1
|
Bernstock JD, Gerstl JVE, Chen JA, Johnston BR, Nonnenbroich LF, Spanehl L, Gessler FA, Valdes PA, Lu Y, Srinivasan SS, Smith TR, Peruzzi P, Rolston JD, Stone S, Chiocca EA. The Case for Neurosurgical Intervention in Cancer Neuroscience. Neurosurgery 2025; 96:10-17. [PMID: 38904388 DOI: 10.1227/neu.0000000000003039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/19/2024] [Indexed: 06/22/2024] Open
Abstract
The emerging field of cancer neuroscience reshapes our understanding of the intricate relationship between the nervous system and cancer biology; this new paradigm is likely to fundamentally change and advance neuro-oncological care. The profound interplay between cancers and the nervous system is reciprocal: Cancer growth can be induced and regulated by the nervous system; conversely, tumors can themselves alter the nervous system. Such crosstalk between cancer cells and the nervous system is evident in both the peripheral and central nervous systems. Recent advances have uncovered numerous direct neuron-cancer interactions at glioma-neuronal synapses, paracrine mechanisms within the tumor microenvironment, and indirect neuroimmune interactions. Neurosurgeons have historically played a central role in neuro-oncological care, and as the field of cancer neuroscience is becoming increasingly established, the role of neurosurgical intervention is becoming clearer. Examples include peripheral denervation procedures, delineation of neuron-glioma networks, development of neuroprostheses, neuromodulatory procedures, and advanced local delivery systems. The present review seeks to highlight key cancer neuroscience mechanisms with neurosurgical implications and outline the future role of neurosurgical intervention in cancer neuroscience.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston , Massachusetts , USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge , Massachusetts , USA
| | - Jakob V E Gerstl
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Jason A Chen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Leo F Nonnenbroich
- Faculty of Medicine, Heidelberg University, Heidelberg , Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg , Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg , Germany
| | - Lennard Spanehl
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
- Department of Neurosurgery, University Medicine Rostock, Rostock , Germany
| | - Florian A Gessler
- Department of Neurosurgery, University Medicine Rostock, Rostock , Germany
| | - Pablo A Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston , Texas , USA
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Shriya S Srinivasan
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Allston , Massachusetts , USA
| | - Timothy R Smith
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Scellig Stone
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| |
Collapse
|
2
|
Zhang R, Yang Y, Li X, Jiao C, Lou M, Mi W, Mao-Ying QL, Chu Y, Wang Y. Exploring Shared Targets in Cancer Immunotherapy and Cancer-Induced Bone Pain: Insights from Preclinical Studies. Cancer Lett 2024:217399. [PMID: 39689823 DOI: 10.1016/j.canlet.2024.217399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Cancer casts a profound shadow on global health, with pain emerging as one of the dominant and severe complications, particularly in advanced stages. The effective management of cancer-induced pain remains an unmet need. Emerging preclinical evidence suggests that targets related to tumor immunotherapy may also modulate cancer-related pain pathways, thus offering a promising therapeutic direction. This review, focusing on more than ten molecular targets that link cancer immunotherapy and cancer-induced bone pain, underscores their potential to tackle both aspects in the context of comprehensive cancer care. Emphasizing factors such as types of cancer, drug administration methods, and sex differences in the analgesic efficacy of immunotherapeutic agents provides neuroscientific insights into personalized pain management for patients with cancer.
Collapse
Affiliation(s)
- Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Chunmeng Jiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Mengping Lou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Zhang Y, Duan W, Chen L, Chen J, Xu W, Fan Q, Li S, Liu Y, Wang S, He Q, Li X, Huang Y, Peng H, Zhao J, Zhang Q, Qiu Z, Shao Z, Zhang B, Wang Y, Tian Y, Shu Y, Qin Z, Chi Y. Potassium ion channel modulation at cancer-neural interface enhances neuronal excitability in epileptogenic glioblastoma multiforme. Neuron 2024:S0896-6273(24)00737-2. [PMID: 39532103 DOI: 10.1016/j.neuron.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The central nervous system (CNS) is increasingly recognized as a critical modulator in the oncogenesis of glioblastoma multiforme (GBM), with interactions between cancer and local neuronal circuits frequently leading to epilepsy; however, the relative contributions of these factors remain unclear. Here, we report a coordinated intratumor shift among distinct cancer subtypes within progenitor-like families of epileptic GBM patients, revealing an accumulation of oligodendrocyte progenitor (OPC)-like subpopulations at the cancer-neuron interface along with heightened electrical signaling activity in the surrounding neuronal networks. The OPC-like cells associated with epilepsy express KCND2, which encodes the voltage-gated K+ channel KV4.2, enhancing neuronal excitability via accumulation of extracellular K+, as demonstrated in patient-derived ex vivo slices, xenografting models, and engineering organoids. Together, we uncovered the essential local circuitry, cellular components, and molecular mechanisms facilitating cancer-neuron interaction at peritumor borders. KCND2 plays a crucial role in mediating nervous system-cancer electrical communication, suggesting potential targets for intervention.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Wei Duan
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Junrui Chen
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Wei Xu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Qi Fan
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Shuwei Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Yuandong Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shidi Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Quansheng He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Xiaohui Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Yang Huang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Haibao Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Jiaxu Zhao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Qiangqiang Zhang
- Advanced Model Animal Research Center, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute, Tsinghua University, Zhejiang 314006, China; Zhejiang Key Laboratory of Multiomics and Molecular Enzymology, Yangtze Delta Region Institute, Tsinghua University, Zhejiang 314006, China
| | - Zhixin Qiu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhicheng Shao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Novel Bioinformatics Co., Ltd., Shanghai, China
| | - Yihua Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Yousheng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| | - Yudan Chi
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Zhang C, Lu X, Ni T, Wang Q, Gao X, Sun X, Li J, Mao F, Hou J, Wang Y. Developing patient-derived organoids to demonstrate JX24120 inhibits SAMe synthesis in endometrial cancer by targeting MAT2B. Pharmacol Res 2024; 209:107420. [PMID: 39293586 DOI: 10.1016/j.phrs.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we have successfully established a panel of PDOs from EC and conducted drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory β subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724 μM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs models. These findings suggest that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiaojing Lu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Ting Ni
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Qi Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China.
| |
Collapse
|
5
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
6
|
Zhou L, Yang J, Wang S, Guo P, Liao K, Shi Z, Zhao J, Lin S, Yang M, Cai G, Xia Q, Ge J, Chen J, Lin Y. Generation and banking of patient-derived glioblastoma organoid and its application in cancer neuroscience. Am J Cancer Res 2024; 14:5000-5010. [PMID: 39553223 PMCID: PMC11560806 DOI: 10.62347/nsva5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Glioblastoma (GBM) is the most common and deadly tumor in the central nervous system. Although much has been done to optimize treatment options for GBM, the clinical prognosis is still very poor. The recent development of organoid models are emerging as cutting-edge tools in GBM research. However, the established and applications of organoid in cancer neuroscience are still elusive. In this study, we successfully established patient-derived GBM organoids (GBOs) with conserved pathological properties of parental GBM. Moreover, GBO-neuron co-culture system was also investigated and interactions between GFP labeled neurons and mCherry labeled GBOs have been observed. We further used an in-situ stereotaxic instrument to implant GBO into the brains of nude mice and established intracranial orthotopic GBM models based on these GBOs. Thus, we proposed a system to generate and bank patient-derived GBOs and verified its application in cancer neuroscience, which might be an important way to illustrate the mechanism of GBM.
