1
|
Savchenko E, Bunimovich-Mendrazitsky S. Investigation toward the economic feasibility of personalized medicine for healthcare service providers: the case of bladder cancer. Front Med (Lausanne) 2024; 11:1388685. [PMID: 38808135 PMCID: PMC11130437 DOI: 10.3389/fmed.2024.1388685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
In today's complex healthcare landscape, the pursuit of delivering optimal patient care while navigating intricate economic dynamics poses a significant challenge for healthcare service providers (HSPs). In this already complex dynamic, the emergence of clinically promising personalized medicine-based treatment aims to revolutionize medicine. While personalized medicine holds tremendous potential for enhancing therapeutic outcomes, its integration within resource-constrained HSPs presents formidable challenges. In this study, we investigate the economic feasibility of implementing personalized medicine. The central objective is to strike a balance between catering to individual patient needs and making economically viable decisions. Unlike conventional binary approaches to personalized treatment, we propose a more nuanced perspective by treating personalization as a spectrum. This approach allows for greater flexibility in decision-making and resource allocation. To this end, we propose a mathematical framework to investigate our proposal, focusing on Bladder Cancer (BC) as a case study. Our results show that while it is feasible to introduce personalized medicine, a highly efficient but highly expensive one would be short-lived relative to its less effective but cheaper alternative as the latter can be provided to a larger cohort of patients, optimizing the HSP's objective better.
Collapse
|
2
|
Asimakopoulos AD, Kochergin M, Colalillo G, Fahmy O, Hassan F, Renninger M, Gallioli A, Gavrilov P, Gakis G. New Intravesical Agents for BCG-Unresponsive High-Risk Non-Muscle Invasive Bladder Cancer. Bladder Cancer 2023; 9:237-251. [PMID: 38993180 PMCID: PMC11181857 DOI: 10.3233/blc-230043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND With the exception of the FDA-approved valrubicin and pembrolizumab, there are no standard second-line treaments for BCG-unresponsive high-risk non-muscle invasive bladder cancer (NMIBC). OBJECTIVES To provide a systematic review of the novel intravesically administered therapeutic agents for the salvage treatment of BCG-unresponsive NMIBC. METHODS Online search of the PubMed, EMBASE and Web of Science databases was performed. The endpoints of this review were to evaluate the efficacy of the agents in terms of complete response rates (CR) and durability of CR, overall survival, recurrence-free survival and cancer-specific survival and to report on their toxicity profile. A search on Clinicaltrials.gov was performed to identify ongoing clinical trials. RESULTS 14 studies were included in this review. The critical clinical need for the development of an effective, safe and durable intravesical drug for the salvage treatment of high-risk NMIBC seems to be met mainly by intravesical gene therapy; in fact, data support the FDA-approved nadofaragene firadenovec as a potentially important therapeutic advancement in this context. Promising results are also being obtained by the combination of N-803/BCG and by innovative drug delivery systems. CONCLUSIONS Considering the plethora of novel intravesical treatments that have completed phase II evaluation, one can reasonably expect that clinicians will soon have at their disposal new agents and treatment options for BCG-unresponsive NMIBC. In the near future, it will be up to the urologist to identify, for each specific patient, the right agent to use, based on safety, results and cost-effectiveness.
