1
|
Lian X, Gao Y, Li X, Wang P, Tong L, Li J, Zhou Y, Liu T. Design, synthesis and biological evaluation of 2-aminopyrimidine derivatives as potent FLT3 inhibitors. Bioorg Med Chem Lett 2023; 96:129519. [PMID: 37838343 DOI: 10.1016/j.bmcl.2023.129519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive cancer, which is characterized by clonal expansion of myeloid progenitors in the bone marrow and peripheral blood. FMS-like tyrosine kinase 3 (FLT3) mutations are the most frequently identified mutations, present in approximately 25-30 % AML patients, making FLT3 inhibitors a crucial treatment option for AML. In this study, we described the design, synthesis and biological evaluation of a series of 2-aminopyrimidine derivatives as potent FLT3 inhibitors. Notably, compound 15 displayed potent kinase inhibitory activities against FLT3 (FLT3-WT IC50 = 7.42 ± 1.23 nM; FLT3-D835Y IC50 = 9.21 ± 0.04 nM) and robust antiproliferative activities against MV4-11 cells (IC50 = 0.83 ± 0.15 nM) and MOLM-13 cells (IC50 = 10.55 ± 1.70 nM). Compound 15 also possessed potent antiproliferative activities against BaF3 cells carrying various FLT3-TKD and FLT3-ITD-TKD mutations, indicating its potential to overcome on-target resistance caused by FLT3 mutations. In summary, compound 15 showed promising potential for further exploration as a treatment of AML.
Collapse
Affiliation(s)
- Xuanmin Lian
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuemei Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peipei Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lexian Tong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310018, China
| | - Jia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China.
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Soncini D, Orecchioni S, Ruberti S, Minetto P, Martinuzzi C, Agnelli L, Todoerti K, Cagnetta A, Miglino M, Clavio M, Contini P, Varaldo R, Bergamaschi M, Guolo F, Passalacqua M, Nencioni A, Monacelli F, Gobbi M, Neri A, Abbadessa G, Eathiraj S, Schwartz B, Bertolini F, Lemoli RM, Cea M. The new small tyrosine kinase inhibitor ARQ531 targets acute myeloid leukemia cells by disrupting multiple tumor-addicted programs. Haematologica 2020; 105:2420-2431. [PMID: 33054082 PMCID: PMC7556675 DOI: 10.3324/haematol.2019.224956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022] Open
Abstract
Tyrosine kinases have been implicated in promoting tumorigenesis of several human cancers. Exploiting these vulnerabilities has been shown to be an effective anti-tumor strategy as demonstrated for example by the Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, for treatment of various blood cancers. Here, we characterize a new multiple kinase inhibitor, ARQ531, and evaluate its mechanism of action in preclinical models of acute myeloid leukemia. Treatment with ARQ531, by producing global signaling pathway deregulation, resulted in impaired cell cycle progression and survival in a large panel of leukemia cell lines and patient-derived tumor cells, regardless of the specific genetic background and/or the presence of bone marrow stromal cells. RNA-seq analysis revealed that ARQ531 constrained tumor cell proliferation and survival through Bruton's tyrosine kinase and transcriptional program dysregulation, with proteasome-mediated MYB degradation and depletion of short-lived proteins that are crucial for tumor growth and survival, including ERK, MYC and MCL1. Finally, ARQ531 treatment was effective in a patient-derived leukemia mouse model with significant impairment of tumor progression and survival, at tolerated doses. These data justify the clinical development of ARQ531 as a promising targeted agent for the treatment of patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Debora Soncini
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Samantha Ruberti
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Paola Minetto
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Martinuzzi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Katia Todoerti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonia Cagnetta
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Miglino
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marino Clavio
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Contini
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Riccardo Varaldo
- Division of Hematology and Hematopoietic Stem Cell Transplantation Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Micaela Bergamaschi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Fabio Guolo
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Marco Gobbi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | | | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto M. Lemoli
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cea