Collapse
Affiliation(s)
- Li Zhou
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200127, China
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
- Shanghai Key Laboratory of Proton-TherapyShanghai 201801, China
| | - Jian Yang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200127, China
| | - Shubei Wang
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
- Shanghai Key Laboratory of Proton-TherapyShanghai 201801, China
| | - Pin Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong, China
| | - Keman Liao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
- Shanghai Key Laboratory of Proton-TherapyShanghai 201801, China
| | - Zhonggang Shi
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
- Shanghai Key Laboratory of Proton-TherapyShanghai 201801, China
| | - Jianyi Zhao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
- Shanghai Key Laboratory of Proton-TherapyShanghai 201801, China
| | - Shukai Lin
- Department of Neurosurgery, Sanya Central Hospital, The Third People’s Hospital of Hainan ProvinceSanya 572000, Hainan, China
| | - Ming Yang
- Guizhou Medical UniversityGuiyang 550025, Guizhou, China
| | - Gang Cai
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
- Shanghai Key Laboratory of Proton-TherapyShanghai 201801, China
| | - Qing Xia
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200127, China
| | - Jianwei Ge
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiaotong University School of MedicineShanghai 200127, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
- Shanghai Key Laboratory of Proton-TherapyShanghai 201801, China
| | - Yingying Lin
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
- Shanghai Key Laboratory of Proton-TherapyShanghai 201801, China
| |
Collapse
|
7
|
Thielman NRJ, Funes V, Davuluri S, Ibanez HE, Sun WC, Fu J, Li K, Muth S, Pan X, Fujiwara K, Dwayne L Thomas Ii, Henderson M, Teh SS, Zhu Q, Thompson E, Jaffee EM, Kolodkin A, Meng F, Zheng L. Semaphorin 3D promotes pancreatic ductal adenocarcinoma progression and metastasis through macrophage reprogramming. SCIENCE ADVANCES 2024; 10:eadp0684. [PMID: 39413197 DOI: 10.1126/sciadv.adp0684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Axon guidance molecules are frequently altered in pancreatic ductal adenocarcinoma (PDA) and influence PDA progression. However, the molecular mechanism remained unclear. Using genetically engineered mouse models to examine semaphorin 3D (SEMA3D), we identified a dual role for tumor- and nerve-derived SEMA3D in the malignant transformation of pancreatic epithelial cells and invasive PDA development. Pancreatic-specific knockout of the SEMA3D gene from the KRASG12D and TP53R172H mutation knock-in, PDX1-Cre(KPC) mouse model demonstrated delayed tumor initiation, prolonged survival, absence of metastasis, and reduced M2 macrophage expression. Mechanistically, tumor- and nerve-derived SEMA3D indirectly reprograms macrophages through KRASMUT-dependent ARF6 signaling in PDA cells, resulting in increased lactate production, which is sensed by GPCR132 on macrophages to stimulate protumorigenic M2 polarization. Multiplex immunohistochemistry demonstrated increased M2-polarized macrophages proximal to nerves in SEMA3D-expressing human PDA tissue. This study suggests that altered SEMA3D expression leads to an acquisition of cancer-promoting functions, and nerve-derived SEMA3D is "hijacked" by PDA cells to support growth and metastasis in a KRASMUT-dependent manner.
Collapse
Affiliation(s)
- Noelle R J Thielman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vanessa Funes
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sanjana Davuluri
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21287, USA
| | - Hector E Ibanez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wei-Chih Sun
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Juan Fu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Keyu Li
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Stephen Muth
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xingyi Pan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kenji Fujiwara
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Kimura Hospital and Department of Surgery; Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dwayne L Thomas Ii
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - MacKenzie Henderson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Selina Shiqing Teh
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qingfeng Zhu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Thompson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alex Kolodkin
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fengxi Meng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Shanghai Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Hwang WL, Perrault EN, Birbrair A, Mattson BJ, Gutmann DH, Mabbott DJ, Cukierman E, Repasky EA, Sloan EK, Zong H, Demir IE, Saloman JL, Borniger JC, Hu J, Dietrich J, Breunig JJ, Çifcibaşı K, Ahmad Kasm KA, Valiente M, Wintermark M, Acharya MM, Scheff NN, D'Silva NJ, Vermeer PD, Wong RJ, Talbot S, Hervey-Jumper SL, Wang TC, Ye Y, Pan Y, Bunimovich YL, Amit M. Integrating priorities at the intersection of cancer and neuroscience. Cancer Cell 2024:S1535-6108(24)00362-3. [PMID: 39423816 DOI: 10.1016/j.ccell.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Cancer neuroscience is a rapidly growing multidisciplinary field that conceptualizes tumors as tissues fully integrated into the nervous system. Recognizing the complexity and challenges in this field is of fundamental importance to achieving the goal of translational impact for cancer patients. Our commentary highlights key scientific priorities, optimal training settings, and roadblocks to translating scientific findings to the clinic in this emerging field, aiming to formulate a transformative and cohesive path forward.
Collapse
Affiliation(s)
- William L Hwang
- Center for Systems Biology, Center for Cancer Research, and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| | - Ella N Perrault
- Center for Systems Biology, Center for Cancer Research, and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexander Birbrair
- Department of Dermatology, Carbone Cancer Center, and Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brandi J Mattson
- The Belfer Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donald J Mabbott
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Edna Cukierman
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA; Tumor Microenvironment Working Group, American Association for Cancer Research, Philadelphia, PA, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ihsan Ekin Demir
- Department of Surgery, TUM University Hospital, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Else Kröner Clinician Scientist Professor, Munich, Germany
| | - Jami L Saloman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jian Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorg Dietrich
- Department of Neurology, Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kaan Çifcibaşı
- Department of Surgery, TUM University Hospital, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Khalil Ali Ahmad Kasm
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Max Wintermark
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - Nicole N Scheff
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Richard J Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Yi Ye
- Translational Research Center, Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Moran Amit
- Department of Head and Neck Surgery and the Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
9
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
10
|
He K, Wang H, Huo R, Jiang SH, Xue J. Schwann cells and enteric glial cells: Emerging stars in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189160. [PMID: 39059672 DOI: 10.1016/j.bbcan.2024.189160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Cancer neuroscience, a promising field dedicated to exploring interactions between cancer and the nervous system, has attracted growing attention. The gastrointestinal tracts exhibit extensive innervation, notably characterized by intrinsic innervation. The gut harbors a substantial population of glial cells, including Schwann cells wrapping axons of neurons in the peripheral nervous system and enteric glial cells intricately associated with intrinsic innervation. Glial cells play a crucial role in maintaining the physiological functions of the intestine, encompassing nutrient absorption, barrier integrity, and immune modulation. Nevertheless, it has only been in recent times that the significance of glial cells within colorectal cancer (CRC) has begun to receive considerable attention. Emerging data suggests that glial cells in the gut contribute to the progression and metastasis of CRC, by interacting with cancer cells, influencing inflammation, and modulating the tumor microenvironment. Here, we summarize the significant roles of glial cells in the development and progression of CRC and discuss the latest technologies that can be integrated into this field for in-depth exploration, as well as potential specific targeted strategies for future exploration to benefit patients.
