1
|
Ichikawa H, Aizawa M, Kano Y, Hanyu T, Muneoka Y, Hiroi S, Ueki H, Moro K, Hirose Y, Miura K, Shimada Y, Sakata J, Yabusaki H, Nakagawa S, Kawasaki T, Okuda S, Wakai T. Landscape of homologous recombination deficiency in gastric cancer and clinical implications for first-line chemotherapy. Gastric Cancer 2024; 27:1273-1286. [PMID: 39110344 DOI: 10.1007/s10120-024-01542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Homologous recombination deficiency (HRD) is one of the crucial hallmarks of cancer. It is associated with a favorable response to platinum-based chemotherapy. We explored the distinctive clinicopathological features of gastric cancer (GC) with HRD and the clinical significance of HRD in platinum-based first-line chemotherapy for unresectable metastatic GC. METHODS We enrolled 160 patients with GC in this study. Their tumor samples were subjected to genomic profiling utilizing targeted tumor sequencing. HRD was defined as the presence of alterations in any of 16 HR genes (BARD1, BLM, BRCA1, BRCA2, BRIP1, MRE11A, NBN, PALB2, PARP1, POLD1, RAD50, RAD51, RAD51C, RAD51D, WRN, and XRCC2). The clinicopathological features and treatment outcomes of first-line chemotherapy for unresectable metastatic GC were compared between HRD and non-HRD groups. RESULTS Forty-seven patients (29.4%) were classified into the HRD group. This group had a significantly lower proportion of macroscopic type 3 or 4 tumors and higher TMB than the non-HRD group. Among patients who underwent platinum-based first-line chemotherapy, the HRD group had a greater response rate and longer progression-free survival after treatment (median 8.0 months vs. 3.0 months, P = 0.010), with an adjusted hazard ratio of 0.337 (95% confidence interval 0.151-0.753). HRD status was not associated with treatment outcomes in patients who did not undergo platinum-based chemotherapy. CONCLUSIONS Low proportion of macroscopic type 3 or 4 tumors and a high TMB are distinctive features of GC with HRD. HRD status is a potential predictive marker in platinum-based first-line chemotherapy for unresectable metastatic GC.
Collapse
Affiliation(s)
- Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan.
| | - Masaki Aizawa
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Yosuke Kano
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Takaaki Hanyu
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yusuke Muneoka
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Sou Hiroi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Hiroto Ueki
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Kohei Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Hiroshi Yabusaki
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Satoru Nakagawa
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Takashi Kawasaki
- Department of Pathology, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, Niigata, 951-8514, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| |
Collapse
|
2
|
Chan KH, Rutazanaa D, Wray C, Thosani N, Yang V, Cen P. Promising Response of Olaparib in Patient With Germline ATM-Mutated Metastatic Gastric Cancer. J Investig Med High Impact Case Rep 2024; 12:23247096241240176. [PMID: 38504422 PMCID: PMC10953106 DOI: 10.1177/23247096241240176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Gastric cancer ranks as the fifth leading cause of global cancer incidences, exhibiting varied prevalence influenced by geographical, ethnic, and lifestyle factors, as well as Helicobacter pylori infection. The ATM gene on chromosome 11q22 is vital for genomic stability as an initiator of the DNA damage response, and mutations in this gene have been associated with various cancers. Poly ADP-ribose polymerase (PARP) inhibitors, such as olaparib, have shown efficacy in cancers with homologous recombination repair deficiencies, notably in those with ATM mutations. Here, we present a case of a 66-year-old patient with germline ATM-mutated metastatic gastric cancer with very high CA 19-9 (48 000 units/mL) who demonstrated an exceptional response to the addition of olaparib to chemo-immunotherapy and subsequent olaparib maintenance monotherapy for 12 months. CA 19-9 was maintained at low level for 18 months. Despite the failure of a phase II clinical trial on olaparib in gastric cancer (NCT01063517) to meet its primary endpoint, intriguing findings emerged in the subset of ATM-mutated patients, who exhibited notable improvements in overall survival. Our case underscores the potential clinical utility of olaparib in germline ATM-mutated gastric cancer and emphasizes the need for further exploration through larger clinical trials. Ongoing research and clinical trials are essential for optimizing the use of PARP inhibitors, identifying biomarkers, and advancing personalized treatment strategies for gastric cancer.
