1
|
Lu Z, Wang Z, Tu Z, Liu H. HSP90 Inhibitor Ganetespib Enhances the Sensitivity of Mantle Cell Lymphoma to Bruton’s Tyrosine Kinase Inhibitor Ibrutinib. Front Pharmacol 2022; 13:864194. [PMID: 35721157 PMCID: PMC9204102 DOI: 10.3389/fphar.2022.864194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a highly aggressive and heterogeneous B-cell lymphoma. Though Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has shown great efficacy as a single agent for MCL treatment, the real-world use of ibrutinib is still subject to limitations. Our previous study has shown the treatment with HSP90 inhibitor ganetespib can attack major targets of MCL, luckily complementary to ibrutinib’s targets. In this study, transient ganetespib treatment sensitizes MCL cells to ibrutinib as manifested by the significant decrease of IC50 values, percentages of EdU (5-Ethynyl-2′-deoxyuridine) positive cells, and levels of p-AKT and NF-κB after combinational treatment. Additionally, pretreatment with ganetespib enhanced cell cycle arrest induced by ibrutinib at G0/G1 phase and significantly decreased levels of cell cycle promoting proteins CDK2, 4, and 6. Pretreatment with ganetespib also enhanced cell apoptosis induced by ibrutinib through the upregulation of cleaved-caspase 9 and downregulation of BCL-2 in MCL cells at the molecular level. The sequential administration of ganetespib and ibrutinib had similar effects on increasing DNA damage as the transient treatment with ganetespib as demonstrated by the improved percentage of γH2AX and 53BP1 foci. Furthermore, ganetespib significantly increased inhibition of tumor growth mediated by ibrutinib in vivo, confirmed by the changes of the expression levels of Ki-67 and BCL-2 through immunohistochemistry assays. This study indicates that HSP90 inhibitor ganetespib maybe ideal for the combinational use with BTK inhibitor ibrutinib to target major pathogenesis-associated signaling pathways for MCL treatment which may help identify new possibilities for clinical trials.
Collapse
Affiliation(s)
- Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhixin Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Zhigang Tu, ; Hanqing Liu,
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- *Correspondence: Zhigang Tu, ; Hanqing Liu,
| |
Collapse
|
2
|
Reid JC, Golubeva D, Boyd AL, Hollands CG, Henly C, Orlando L, Leber A, Hébert J, Morabito F, Cutrona G, Agnelli L, Gentile M, Ferrarini M, Neri A, Leber B, Bhatia M. Human pluripotent stem cells identify molecular targets of trisomy 12 in chronic lymphocytic leukemia patients. Cell Rep 2021; 34:108845. [PMID: 33730576 DOI: 10.1016/j.celrep.2021.108845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/13/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022] Open
Abstract
Identifying precise targets of individual cancers remains challenging. Chronic lymphocytic leukemia (CLL) represents the most common adult hematologic malignancy, and trisomy 12 (tri12) represents a quarter of CLL patients. We report that tri12 human pluripotent stem cells (hPSCs) allow for the identification of gene networks and targets specific to tri12, which are controlled by comparative normal PSCs. Identified targets are upregulated in tri12 leukemic cells from a cohort of 159 patients with monoclonal B cell lymphocytosis and CLL. tri12 signaling patterns significantly influence progression-free survival. Actionable targets are identified using high-content drug testing and functionally validated in an additional 44 CLL patient samples. Using xenograft models, interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitor is potent and selective against human tri12 CLL versus healthy patient-derived xenografts. Our study uses hPSCs to uncover targets from genetic aberrations and apply them to cancer. These findings provide immediate translational potential as biomarkers and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer C Reid
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Diana Golubeva
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Allison L Boyd
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Cameron G Hollands
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Charisa Henly
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Luca Orlando
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew Leber
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Josée Hébert
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Fortunato Morabito
- Department of Onco-Hematology, Biotechnology Research Unit, AO of Cosenza, Cosenza, Italy; Hematology and Bone Marrow Transplant Unit, Augusta Victoria Hospital, Jerusalem, Israel
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Department of Onco-Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy; Pathobiology Unit 2, IRCCS National Cancer Institute, Milan, Italy
| | - Massimo Gentile
- Department of Onco-Hematology, Biotechnology Research Unit, AO of Cosenza, Cosenza, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Department of Onco-Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Brian Leber
- Department of Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Mickie Bhatia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|