Collapse
Affiliation(s)
- Kexin He
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ruixue Huo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
11
|
Ma X, Deng K, Sun Y, Wu M. Research trends on cancer neuroscience: a bibliometric and visualized analysis. Front Neurosci 2024; 18:1408306. [PMID: 39268034 PMCID: PMC11390534 DOI: 10.3389/fnins.2024.1408306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Background Recently, cancer neuroscience has become the focus for scientists. Interactions between the nervous system and cancer (both systemic and local) can regulate tumorigenesis, progression, treatment resistance, compromise of anti-cancer immunity, and provocation of tumor-promoting inflammation. We assessed the related research on cancer neuroscience through bibliometric analysis and explored the research status and hotspots from 2020 to 2024. Methods Publications on cancer neuroscience retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and Scimago Graphica were used to analyze and visualize the result. Results A total of 744 publications were retrieved, with an upward trend in the overall number of articles published over the last 5 years. As it has the highest number of publications (n = 242) and citations (average 13.63 citations per article), the United States holds an absolute voice in the field of cancer neuroscience. The most productive organizations and journals were Shanghai Jiaotong University (n = 24) and Cancers (n = 45), respectively. Monje M (H-index = 53), Hondermarck H (H-index = 42), and Amit M (H-index = 39) were the three researchers who have contributed most to the field. From a global perspective, research hotspots in cancer neuroscience comprise nerve/neuron-tumor cell interactions, crosstalk between the nervous system and other components of the tumor microenvironment (such as immune cells), as well as the impact of tumors and tumor therapies on nervous system function. Conclusion The United States and European countries are dominating the field of cancer neuroscience, while developing countries such as China are growing rapidly but with limited impact. The next focal point in this field is likely to be neurotrophic factors. Cancer neuroscience is still in its infancy, which means that many of the interactions and mechanisms between the nervous system and cancer are not yet fully understood. Further investigation is necessary to probe the interactions of the nervous system with cancer cell subpopulations and other components of the tumor microenvironment.
Collapse
Affiliation(s)
- Xinru Ma
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Kun Deng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingnan Sun
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Minghua Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Zheng S, Hu C, Lin Q, Li T, Li G, Tian Q, Zhang X, Huang T, Ye Y, He R, Chen C, Zhou Y, Chen R. Extracellular vesicle-packaged PIAT from cancer-associated fibroblasts drives neural remodeling by mediating m5C modification in pancreatic cancer mouse models. Sci Transl Med 2024; 16:eadi0178. [PMID: 39018369 DOI: 10.1126/scitranslmed.adi0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 02/06/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Perineural invasion (PNI) is a biological characteristic commonly observed in pancreatic cancer. Although PNI plays a key role in pancreatic cancer metastasis, recurrence, and poor postoperative survival, its mechanism is largely unclarified. Clinical sample analysis and endoscopic ultrasonographic elasticity scoring indicated that cancer-associated fibroblasts (CAFs) were closely related to the occurrence of PNI. Furthermore, CAF-derived extracellular vesicles (EVs) were involved in PNI in dorsal root ganglion coculture and mouse sciatic nerve models. Next, we demonstrated that CAFs promoted PNI through extracellular vesicle transmission of PNI-associated transcript (PIAT). Mechanistically, PIAT specifically bound to YBX1 and blocked the YBX1-Nedd4l interaction to inhibit YBX1 ubiquitination and degradation. Furthermore, PIAT enhanced the binding of YBX1 and PNI-associated mRNAs in a 5-methylcytosine (m5C)-dependent manner. Mutation of m5C recognition motifs in YBX1 or m5C sites in downstream target genes reversed PIAT-mediated PNI. Consistent with these findings, analyses using a KPC mouse model demonstrated that the PIAT/YBX1 axis enhanced PNI through m5C modification. Clinical data suggested that the PIAT expression in the serum EVs of patients with pancreatic cancer was associated with the degree of neural invasion and prognosis. Our study revealed the important role of the PIAT/YBX1 signaling axis in the tumor microenvironment (TME) in promoting tumor cell PNI and provided a new target for precise interference with CAFs and RNA methylation in the TME to suppress PNI in pancreatic cancer.
Collapse
Affiliation(s)
- Shangyou Zheng
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Chonghui Hu
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Qing Lin
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Tingting Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Guolin Li
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, People's Republic of China
| | - Qing Tian
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Tianhao Huang
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Yuancheng Ye
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Rihua He
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yu Zhou
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Rufu Chen
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, People's Republic of China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| |
Collapse
|
13
|
Jiang L, Zhou Y, Tang S, Yang D, Zhang Y, Zhang J, Yang F, Zhou T, Xia X, Chen Q, Jiang L, Jiang Y, Feng X. Nociceptive adenosine A 2A receptor on trigeminal nerves orchestrates CGRP release to regulate the progression of oral squamous cell carcinoma. Int J Oral Sci 2024; 16:46. [PMID: 38886342 PMCID: PMC11183250 DOI: 10.1038/s41368-024-00308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 06/20/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) associated pain commonly predicts adverse events among patients. This clinical feature indicates the engagement of nociceptors on sensory neurons during the development of malignancy. However, it is yet to be determined if targeting oncometabolite-associated nociception processes can hinder OSCC progression. In this study, we reported that nociceptive endings infiltrating both clinical samples and mouse tumor xenografts were associated with poorer clinical outcomes and drove tumor progression in vivo, as evidenced by clinical tissue microarray analysis and murine lingual denervation. We observed that the OSCC microenvironment was characteristic of excessive adenosine due to CD73 upregulation which negatively predicted clinical outcomes in the TCGA-HNSC patient cohort. Notably, such adenosine concentrative OSCC niche was associated with the stimulation of adenosine A2A receptor (A2AR) on trigeminal ganglia. Antagonism of trigeminal A2AR with a selective A2AR inhibitor SCH58261 resulted in impeded OSCC growth in vivo. We showed that trigeminal A2AR overstimulation in OSCC xenograft did not entail any changes in the transcription level of CGRP in trigeminal ganglia but significantly triggered the release of CGRP, an effect counteracted by SCH58261. We further demonstrated the pro-tumor effect of CGRP by feeding mice with the clinically approved CGRP receptor antagonist rimegepant which inhibited the activation of ERK and YAP. Finally, we diminished the impact of CGRP on OSCC with istradefylline, a clinically available drug that targets neuronal A2AR. Therefore, we established trigeminal A2AR-mediated CGRP release as a promising druggable circuit in OSCC treatment.