Collapse
Affiliation(s)
- Kok Hoe Chan
- The University of Texas Health Science Center at Houston, USA
| | | | - Curtis Wray
- The University of Texas Health Science Center at Houston, USA
| | - Nirav Thosani
- The University of Texas Health Science Center at Houston, USA
| | - Victor Yang
- Memorial Hermann Health System, Houston, TX, USA
| | - Putao Cen
- The University of Texas Health Science Center at Houston, USA
| |
Collapse
|
3
|
Xu J, Hu S, Chen Q, Shu L, Wang P, Wang J. Integrated bioinformatics analysis of noncoding RNAs with tumor immune microenvironment in gastric cancer. Sci Rep 2023; 13:15006. [PMID: 37696973 PMCID: PMC10495442 DOI: 10.1038/s41598-023-41444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023] Open
Abstract
In recent years, molecular and genetic research hotspots of gastric cancer have been investigated, including microRNAs, long noncoding RNAs (lncRNAs) and messenger RNA (mRNAs). The study on the role of lncRNAs may help to develop personalized treatment and identify potential prognostic biomarkers in gastric cancer. The RNA-seq and miRNA-seq data of gastric cancer were downloaded from the TCGA database. Differential analysis of RNA expression between gastric cancer samples and normal samples was performed using the edgeR package. The ceRNA regulatory network was visualized using Cytoscape. KEGG pathway analysis of mRNAs in the ceRNA network was performed using the clusterProfiler package. CIBERSORT was used to distinguish 22 immune cell types and the prognosis-related genes and immune cells were determined using Kaplan-Meier and Cox proportional hazard analyses. To estimate these nomograms, we used receiver operating characteristic and calibration curve studies. The ceRNA regulation network of gastric cancer was built in this study, and the genes in the network were analyzed for prognosis. A total of 980 lncRNAs were differentially expressed, of which 774 were upregulated and 206 were downregulated. A survival study identified 15 genes associated with gastric cancer prognosis, including VCAN-AS1, SERPINE1, AL139002.1, LINC00326, AC018781.1, C15orf54, hsa-miR-145. Monocytes and Neutrophils were associated with the survival rate of gastric cancer. Our research uncovers new ceRNA network for the detection, treatment, and monitoring of gastric cancer.
Collapse
Affiliation(s)
- Jun Xu
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shengnan Hu
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiuli Chen
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Lilu Shu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China.
| | - Jianjiang Wang
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
4
|
Cinicola J, Mamidanna S, Yegya-Raman N, Spencer K, Deek MP, Jabbour SK. A Review of Advances in Radiotherapy in the Setting of Esophageal Cancers. Surg Oncol Clin N Am 2023; 32:433-459. [PMID: 37182986 DOI: 10.1016/j.soc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Esophageal cancer is the eighth most common cancer worldwide and is the sixth most common cause of cancer-related mortality. The paradigm has shifted to include a multimodality approach with surgery, chemotherapy, targeted therapy (including immunotherapy), and radiation therapy. Advances in radiotherapy through techniques such as intensity modulated radiotherapy and proton beam therapy have allowed for the more dose homogeneity and improved organ sparing. In addition, recent studies of targeted therapies and predictive approaches in patients with locally advanced disease provide clinicians with new approaches to modify multimodality treatment to improve clinical outcomes.