Collapse
Affiliation(s)
| | - Maxim Kochergin
- Department of Urology and Neurourology, BG Unfallkrankenhaus Berlin, Berlin, Germany
| | - Gaia Colalillo
- Urology Unit, Fondazione PTV Policlinico Tor Vergata, Rome, Italy
| | - Omar Fahmy
- Department of Urology, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Fahmy Hassan
- Department of Urology, King Salman Hospital (MOH), Riyadh, Saudi-Arabia
| | - Markus Renninger
- Department of Urology, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | | | - Pavel Gavrilov
- Department of Urology, Fundaciò Puigvert, Barcelona, Spain
| | - Georgios Gakis
- University Clinic and Polyclinic of Urology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Reis IB, Tibo LHS, de Souza BR, Durán N, Fávaro WJ. OncoTherad® is an immunomodulator of biological response that downregulate RANK/RANKL signaling pathway and PD-1/PD-L1 immune checkpoint in non-muscle invasive bladder cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04449-5. [DOI: 10.1007/s00432-022-04449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
4
|
Long JM, Ebrahimzadeh J, Stanich PP, Katona BW. Endoscopic Surveillance in Patients with the Highest Risk of Gastric Cancer: Challenges and Solutions. Cancer Manag Res 2022; 14:2953-2969. [PMID: 36238953 PMCID: PMC9553156 DOI: 10.2147/cmar.s277898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer is one of the most significant causes of cancer-related morbidity and mortality worldwide. Recognized modifiable risk factors include Helicobacter pylori infection, geographic location, select dietary factors, tobacco use and alcohol consumption. In addition, multiple hereditary cancer predisposition syndromes are associated with significantly elevated gastric cancer risk. Endoscopic surveillance in hereditary gastric cancer predisposition syndromes has the potential to identify gastric cancer at earlier and more treatable stages, as well as to prevent development of gastric cancer through identification of precancerous lesions. However, much uncertainty remains regarding use of endoscopic surveillance in hereditary gastric cancer predisposition syndromes, including whether or not it should be routinely performed, the surveillance interval and age of initiation, cost-effectiveness, and whether surveillance ultimately improves survival from gastric cancer for these high-risk individuals. In this review, we outline the hereditary gastric cancer predisposition syndromes associated with the highest gastric cancer risks. Additionally, we cover current evidence and guidelines addressing hereditary gastric cancer risk and surveillance in these syndromes, along with current challenges and limitations that emphasize a need for continued research in this field.
Collapse
Affiliation(s)
- Jessica M Long
- Division of Hematology and Oncology, Penn Medicine, Philadelphia, PA, USA
| | | | - Peter P Stanich
- Division of Gastroenterology, Hepatology & Nutrition, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Correspondence: Bryson W Katona, Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, 751 South Pavilion, Philadelphia, PA, 19104, USA, Tel +1-215-349-8222, Fax +1-215-349-5915, Email
| |
Collapse
|
5
|
Pan S, Li S, Zhan Y, Chen X, Sun M, Liu X, Wu B, Li Z, Liu B. Immune status for monitoring and treatment of bladder cancer. Front Immunol 2022; 13:963877. [PMID: 36159866 PMCID: PMC9492838 DOI: 10.3389/fimmu.2022.963877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The high recurrence rate of non-muscle invasive bladder cancer (BC) and poor prognosis of advanced BC are therapeutic challenges that need to be solved. Bacillus Calmette-Guerin (BCG) perfusion was the pioneer immunotherapy for early BC, and the discovery of immune checkpoint inhibitors has created a new chapter in the treatment of advanced BC. The benefit of immunotherapy is highly anticipated, but its effectiveness still needs to be improved. In this review, we collated and analysed the currently available information and explored the mechaisms by which the internal immune imbalance of BC leads to tumour progression. The relationship between immunity and progression and the prognosis of BC has been explored through tests using body fluids such as blood and urine. These analytical tests have attempted to identify specific immuyne cells and cytokines to predict treatment outcomes and recurrence. The diversity and proportion of immune and matrix cells in BC determine the heterogeneity and immune status of tumours. The role and classification of immune cells have also been redefined, e.g., CD4 cells having recognised cytotoxicity in BC. Type 2 immunity, including that mediated by M2 macrophages, Th2 cells, and interleukin (IL)-13, plays an important role in the recurrence and progression of BC. Pathological fibrosis, activated by type 2 immunity and cancer cells, enhances the rate of cancer progression and irreversibility. Elucidating the immune status of BC and clarifying the mechanisms of action of different cells in the tumour microenvironment is the research direction to be explored in the future.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Bitian Liu, ;
| |
Collapse
|
6
|
Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B 2022; 12:3028-3048. [PMID: 35865096 PMCID: PMC9293719 DOI: 10.1016/j.apsb.2022.02.025] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Compared with traditional drug therapy, nanomedicines exhibit intriguing biological features to increase therapeutic efficiency, reduce toxicity and achieve targeting delivery. This review provides a snapshot of nanomedicines that have been currently launched or in the clinical trials, which manifests a diversified trend in carrier types, applied indications and mechanisms of action. From the perspective of indications, this article presents an overview of the applications of nanomedicines involving the prevention, diagnosis and treatment of various diseases, which include cancer, infections, blood disorders, cardiovascular diseases, immuno-associated diseases and nervous system diseases, etc. Moreover, the review provides some considerations and perspectives in the research and development of nanomedicines to facilitate their translations in clinic.