Collapse
Grants
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- 82170971, 82373187, 82002888 National Natural Science Foundation of China (National Science Foundation of China)
- Fundamental Research Funds for the Central Universities (YJ201987); Sichuan Science and Technology Program (2021ZYD0090 and 2022YFS0207); Scientific Research Foundation, West China Hospital of Stomatology Sichuan University (QDJF2019-3 and RD-03-202110); CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-004)
- Fundamental Research Funds for the Central Universities (YJ201987), Sichuan Science and Technology Program (2021ZYD0090 and 2022YFS0207), Scientific Research Foundation, West China Hospital of Stomatology Sichuan University (QDJF2019-3 and RD-03-202110), and CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-004)
Collapse
Affiliation(s)
- Lanxin Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shijie Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiuge Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Morel D, Robert C, Paragios N, Grégoire V, Deutsch E. Translational Frontiers and Clinical Opportunities of Immunologically Fitted Radiotherapy. Clin Cancer Res 2024; 30:2317-2332. [PMID: 38477824 PMCID: PMC11145173 DOI: 10.1158/1078-0432.ccr-23-3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Ionizing radiation can have a wide range of impacts on tumor-immune interactions, which are being studied with the greatest interest and at an accelerating pace by the medical community. Despite its undeniable immunostimulatory potential, it clearly appears that radiotherapy as it is prescribed and delivered nowadays often alters the host's immunity toward a suboptimal state. This may impair the full recovery of a sustained and efficient antitumor immunosurveillance posttreatment. An emerging concept is arising from this awareness and consists of reconsidering the way of designing radiation treatment planning, notably by taking into account the individualized risks of deleterious radio-induced immune alteration that can be deciphered from the planned beam trajectory through lymphocyte-rich organs. In this review, we critically appraise key aspects to consider while planning immunologically fitted radiotherapy, including the challenges linked to the identification of new dose constraints to immune-rich structures. We also discuss how pharmacologic immunomodulation could be advantageously used in combination with radiotherapy to compensate for the radio-induced loss, for example, with (i) agonists of interleukin (IL)2, IL4, IL7, IL9, IL15, or IL21, similarly to G-CSF being used for the prophylaxis of severe chemo-induced neutropenia, or with (ii) myeloid-derived suppressive cell blockers.
Collapse
Affiliation(s)
- Daphné Morel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| | - Nikos Paragios
- Therapanacea, Paris, France
- CentraleSupélec, Gif-sur-Yvette, France
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| |
Collapse
|
15
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann JE, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Göller PC, Sahm F, Menstel JA, Zimmer DN, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. A prognostic neural epigenetic signature in high-grade glioma. Nat Med 2024; 30:1622-1635. [PMID: 38760585 PMCID: PMC11186787 DOI: 10.1038/s41591-024-02969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Helena Bode
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina J Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Pauline C Göller
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joelle Aline Menstel
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - David Niklas Zimmer
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | | | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Dana Silverbush
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Volker Hovestadt
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
- Translational Neurosurgery, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Dakal TC, Dhabhai B, Pant A, Moar K, Chaudhary K, Yadav V, Ranga V, Sharma NK, Kumar A, Maurya PK, Maciaczyk J, Schmidt‐Wolf IGH, Sharma A. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (Beijing) 2024; 5:e582. [PMID: 38827026 PMCID: PMC11141506 DOI: 10.1002/mco2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Bhanupriya Dhabhai
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Anuja Pant
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kareena Moar
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kanika Chaudhary
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vikas Yadav
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vipin Ranga
- Dearptment of Agricultural BiotechnologyDBT‐NECAB, Assam Agricultural UniversityJorhatAssamIndia
| | | | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of Bioinformatics, International Technology ParkBangaloreIndia
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| |
Collapse
|
17
|
Benzaquen D, Lawrence YR, Taussky D, Zwahlen D, Oehler C, Champion A. The Crosstalk between Nerves and Cancer-A Poorly Understood Phenomenon and New Possibilities. Cancers (Basel) 2024; 16:1875. [PMID: 38791953 PMCID: PMC11120349 DOI: 10.3390/cancers16101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Crosstalk occurs between nerve and cancer cells. These interactions are important for cancer homeostasis and metabolism. Nerve cells influence the tumor microenvironment (TME) and participate in metastasis through neurogenesis, neural extension, and axonogenesis. We summarized the past and current literature on the interaction between nerves and cancer, with a special focus on pancreatic ductal adenocarcinoma (PDAC), prostate cancer (PCa), and the role of the nerve growth factor (NGF) in cancer. MATERIALS/METHODS We reviewed PubMed and Google Scholar for the relevant literature on the relationship between nerves, neurotrophins, and cancer in general and specifically for both PCa and PDAC. RESULTS The NGF helped sustain cancer cell proliferation and evade immune defense. It is a neuropeptide involved in neurogenic inflammation through the activation of several cells of the immune system by several proinflammatory cytokines. Both PCa and PDAC employ different strategies to evade immune defense. The prostate is richly innervated by both the sympathetic and parasympathetic nerves, which helps in both growth control and homeostasis. Newly formed autonomic nerve fibers grow into cancer cells and contribute to cancer initiation and progression through the activation of β-adrenergic and muscarinic cholinergic signaling. Surgical or chemical sympathectomy prevents the development of prostate cancer. Beta-blockers have a high therapeutic potential for cancer, although current clinical data have been contradictory. With a better understanding of the beta-receptors, one could identify specific receptors that could have an effect on prostate cancer development or act as therapeutic agents. CONCLUSION The bidirectional crosstalk between the nervous system and cancer cells has emerged as a crucial regulator of cancer and its microenvironment. Denervation has been shown to be promising in vitro and in animal models. Additionally, there is a potential relationship between cancer and psychosocial biology through neurotransmitters and neurotrophins.
Collapse
Affiliation(s)
- David Benzaquen
- Radiation Oncology, Hôpital de La Tour, 1217 Meyrin, Switzerland; (D.B.); (A.C.)
| | - Yaacov R. Lawrence
- Department of Radiation Oncology, Sheba Medical Center, Tel-Aviv 39040, Israel;
| | - Daniel Taussky
- Radiation Oncology, Hôpital de La Tour, 1217 Meyrin, Switzerland; (D.B.); (A.C.)