Collapse
Affiliation(s)
- Joshua Cinicola
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Swati Mamidanna
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Nikhil Yegya-Raman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen Spencer
- New York Langone Perlmutter Cancer Center, New York, NY, USA
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
5
|
Xu Z, Chen Q, Shu L, Zhang C, Liu W, Wang P. Expression profiles of m6A RNA methylation regulators, PD-L1 and immune infiltrates in gastric cancer. Front Oncol 2022; 12:970367. [PMID: 36003776 PMCID: PMC9393729 DOI: 10.3389/fonc.2022.970367] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Gastric cancer is the fourth most frequent cancer and has a high death rate. Immunotherapy represented by PD-1 has brought hope for the treatment of advanced gastric cancer. Methylation of the m6A genes is linked to the onset and progression of numerous cancers, but there are few studies on gastric cancer. The main purpose of this study aims to analyze the relationship between m6A RNA methylation regulators, PD-L1, prognosis and tumor immune microenvironment (TIME) in gastric cancer. The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases were used to acquire transcriptomic data and clinical information from gastric cancer patients. The changes in m6A regulator expression levels in gastric cancer tissues and normal tissues were studied. Consensus clustering analysis was used to separate gastric cancer samples into two categories. We employed Least Absolute Shrinkage, Selection Operator (LASSO) Cox regression analysis, Gene Set Enrichment Analysis (GSEA), and cBioPortal to analyze the m6A regulators, PD-L1 and TIME in gastric cancer. In gastric cancer tissues, the majority of m6A regulatory factors are considerably overexpressed. Two gastric cancer subgroups (Cluster1/2) based on consensus clustering of 21 m6A regulators. PD-L1 and PD-1 expression levels were significantly higher in gastric cancer tissues, and they were significantly linked with METTL3, WTAP, HNRNPD, ZC3H7B, METTL14, FTO, PCIF1, HNRNPC, YTHDF1 and YTDHF2. Cluster1 showed a large increase in resting memory CD4+ T cells, regulatory T cells, naïve B cells, active NK cells, and resting Mast cells. Cluster1 and Cluster2 were shown to be involved in numerous critical signaling pathways, including base excision repair, cell cycle, nucleotide excision repair, RNA degradation, and spliceosome pathways. Gastric cancer RiskScores based on prognostic factors have been found as independent prognostic indicators. The amount of tumor-infiltrating immune cells is dynamically affected by changes in the copy number of m6A methylation regulators associated with TIME.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Department of Gastric Surgery, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- *Correspondence: Zhiyuan Xu, ; Peter Wang,
| | - Qiuli Chen
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Lilu Shu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Chunye Zhang
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
- *Correspondence: Zhiyuan Xu, ; Peter Wang,
| |
Collapse
|
6
|
Fong CYK, Chau I. Harnessing biomarkers of response to improve therapy selection in esophago-gastric adenocarcinoma. Pharmacogenomics 2021; 22:703-726. [PMID: 34120461 PMCID: PMC8265282 DOI: 10.2217/pgs-2020-0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Advanced esophago-gastric (OG) adenocarcinomas have a high mortality rate and new therapeutic options are urgently required. Despite recent advances in understanding the molecular characteristics of OG cancers, tumor heterogeneity poses a challenge in developing new therapeutics capable of improving patient outcomes. Consequently, chemotherapy remains the mainstay of systemic treatment, with the HER2 being the only predictive biomarker routinely targeted in clinical practice. Recent data indicate that immunotherapy will be incorporated into first-line chemotherapy, but further research is required to refine patient selection. This review will summarize the clinical strategies being evaluated to utilize our knowledge of predictive biomarkers with reference to novel therapeutics, and discuss the barriers to implementing precision oncology in OG adenocarcinoma.
Collapse
Affiliation(s)
- Caroline YK Fong
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Ian Chau
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
7
|
Wang Y, Zheng K, Huang Y, Xiong H, Su J, Chen R, Zou Y. PARP inhibitors in gastric cancer: beacon of hope. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:211. [PMID: 34167572 PMCID: PMC8228511 DOI: 10.1186/s13046-021-02005-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Defects in the DNA damage response (DDR) can lead to genome instability, producing mutations or aberrations that promote the development and progression of cancer. But it also confers such cells vulnerable to cell death when they inhibit DNA damage repair. Poly (ADP-ribose) polymerase (PARP) plays a central role in many cellular processes, including DNA repair, replication, and transcription. PARP induces the occurrence of poly (ADP-ribosylation) (PARylation) when DNA single strand breaks (SSB) occur. PARP and various proteins can interact directly or indirectly through PARylation to regulate DNA repair. Inhibitors that directly target PARP have been found to block the SSB repair pathway, triggering homologous recombination deficiency (HRD) cancers to form synthetic lethal concepts that represent an anticancer strategy. It has therefore been investigated in many cancer types for more effective anti-cancer strategies, including gastric cancer (GC). This review describes the antitumor mechanisms of PARP inhibitors (PARPis), and the preclinical and clinical progress of PARPis as monotherapy and combination therapy in GC.
