
| | | | - Young Kwok
- Maryland Proton Treatment Center, Baltimore, MD, United States
| | - John C Breneman
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - John P Perentesis
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sara L Gallotto
- Massachusetts General Hospital, Department of Radiation Oncology, Harvard University, Boston, MA, United States
| | - Elizabeth A Weyman
- Massachusetts General Hospital, Department of Radiation Oncology, Harvard University, Boston, MA, United States
| | - Benjamin V M Bajaj
- Massachusetts General Hospital, Department of Radiation Oncology, Harvard University, Boston, MA, United States
| | - Miranda P Lawell
- Massachusetts General Hospital, Department of Radiation Oncology, Harvard University, Boston, MA, United States
| | - Beow Y Yeap
- Massachusetts General Hospital, Department of Radiation Oncology, Harvard University, Boston, MA, United States
| | - Torunn I Yock
- Massachusetts General Hospital, Department of Radiation Oncology, Harvard University, Boston, MA, United States
| |
Collapse
|