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0C1, Canada
| | - Daniel Zwahlen
- Department of Radiation Oncology, Kantonsspital Winterthur, 8400 Winterthur, Switzerland; (D.Z.); (C.O.)
| | - Christoph Oehler
- Department of Radiation Oncology, Kantonsspital Winterthur, 8400 Winterthur, Switzerland; (D.Z.); (C.O.)
| | - Ambroise Champion
- Radiation Oncology, Hôpital de La Tour, 1217 Meyrin, Switzerland; (D.B.); (A.C.)
| |
Collapse
|
18
|
Liu R, Wang C, Sun Z, Shi X, Zhang Z, Luo J. Neuronal CFL1 upregulation in head and neck squamous cell carcinoma enhances tumor-nerve crosstalk and promotes tumor growth. Mol Carcinog 2024; 63:874-884. [PMID: 38353363 DOI: 10.1002/mc.23694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer type, marked by a pronounced nerve density within the tumor microenvironment and a high rate of perineural invasion (PNI). Growing evidence suggests that the nervous system plays a vital role in HNSCC progression. Yet, the mechanisms governing cancer-nerve interactions remain largely elusive. Our research revealed that cofilin-1 (CFL1) is significantly overexpressed in HNSCC and correlates with both PNI and unfavorable prognosis. Utilizing multiplex fluorescent immunohistochemistry, we have localized CFL1 chiefly to the nerves adjacent to tumor sites. Significantly, it is the elevated expression of CFL1 in neuronal structures, rather than in the tumor cells, that aligns with diminished patient survival rates. We observed that HNSCC cells induced the expression of neuronal CFL1 and that the conditional knockout of neuronal CFL1 impedes tumor-nerve interactions. Both Gene Ontology functional enrichment analyses and Gene Set Enrichment Analysis demonstrate that CFL1 expression in HNSCC is associated with specific biological processes, including "RIBOSOME," "PROTEASOME," and "cadherin binding." In summary, HNSCC promotes the expression of CFL1 in nerves, which is essential for cancer-nerve interactions. The neuronal CFL1 is associated with PNI and may be a potential molecular prognostic marker of poor survival in HNSCC.
Collapse
Affiliation(s)
- Ruoyan Liu
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
| | - Chunli Wang
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
- Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhonghao Sun
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
- Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaotian Shi
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
- Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ze Zhang
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
- Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingtao Luo
- Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
- Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
19
|
Wang Y, Liu Z, Tian Y, Zhao H, Fu X. Periampullary cancer and neurological interactions: current understanding and future research directions. Front Oncol 2024; 14:1370111. [PMID: 38567163 PMCID: PMC10985190 DOI: 10.3389/fonc.2024.1370111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Periampullary cancer is a malignant tumor occurring around the ampullary region of the liver and pancreas, encompassing a variety of tissue types and sharing numerous biological characteristics, including interactions with the nervous system. The nervous system plays a crucial role in regulating organ development, maintaining physiological equilibrium, and ensuring life process plasticity, a role that is equally pivotal in oncology. Investigations into nerve-tumor interactions have unveiled their key part in controlling cancer progression, inhibiting anti-tumor immune responses, facilitating invasion and metastasis, and triggering neuropathic pain. Despite many mechanisms by which nerve fibers contribute to cancer advancement still being incompletely understood, the growing emphasis on the significance of nerves within the tumor microenvironment in recent years has set the stage for the development of groundbreaking therapies. This includes combining current neuroactive medications with established therapeutic protocols. This review centers on the mechanisms of Periampullary cancer's interactions with nerves, the influence of various types of nerve innervation on cancer evolution, and outlines the horizons for ongoing and forthcoming research.
Collapse
Affiliation(s)
- Yuchen Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zi’ang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoliang Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Fu Y, Shen K, Wang H, Wang S, Wang X, Zhu L, Zheng Y, Zou T, Ci H, Dong Q, Qin LX. Alpha5 nicotine acetylcholine receptor subunit promotes intrahepatic cholangiocarcinoma metastasis. Signal Transduct Target Ther 2024; 9:63. [PMID: 38453934 PMCID: PMC10920868 DOI: 10.1038/s41392-024-01761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Neurotransmitter-initiated signaling pathway were reported to play an important role in regulating the malignant phenotype of tumor cells. Cancer cells could exhibit a "neural addiction" property and build up local nerve networks to achieve an enhanced neurotransmitter-initiated signaling through nerve growth factor-mediated axonogenesis. Targeting the dysregulated nervous systems might represent a novel strategy for cancer treatment. However, whether intrahepatic cholangiocarcinoma (ICC) could build its own nerve networks and the role of neurotransmitters in the progression ICC remains largely unknown. Immunofluorescence staining and Enzyme-linked immunosorbent assay suggested that ICC cells and the infiltrated nerves could generate a tumor microenvironment rich in acetylcholine that promotes ICC metastasis by inducing epithelial-mesenchymal transition (EMT). Acetylcholine promoted ICC metastasis through interacting with its receptor, alpha 5 nicotine acetylcholine receptor subunits (CHRNA5). Furthermore, acetylcholine/CHRNA5 axis activated GSK3β/β-catenin signaling pathway partially through the influx of Ca2+-mediated activation of Ca/calmodulin-dependent protein kinases (CAMKII). In addition, acetylcholine signaling activation also expanded nerve infiltration through increasing the expression of Brain-Derived Neurotrophic Factor (BDNF), which formed a feedforward acetylcholine-BDNF axis to promote ICC progression. KN93, a small-molecule inhibitor of CAMKII, significantly inhibited the migration and enhanced the sensitivity to gemcitabine of ICC cells. Above all, Acetylcholine/CHRNA5 axis increased the expression of β-catenin to promote the metastasis and resistance to gemcitabine of ICC via CAMKII/GSK3β signaling, and the CAMKII inhibitor KN93 may be an effective therapeutic strategy for combating ICC metastasis.
Collapse
Affiliation(s)
- Yan Fu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, 210009, Nanjing, China
| | - Keyu Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Hao Wang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Shun Wang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Xufeng Wang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Le Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Yan Zheng
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Tiantian Zou
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Hongfei Ci
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Qiongzhu Dong
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China.
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, China.
| | - Lun-Xiu Qin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 200040, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
21
|
Dewdney B, Miranda PJ, Kuchibhotla M, Palanisamy R, Richworth C, Milligan CJ, Ng ZY, Ursich L, Petrou S, Fletcher EV, Daly RJ, Lim Kam Sian TCC, Valvi S, Endersby R, Johns TG. Ion channel modulator DPI-201-106 significantly enhances antitumor activity of DNA damage response inhibitors in glioblastoma. Neurooncol Adv 2024; 6:vdae187. [PMID: 39659830 PMCID: PMC11630809 DOI: 10.1093/noajnl/vdae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Background Glioblastoma, a lethal high-grade glioma, has not seen improvements in clinical outcomes in nearly 30 years. Ion channels are increasingly associated with tumorigenesis, and there are hundreds of brain-penetrant drugs that inhibit ion channels, representing an untapped therapeutic resource. The aim of this exploratory drug study was to screen an ion channel drug library against patient-derived glioblastoma cells to identify new treatments for brain cancer. Methods Seventy-two ion channel inhibitors were screened in patient-derived glioblastoma cells, and cell viability was determined using the ViaLight Assay. Cell cycle and apoptosis analysis were determined with flow cytometry using PI and Annexin V staining, respectively. Protein and phosphoprotein expression was determined using mass spectrometry and analyzed using gene set enrichment analysis. Kaplan-Meier survival analyses were performed using intracranial xenograft models of GBM6 and WK1 cells. Results The voltage-gated sodium channel modulator, DPI-201-106, was revealed to reduce glioblastoma cell viability in vitro by inducing cell cycle arrest and apoptosis. Phosphoproteomics indicated that DPI-201-106 may impact DNA damage response (DDR) pathways. Combination treatment of DPI-201-106 with the CHK1 inhibitor prexasertib or the PARP inhibitor niraparib demonstrated synergistic effects in multiple patient-derived glioblastoma cells both in vitro and in intracranial xenograft mouse models, extending survival of glioblastoma-bearing mice. Conclusions DPI-201-106 enhances the efficacy of DDR inhibitors to reduce glioblastoma growth. As these drugs have already been clinically tested in humans, repurposing DPI-201-106 in novel combinatorial approaches will allow for rapid translation into the clinic.