Collapse
Affiliation(s)
- Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Jinfang Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Serra O, Smyth EC, Lordick F. Progress and challenges in gastroesophageal cancer. Curr Probl Cancer 2020; 44:100590. [DOI: 10.1016/j.currproblcancer.2020.100590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022]
|
9
|
Nagaraja AK, Kikuchi O, Bass AJ. Genomics and Targeted Therapies in Gastroesophageal Adenocarcinoma. Cancer Discov 2019; 9:1656-1672. [PMID: 31727671 PMCID: PMC7232941 DOI: 10.1158/2159-8290.cd-19-0487] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/09/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022]
Abstract
Gastroesophageal adenocarcinomas (GEA) are devastating diseases with stark global presence. Over the past 10 years, there have been minimal improvements in treatment approach despite numerous clinical trials. Here, we review recent progress toward understanding the molecular features of these cancers and the diagnostic and therapeutic challenges posed by their intrinsic genomic instability and heterogeneity. We highlight the potential of genomic heterogeneity to influence clinical trial outcomes for targeted therapies and emphasize the need for comprehensive molecular profiling to guide treatment selection and adapt treatment to resistance and genomic evolution. Revising our clinical approach to GEA by leveraging genomic advances will be integral to the success of current and future treatments, especially as novel targets become therapeutically tractable. SIGNIFICANCE: GEAs are deadly cancers with few treatment options. Characterization of the genomic landscape of these cancers has revealed considerable genetic diversity and spatial heterogeneity. Understanding these fundamental properties of GEA will be critical for overcoming barriers to the development of novel, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ankur K Nagaraja
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Osamu Kikuchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
10
|
Bonelli P, Borrelli A, Tuccillo FM, Silvestro L, Palaia R, Buonaguro FM. Precision medicine in gastric cancer. World J Gastrointest Oncol 2019; 11:804-829. [PMID: 31662821 PMCID: PMC6815928 DOI: 10.4251/wjgo.v11.i10.804] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Accepted: 09/05/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a complex disease linked to a series of environmental factors and unhealthy lifestyle habits, and especially to genetic alterations. GC represents the second leading cause of cancer-related deaths worldwide. Its onset is subtle, and the majority of patients are diagnosed once the cancer is already advanced. In recent years, there have been innovations in the management of advanced GC including the introduction of new classifications based on its molecular characteristics. Thanks to new technologies such as next-generation sequencing and microarray, the Cancer Genome Atlas and Asian Cancer Research Group classifications have also paved the way for precision medicine in GC, making it possible to integrate diagnostic and therapeutic methods. Among the objectives of the subdivision of GC into subtypes is to select patients in whom molecular targeted drugs can achieve the best results; many lines of research have been initiated to this end. After phase III clinical trials, trastuzumab, anti-Erb-B2 receptor tyrosine kinase 2 (commonly known as ERBB2) and ramucirumab, anti-vascular endothelial growth factor receptor 2 (commonly known as VEGFR2) monoclonal antibodies, were approved and introduced into first- and second-line therapies for patients with advanced/metastatic GC. However, the heterogeneity of this neoplasia makes the practical application of such approaches difficult. Unfortunately, scientific progress has not been matched by progress in clinical practice in terms of significant improvements in prognosis. Survival continues to be low in contrast to the reduction in deaths from many common cancers such as colorectal, lung, breast, and prostate cancers. Although several target molecules have been identified on which targeted drugs can act and novel products have been introduced into experimental therapeutic protocols, the overall approach to treating advanced stage GC has not substantially changed. Currently, surgical resection with adjuvant or neoadjuvant radiotherapy and chemotherapy are the most effective treatments for this disease. Future research should not underestimate the heterogeneity of GC when developing diagnostic and therapeutic strategies aimed toward improving patient survival.
Collapse
Affiliation(s)
- Patrizia Bonelli
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Antonella Borrelli
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Lucrezia Silvestro
- Abdominal Medical Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Raffaele Palaia
- Gastro-pancreatic Surgery Division, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| |
Collapse
|
11
|
Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 2019; 16:81-104. [PMID: 30356138 PMCID: PMC8327299 DOI: 10.1038/s41571-018-0114-z] [Citation(s) in RCA: 702] [Impact Index Per Article: 140.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genomic instability is a key hallmark of cancer that arises owing to defects in the DNA damage response (DDR) and/or increased replication stress. These alterations promote the clonal evolution of cancer cells via the accumulation of driver aberrations, including gene copy-number changes, rearrangements and mutations; however, these same defects also create vulnerabilities that are relatively specific to cancer cells, which could potentially be exploited to increase the therapeutic index of anticancer treatments and thereby improve patient outcomes. The discovery that BRCA-mutant cancer cells are exquisitely sensitive to inhibition of poly(ADP-ribose) polymerase has ushered in a new era of research on biomarker-driven synthetic lethal treatment strategies for different cancers. The therapeutic landscape of antitumour agents targeting the DDR has rapidly expanded to include inhibitors of other key mediators of DNA repair and replication, such as ATM, ATR, CHK1 and CHK2, DNA-PK and WEE1. Efforts to optimize these therapies are ongoing across a range of cancers, involving the development of predictive biomarker assays of responsiveness (beyond BRCA mutations), assessment of the mechanisms underlying intrinsic and acquired resistance, and evaluation of rational, tolerable combinations with standard-of-care treatments (such as chemotherapeutics and radiation), novel molecularly targeted agents and immune-checkpoint inhibitors. In this Review, we discuss the current status of anticancer therapies targeting the DDR.