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Tao S, Wang C, Chen Y, Deng Y, Song L, Shi Y, Ling L, Ding B, He Z, Yu L. Prognosis and outcome of patients with acute myeloid leukemia based on FLT3-ITD mutation with or without additional abnormal cytogenetics. Oncol Lett 2019; 18:6766-6774. [PMID: 31807186 PMCID: PMC6876342 DOI: 10.3892/ol.2019.11051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
The FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) gene mutation is present in ~20% of patients with de novo acute myeloid leukemia (AML). Patients with an FLT3-ITD mutation have a poor prognosis. However, the prognostic function of FLT3-ITD combined with other cytogenetic abnormalities are not clear. In the present study, a retrospective analysis of 103 newly diagnosed patients with AML was performed. The results revealed that the overall survival (OS) and recurrence-free survival (RFS) times were significantly longer in patients with an FLT3-ITD mutation combined with other favorable risk genes, compared with in those patients with a single FLT3-ITD mutation (P=0.0361 and P=0.0426). Sorafenib combined with chemotherapy significantly improved the overall response rate (ORR) when compared with mono-chemotherapy (P=0.039), but no significant differences were observed in the OS and RFS. In conclusion, favorable-risk cytogenetics may improve the clinical outcomes of patients with FLT3-ITD-mutated AML, but adverse-risk cytogenetics may not further worsen the prognosis. Sorafenib combined with chemotherapy may increase the ORR but would not result in a longer OS and RFS.
Collapse
Affiliation(s)
- Shandong Tao
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Chen
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuan Deng
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lixiao Song
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuyue Shi
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lanlan Ling
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Banghe Ding
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhengmei He
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Liang Yu
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
4
|
Li J, Yang L, Shen R, Gong L, Tian Z, Qiu H, Shi Z, Gao L, Sun H, Zhang G. Self-nanoemulsifying system improves oral absorption and enhances anti-acute myeloid leukemia activity of berberine. J Nanobiotechnology 2018; 16:76. [PMID: 30290822 PMCID: PMC6172716 DOI: 10.1186/s12951-018-0402-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recently, we found that berberine (BBR) exerts anti-acute myeloid leukemia activity, particularly toward high-risk and relapsed/refractory acute myeloid leukemia MV4-11 cells in vitro. However, the poor water solubility and low bioavailability observed with oral BBR administration has limited its clinical use. Therefore, we design and develop a novel oil-in-water self-nanoemulsifying system for BBR (BBR SNE) to improve oral bioavailability and enhance BBR efficacy against acute myeloid leukemia by greatly improving its solubility. RESULTS This system (size 23.50 ± 1.67 nm, zeta potential - 3.35 ± 0.03 mV) was prepared with RH40 (surfactant), 1,2-propanediol (co-surfactant), squalene (oil) and BBR using low-energy emulsification methods. The system loaded BBR successfully according to thermal gravimetric, differential scanning calorimetry, and Fourier transform infrared spectroscopy analyses. The release profile results showed that BBR SNE released BBR more slowly than BBR solution. The relative oral bioavailability of this novel system in rabbits was significantly enhanced by 3.41-fold over that of BBR. Furthermore, Caco-2 cell monolayer transport studies showed that this system could help enhance permeation and prevent efflux of BBR. Importantly, mice with BBR SNE treatment had significantly longer survival time than BBR-treated mice (P < 0.001) in an MV4-11 engrafted leukemia murine model. CONCLUSIONS These studies confirmed that BBR SNE is a promising therapy for acute myeloid leukemia.
Collapse
Affiliation(s)
- Jieping Li
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Li Yang
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Rui Shen
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Li Gong
- Department of Clinical Laboratory, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120 People’s Republic of China
| | - Zhiqiang Tian
- Army Military Medical University of Chinese PLA, Chongqing, 400038 People’s Republic of China
| | - Huarong Qiu
- Air Force Military Medical University of Chinese PLA, Xi’an, 710000 Shanxi People’s Republic of China
| | - Zhe Shi
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Lichen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Hongwu Sun
- Army Military Medical University of Chinese PLA, Chongqing, 400038 People’s Republic of China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|