Collapse
Affiliation(s)
- Brittany Dewdney
- Division of Paediatrics/Centre for Child Health Research, Medical School, University of Western Australia, Western Australia, Australia
- The Kids Research Institute, Perth, Western Australia, Australia
| | - Panimaya Jeffreena Miranda
- Division of Paediatrics/Centre for Child Health Research, Medical School, University of Western Australia, Western Australia, Australia
- The Kids Research Institute, Perth, Western Australia, Australia
| | - Mani Kuchibhotla
- The Kids Research Institute, Perth, Western Australia, Australia
| | | | | | - Carol J Milligan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Zi Ying Ng
- The Kids Research Institute, Perth, Western Australia, Australia
| | - Lauren Ursich
- The Kids Research Institute, Perth, Western Australia, Australia
| | - Steve Petrou
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emily V Fletcher
- Division of Paediatrics/Centre for Child Health Research, Medical School, University of Western Australia, Western Australia, Australia
- The Kids Research Institute, Perth, Western Australia, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Terry C C Lim Kam Sian
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Santosh Valvi
- Perth Children’s Hospital, Perth, Western Australia, Australia
- Division of Paediatrics/Centre for Child Health Research, Medical School, University of Western Australia, Western Australia, Australia
- The Kids Research Institute, Perth, Western Australia, Australia
| | - Raelene Endersby
- Division of Paediatrics/Centre for Child Health Research, Medical School, University of Western Australia, Western Australia, Australia
- The Kids Research Institute, Perth, Western Australia, Australia
| | - Terrance G Johns
- Division of Paediatrics/Centre for Child Health Research, Medical School, University of Western Australia, Western Australia, Australia
- The Kids Research Institute, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Xu W, Liu J, Zhang J, Lu J, Guo J. Tumor microenvironment crosstalk between tumors and the nervous system in pancreatic cancer: Molecular mechanisms and clinical perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189032. [PMID: 38036106 DOI: 10.1016/j.bbcan.2023.189032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits the highest incidence of perineural invasion among all solid tumors. The intricate interplay between tumors and the nervous system plays an important role in PDAC tumorigenesis, progression, recurrence, and metastasis. Various clinical symptoms of PDAC, including anorexia and cancer pain, have been linked to aberrant neural activity, while the presence of perineural invasion is a significant prognostic indicator. The use of conventional neuroactive drugs and neurosurgical interventions for PDAC patients is on the rise. An in-depth exploration of tumor-nervous system crosstalk has revealed novel therapeutic strategies for mitigating PDAC progression and effectively relieving symptoms. In this comprehensive review, we elucidate the regulatory functions of tumor-nervous system crosstalk, provide a succinct overview of the relationship between tumor-nervous system dialogue and clinical symptomatology, and deliberate the current research progress and forthcoming avenues of neural therapy for PDAC.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianlu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Jun Lu
- Department of General Surgery, Peking University Third Hospital, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
23
|
Xiong SY, Wen HZ, Dai LM, Lou YX, Wang ZQ, Yi YL, Yan XJ, Wu YR, Sun W, Chen PH, Yang SZ, Qi XW, Zhang Y, Wu GY. A brain-tumor neural circuit controls breast cancer progression in mice. J Clin Invest 2023; 133:e167725. [PMID: 37847562 PMCID: PMC10721160 DOI: 10.1172/jci167725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Tumor burden, considered a common chronic stressor, can cause widespread anxiety. Evidence suggests that cancer-induced anxiety can promote tumor progression, but the underlying neural mechanism remains unclear. Here, we used neuroscience and cancer tools to investigate how the brain contributes to tumor progression via nerve-tumor crosstalk in a mouse model of breast cancer. We show that tumor-bearing mice exhibited significant anxiety-like behaviors and that corticotropin-releasing hormone (CRH) neurons in the central medial amygdala (CeM) were activated. Moreover, we detected newly formed sympathetic nerves in tumors, which established a polysynaptic connection to the brain. Pharmacogenetic or optogenetic inhibition of CeMCRH neurons and the CeMCRH→lateral paragigantocellular nucleus (LPGi) circuit significantly alleviated anxiety-like behaviors and slowed tumor growth. Conversely, artificial activation of CeMCRH neurons and the CeMCRH→LPGi circuit increased anxiety and tumor growth. Importantly, we found alprazolam, an antianxiety drug, to be a promising agent for slowing tumor progression. Furthermore, we show that manipulation of the CeMCRH→LPGi circuit directly regulated the activity of the intratumoral sympathetic nerves and peripheral nerve-derived norepinephrine, which affected tumor progression by modulating antitumor immunity. Together, these findings reveal a brain-tumor neural circuit that contributes to breast cancer progression and provide therapeutic insights for breast cancer.
Collapse
Affiliation(s)
- Si-Yi Xiong
- Breast and Thyroid Surgery, Southwest Hospital
| | - Hui-Zhong Wen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Li-Meng Dai
- Department of Medical Genetics, College of Basic Medical Sciences
| | - Yun-Xiao Lou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Zhao-Qun Wang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Yi-Lun Yi
- Experimental Center of Basic Medicine, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Xiao-Jing Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences
| | - Ya-Ran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, and
| | - Wei Sun
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Peng-Hui Chen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Si-Zhe Yang
- Breast and Thyroid Surgery, Southwest Hospital
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital
| | - Guang-Yan Wu
- Experimental Center of Basic Medicine, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| |
Collapse
|
24
|
Lan Y, Zou S, Wang W, Chen Q, Zhu Y. Progress in cancer neuroscience. MedComm (Beijing) 2023; 4:e431. [PMID: 38020711 PMCID: PMC10665600 DOI: 10.1002/mco2.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer of the central nervous system (CNS) can crosstalk systemically and locally in the tumor microenvironment and has become a topic of attention for tumor initiation and advancement. Recently studied neuronal and cancer interaction fundamentally altered the knowledge about glioma and metastases, indicating how cancers invade complex neuronal networks. This review systematically discussed the interactions between neurons and cancers and elucidates new therapeutic avenues. We have overviewed the current understanding of direct or indirect communications of neuronal cells with cancer and the mechanisms associated with cancer invasion. Besides, tumor-associated neuronal dysfunction and the influence of cancer therapies on the CNS are highlighted. Furthermore, interactions between peripheral nervous system and various cancers have also been discussed separately. Intriguingly and importantly, it cannot be ignored that exosomes could mediate the "wireless communications" between nervous system and cancer. Finally, promising future strategies targeting neuronal-brain tumor interactions were reviewed. A great deal of work remains to be done to elucidate the neuroscience of cancer, and future more research should be directed toward clarifying the precise mechanisms of cancer neuroscience, which hold enormous promise to improve outcomes for a wide range of malignancies.