Collapse
Affiliation(s)
- Patrick G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Smyth EC, Cafferkey C, Loehr A, Waddell T, Begum R, Peckitt C, Harding TC, Nguyen M, Okines AF, Raponi M, Rao S, Watkins D, Starling N, Middleton GW, Wadsley J, Mansoor W, Crosby T, Wotherspoon A, Chau I, Cunningham D. Genomic loss of heterozygosity and survival in the REAL3 trial. Oncotarget 2018; 9:36654-36665. [PMID: 30613349 PMCID: PMC6291175 DOI: 10.18632/oncotarget.26336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background Homologous recombination deficiency (HRD) measured using a genomic signature for loss of heterozygosity (LOH) predicts benefit from rucaparib in ovarian cancer. We hypothesized that some oesophagogastric cancers will have high-LOH which would be prognostic in patients treated with platinum chemotherapy. Methods Diagnostic biopsy DNA from patients treated in the REAL3 trial was sequenced using the Foundation Medicine T5 next-generation sequencing (NGS) assay. An algorithm quantified the percentage of interrogable genome with LOH. Multidimensional optimization was performed to identify a cut-off dichotomizing the population into LOH-high and low groups associated with differential survival outcomes. Results Of 158 available samples, 117 were successfully sequenced; LOH was derived for 74 of these. A cut-off of 21% genomic LOH defined an LOH-high subgroup (n=10, 14% of population) who had median overall survival (OS) of 18.3 months (m) versus 11m for the LOH-low group (HR 0.55 95% CI 0.19-0.97, p= 0.10). Progression free survival (PFS) for LOH-high and LOH-low groups was 10.7m and 7.3m (HR 0.61 (95% CI 0.21 – 1.09, p=0.09). Sensitivity analysis censoring operated patients (n=4), demonstrated OS of 18.3m vs. 10.2m (HR 0.43, 95% CI (0.20-0.92), p=0.02; PFS was 10.5m vs. 7.2m (HR 0.55, (95% CI 0.26-1.17), p=0.09 for LOH-high and LOH-low. Conclusion HRD assessment using an algorithmically derived LOH signature on a standard NGS panel identifies oesophagogastric cancer patients with high LOH who have prolonged survival when treated with platinum chemotherapy. Validation work will determine the signature's predictive value in patients treated with a PARP inhibitor and with platinum chemotherapy.
Collapse
Affiliation(s)
- Elizabeth C Smyth
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, London & Sutton, United Kingdom.,Current affiliation: Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Catherine Cafferkey
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, London & Sutton, United Kingdom
| | - Andrea Loehr
- Clovis Oncology, San Francisco, CA, United States of America
| | - Tom Waddell
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, London & Sutton, United Kingdom.,Current affiliation: Department of Medical Oncology, Christie Hospital, Manchester, United Kingdom
| | - Ruwaida Begum
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, London & Sutton, United Kingdom
| | - Clare Peckitt
- Department of Clinical Research & Development, Royal Marsden Hospital, London & Sutton, United Kingdom
| | | | - Minh Nguyen
- Clovis Oncology, San Francisco, CA, United States of America
| | - Alicia F Okines
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, London & Sutton, United Kingdom
| | - Mitch Raponi
- Clovis Oncology, San Francisco, CA, United States of America
| | - Sheela Rao
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, London & Sutton, United Kingdom
| | - David Watkins
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, London & Sutton, United Kingdom
| | - Naureen Starling
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, London & Sutton, United Kingdom
| | - Gary W Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan Wadsley
- Department of Medical Oncology, Weston Park Hospital, Sheffield, United Kingdom
| | - Wasat Mansoor
- Current affiliation: Department of Medical Oncology, Christie Hospital, Manchester, United Kingdom
| | - Tom Crosby
- Department of Clinical Oncology, Velindre Hospital, Cardiff, Wales, United Kingdom
| | - Andrew Wotherspoon
- Department of Histopathology, Royal Marsden Hospital, London & Surrey, United Kingdom
| | - Ian Chau
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, London & Sutton, United Kingdom
| | - David Cunningham
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, London & Sutton, United Kingdom
| |
Collapse
|