Collapse
Affiliation(s)
- Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Jingyuan Wen
- School of Pharmacy, University of Auckland, Auckland 1142, New Zealand
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Bezeljak U. Cancer gene therapy goes viral: viral vector platforms come of age. Radiol Oncol 2022; 56:1-13. [PMID: 35148469 PMCID: PMC8884858 DOI: 10.2478/raon-2022-0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Since the advent of viral vector gene therapy in 1990s, cancer treatment with viral vectors promised to revolutionize the field of oncology. Notably, viral vectors offer a unique combination of efficient gene delivery and engagement of the immune system for anti-tumour response. Despite the early potential, viral vector-based cancer treatments are only recently making a big impact, most prominently as gene delivery devices in approved CAR-T cell therapies, cancer vaccines and targeted oncolytic therapeutics. To reach this broad spectrum of applications, a number of challenges have been overcome - from our understanding of cancer biology to vector design, manufacture and engineering. Here, we take an overview of viral vector usage in cancer therapy and discuss the latest advancements. We also consider production platforms that enable mainstream adoption of viral vectors for cancer gene therapy. CONCLUSIONS Viral vectors offer numerous opportunities in cancer therapy. Recent advances in vector production platforms open new avenues in safe and efficient viral therapeutic strategies, streamlining the transition from lab bench to bedside. As viral vectors come of age, they could become a standard tool in the cancer treatment arsenal.
Collapse
|
8
|
Bin Riaz I, Khan AM, Catto JW, Hussain SA. Bladder cancer: shedding light on the most promising investigational drugs in clinical trials. Expert Opin Investig Drugs 2021; 30:837-855. [PMID: 34171206 DOI: 10.1080/13543784.2021.1948999] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Urothelial cancers (UC) include tumors of the bladder, upper tract, and proximal urethra. Bladder cancer (BC) arises from urothelial cells lining the bladder and accounts for 90-95% of UC. BC is responsible for approximately 500,000 new cases and has a dismal prognosis with 200,000 deaths annually globally. However, immune checkpoint inhibitors (ICIs) and antibody-drug conjugates are rapidly changing the treatment landscape. Novel therapies are building on this success and are being intensively investigated in clinical trials.Areas Covered: This paper examines the clinical trial data by searching Medline through January 2021 and clinicaltrials.gov and conference proceedings from the latest ASCO and ESMO meetings. We summarize the emerging data from clinical trials and offer insights into mechanisms of novel agents, nuances in clinical trial designs, and future directions.Expert Opinion: Approval of multiple ICIs, Enfortumab Vedotin (EV), Erdatfitinib and switch maintenance strategy with Avelumab, represent major advances in metastatic disease. ICI agents and EV are well poised to move forward for treating the early stages of bladder cancer. Finally, molecular characterization of the tumor offers hope for personalized treatment approaches.
Collapse
Affiliation(s)
- Irbaz Bin Riaz
- Divison of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | | | - James Wf Catto
- Academic Urology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Syed A Hussain
- Department of Oncology and Metabolism, Academic Unit of Oncology, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
9
|
Bogen JP, Grzeschik J, Jakobsen J, Bähre A, Hock B, Kolmar H. Treating Bladder Cancer: Engineering of Current and Next Generation Antibody-, Fusion Protein-, mRNA-, Cell- and Viral-Based Therapeutics. Front Oncol 2021; 11:672262. [PMID: 34123841 PMCID: PMC8191463 DOI: 10.3389/fonc.2021.672262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Bladder cancer is a frequent malignancy and has a clinical need for new therapeutic approaches. Antibody and protein technologies came a long way in recent years and new engineering approaches were applied to generate innovative therapeutic entities with novel mechanisms of action. Furthermore, mRNA-based pharmaceuticals recently reached the market and CAR-T cells and viral-based gene therapy remain a major focus of biomedical research. This review focuses on the engineering of biologics, particularly therapeutic antibodies and their application in preclinical development and clinical trials, as well as approved monoclonal antibodies for the treatment of bladder cancer. Besides, newly emerging entities in the realm of bladder cancer like mRNA, gene therapy or cell-based therapeutics are discussed and evaluated. As many discussed molecules exhibit unique mechanisms of action based on innovative protein engineering, they reflect the next generation of cancer drugs. This review will shed light on the engineering strategies applied to develop these next generation treatments and provides deeper insights into their preclinical profiles, clinical stages, and ongoing trials. Furthermore, the distribution and expression of the targeted antigens and the intended mechanisms of action are elucidated.
Collapse
Affiliation(s)
- Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Joern Jakobsen
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Alexandra Bähre
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Björn Hock
- Global Pharmaceutical Research and Development, Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|