Collapse
Affiliation(s)
- Yu‐Long Lan
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Wen Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Yongjian Zhu
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
25
|
Winkler F. Neuroscience and oncology: state-of-the-art and new perspectives. Curr Opin Neurol 2023; 36:544-548. [PMID: 37973023 DOI: 10.1097/wco.0000000000001207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW Emerging discoveries suggest that both the central (CNS) and peripheral (PNS) nervous system are an important driver of cancer initiation, promotion, dissemination, and therapy resistance, not only in the brain but also in multiple cancer types throughout the body. This article highlights the most recent developments in this emerging field of research over the last year and provides a roadmap for the future, emphasizing its translational potential. RECENT FINDINGS Excitatory synapses between neurons and cancer cells that drive growth and invasion have been detected and characterized. In addition, a plethora of paracrine, mostly tumor-promoting neuro-cancer interactions are reported, and a neuro-immuno-cancer axis emerges. Cancer cell-intrinsic neural properties, and cancer (therapy) effects on the nervous system that cause morbidity in patients and can establish harmful feedback loops receive increasing attention. Despite the relative novelty of these findings, therapies that inhibit key mechanisms of this neuro-cancer crosstalk are developed, and already tested in clinical trials, largely by repurposing of approved drugs. SUMMARY Neuro-cancer interactions are manyfold, have multiple clinical implications, and can lead to novel neuroscience-instructed cancer therapies and improved therapies of neurological dysfunctions and cancer pain. The development of biomarkers and identification of most promising therapeutic targets is crucial.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
26
|
Ni B, Yin Y, Li Z, Wang J, Wang X, Wang K. Crosstalk Between Peripheral Innervation and Pancreatic Ductal Adenocarcinoma. Neurosci Bull 2023; 39:1717-1731. [PMID: 37347365 PMCID: PMC10603023 DOI: 10.1007/s12264-023-01082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy, characterized by late diagnosis, aggressive growth, and therapy resistance, leading to a poor overall prognosis. Emerging evidence shows that the peripheral nerve is an important non-tumor component in the tumor microenvironment that regulates tumor growth and immune escape. The crosstalk between the neuronal system and PDAC has become a hot research topic that may provide novel mechanisms underlying tumor progression and further uncover promising therapeutic targets. In this review, we highlight the mechanisms of perineural invasion and the role of various types of tumor innervation in the progression of PDAC, summarize the potential signaling pathways modulating the neuronal-cancer interaction, and discuss the current and future therapeutic possibilities for this condition.
Collapse
Affiliation(s)
- Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zekun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Junjin Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
27
|
Thielman NRJ, Funes V, Davuluri S, Ibanez HE, Sun WC, Fu J, Li K, Muth S, Pan X, Fujiwara K, Thomas D, Henderson M, Teh SS, Zhu Q, Thompson E, Jaffee EM, Kolodkin A, Meng F, Zheng L. Tumor- and Nerve-Derived Axon Guidance Molecule Promotes Pancreatic Ductal Adenocarcinoma Progression and Metastasis through Macrophage Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563862. [PMID: 37961340 PMCID: PMC10634802 DOI: 10.1101/2023.10.24.563862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Axon guidance molecules were found to be the gene family most frequently altered in pancreatic ductal adenocarcinoma (PDA) through mutations and copy number changes. However, the exact molecular mechanism regarding PDA development remained unclear. Using genetically engineered mouse models to examine one of the axon guidance molecules, semaphorin 3D (SEMA3D), we found a dual role for tumor-derived SEMA3D in malignant transformation of pancreatic epithelial cells and a role for nerve-derived SEMA3D in PDA development. This was demonstrated by the pancreatic-specific knockout of the SEMA3D gene from the KRAS G12D and TP53 R 172 H mutation knock-in, PDX1-Cre (KPC) mouse model which demonstrated a delayed tumor initiation and growth comparing to the original KPC mouse model. Our results showed that SEMA3D knockout skews the macrophages in the pancreas away from M2 polarization, providing a potential mechanistic role of tumor-derived SEMA3D in PDA development. The KPC mice with the SEMA3D knockout remained metastasis-free, however, died from primary tumor growth. We then tested the hypothesis that a potential compensation mechanism could result from SEMA3D which is naturally expressed by the intratumoral nerves. Our study further revealed that nerve-derived SEMA3D does not reprogram macrophages directly, but reprograms macrophages indirectly through ARF6 signaling and lactate production in PDA tumor cells. SEMA3D increases tumor-secreted lactate which is sensed by GPCR132 on macrophages and subsequently stimulates pro-tumorigenic M2 polarization in vivo. Tumor intrinsic- and extrinsic-SEMA3D induced ARF6 signaling through its receptor Plexin D1 in a mutant KRAS-dependent manner. Consistently, RNA sequencing database analysis revealed an association of higher KRAS MUT expression with an increase in SEMA3D and ARF6 expression in human PDAs. Moreover, multiplex immunohistochemistry analysis showed an increased number of M2-polarized macrophages proximal to nerves in human PDA tissue expressing SEMA3D. Thus, this study suggests altered expression of SEMA3D in tumor cells lead to acquisition of cancer-promoting functions and the axon guidance signaling originating from nerves is "hijacked" by tumor cells to support their growth. Other axon guidance and neuronal development molecules may play a similar dual role which is worth further investigation. One sentence summary Tumor- and nerve-derived SEMA3D promotes tumor progression and metastasis through macrophage reprogramming in the tumor microenvironment. STATEMENT OF SIGNIFICANCE This study established the dual role of axon guidance molecule, SEMA3D, in the malignant transformation of pancreatic epithelial cells and of nerve-derived SEMA3D in PDA progression and metastasis. It revealed macrophage reprogramming as the mechanism underlying bothroles. Together, this research elucidated how inflammatory responses promote invasive PDA progression and metastasis through an oncogenic process.
Collapse
|
28
|
Shi RJ, Ke BW, Tang YL, Liang XH. Perineural invasion: A potential driver of cancer-induced pain. Biochem Pharmacol 2023; 215:115692. [PMID: 37481133 DOI: 10.1016/j.bcp.2023.115692] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Perineural invasion (PNI) is the process through which tumors invade and interact with nerves. The dynamic changes in the nerves caused by PNI may induce disturbing symptoms. PNI-related cancer pain in neuro-rich tumors has attracted much attention because the occurrence of tumor-induced pain is closely related to the invasion of nerves in the tumor microenvironment. PNI-related pain might indicate the occurrence of PNI, guide the improvement of treatment strategies, and predict the unresectability of tumors and the necessity of palliative care. Although many studies have investigated PNI, its relationship with tumor-induced pain and its common mechanisms have not been summarized thoroughly. Therefore, in this review, we evaluated the relationship between PNI and cancer-associated pain. We showed that PNI is a major cause of cancer-related pain and that this pain can predict the occurrence of PNI. We also elucidated the cellular and molecular mechanisms of PNI-induced pain. Finally, we analyzed the possible targets for alleviating PNI-related pain or combined antitumor and pain management. Our findings might provide new perspectives for improving the treatment of patients with malignant tumors.
Collapse
Affiliation(s)
- Rong-Jia Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery,West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu 610041, Sichuan, China
| | - Bo-Wen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu 610041, Sichuan, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery,West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu 610041, Sichuan, China.
| |
Collapse
|
29
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann J, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. Epigenetic neural glioblastoma enhances synaptic integration and predicts therapeutic vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552017. [PMID: 37609137 PMCID: PMC10441357 DOI: 10.1101/2023.08.04.552017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L. Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K. Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Helena Bode
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Katharina J. Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N. Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Michael B. Keough
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Mario L. Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L. Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Mitsou JD, Tseveleki V, Dimitrakopoulos FI, Konstantinidis K, Kalofonos H. Radical Tumor Denervation Activates Potent Local and Global Cancer Treatment. Cancers (Basel) 2023; 15:3758. [PMID: 37568574 PMCID: PMC10417359 DOI: 10.3390/cancers15153758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
This preliminary study seeks to determine the effect of R&P denervation on tumor growth and survival in immunocompetent rats bearing an aggressive and metastatic breast solid tumor. A novel microsurgical approach was applied "in situ", aiming to induce R&P denervation through the division of every single nerve fiber connecting the host with the primary tumor via its complete detachment and re-attachment, by resecting and reconnecting its supplying artery and vein (anastomosis). This preparation, known as microsurgical graft or flap, is radically denervated by definition, but also effectively delays or even impedes the return of innervation for a significant period of time, thus creating a critical and therapeutic time window. Mammary adenocarcinoma cells (HH-16.cl4) were injected into immunocompetent Sprague Dawley adult rats. When the tumors reached a certain volume, the subjects entered the study. The primary tumor, including a substantial amount of peritumoral tissue, was surgically isolated on a dominant artery and vein, which was resected and reconnected using a surgical microscope (orthotopic tumor auto-transplantation). Intending to simulate metastasis, two or three tumors were simultaneously implanted and only one was treated, using the surgical technique described herein. Primary tumor regression was observed in all of the microsurgically treated subjects, associated with a potent systemic anticancer effect and prolonged survival. In stark contrast, the subjects received a close to identical surgical operation; however, with the intact neurovascular connection, they did not achieve the therapeutic result. Animals bearing multiple tumors and receiving the same treatment in only one tumor exhibited regression in both the "primary" and remote- untreated tumors at a clinically significant percentage, with regression occurring in more than half of the treated subjects. A novel therapeutic approach is presented, which induces the permanent regression of primary and, notably, remote tumors, as well as, evidently, the naturally occurring metastatic lesions, at a high rate. This strategy is aligned with the impetus that comes from the current translational research data, focusing on the abrogation of the neuro-tumoral interaction as an alternative treatment strategy. More data regarding the clinical significance of this are expected to come up from a pilot clinical trial that is ongoing.
Collapse
Affiliation(s)
- John D. Mitsou
- Department of Plastic and Reconstructive Surgery, Athens Medical Center, 15125 Maroussi, Greece
| | - Vivian Tseveleki
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Foteinos-Ioannis Dimitrakopoulos
- Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504 Rio, Greece;
- Division of Oncology, Department of Medicine, University Hospital of Patras, 26504 Rio, Greece;
| | - Konstantinos Konstantinidis
- Department of General Robotic, Laparoscopic and Oncologic Surgery, Athens Medical Center, 15125 Maroussi, Greece;
| | - Haralabos Kalofonos
- Division of Oncology, Department of Medicine, University Hospital of Patras, 26504 Rio, Greece;
| |
Collapse
|
31
|
Wang Z, Du X, Lian W, Chen J, Hong C, Li L, Chen D. A novel disulfidptosis-associated expression pattern in breast cancer based on machine learning. Front Genet 2023; 14:1193944. [PMID: 37456667 PMCID: PMC10343428 DOI: 10.3389/fgene.2023.1193944] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Background: Breast cancer (BC), the leading cause of cancer-related deaths among women, remains a serious threat to human health worldwide. The biological function and prognostic value of disulfidptosis as a novel strategy for BC treatment via induction of cell death remain unknown. Methods: Gene mutations and copy number variations (CNVs) in 10 disulfidptosis genes were evaluated. Differential expression, prognostic, and univariate Cox analyses were then performed for 10 genes, and BC-specific disulfidptosis-related genes (DRGs) were screened. Unsupervised consensus clustering was used to identify different expression clusters. In addition, we screened the differentially expressed genes (DEGs) among different expression clusters and identified hub genes. Moreover, the expression level of DEGs was detected by RT-qPCR in cellular level. Finally, we used the least absolute shrinkage and selection operator (LASSO) regression algorithm to establish a prognostic feature based on DEGs, and verified the accuracy and sensitivity of its prediction through prognostic analysis and subject operating characteristic curve analysis. The correlation of the signature with the tumor immune microenvironment and tumor stemness was analyzed. Results: Disulfidptosis genes showed significant CNVs. Two clusters were identified based on three DRGs (DNUFS1, LRPPRC, SLC7A11). Cluster A was found to be associated with better survival outcomes(p < 0.05) and higher levels of immune cell infiltration(p < 0.05). A prognostic signature of four disulfidptosis-related DEGs (KIF21A, APOD, ALOX15B, ELOVL2) was developed by LASSO regression analysis. The signature showed a good prediction ability. In addition, the prognostic signature in this study were strongly related to the tumor microenvironment (TME), tumor immune cell infiltration, tumor mutation burden (TMB), tumor stemness, and drug sensitivity. Conclusion: The prognostic signature we constructed based on disulfidptosis-DEGs is a good predictor of prognosis in patients with BC. This prognostic signature is closely related to TME, and its potential correlation provides clues for further studies.
Collapse
|
32
|
Kong X, Zhang N, Shen H, Wang N, Cong W, Liu C, Hu HG. Design, synthesis and antitumor activity of Ascaphin-8 derived stapled peptides based on halogen-sulfhydryl click chemical reactions. RSC Adv 2023; 13:19862-19868. [PMID: 37409042 PMCID: PMC10318414 DOI: 10.1039/d3ra02743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
Ascaphin-8 (GFKDLLKGAAKALVKTVLF-NH2), isolated from the norepinephrine-stimulated skin secretion of the North American-tailed frog Ascaphus truei, is a C-terminal α-helical antimicrobial peptide with potential antitumor activity. However, linear peptides are difficult to be applied directly as drugs because of their inherent defects, such as low hydrolytic enzyme tolerance and poor structural stability. In this study, we designed and synthesized a series of stapled peptides based on Ascaphin-8 via thiol-halogen click chemistry. Most of the stapled peptide derivatives showed enhanced antitumor activity. Among them, A8-2-o and A8-4-Dp had the most improved structural stability, stronger hydrolytic enzyme tolerance and highest biological activity. This research may provide a reference for the stapled modification of other similar natural antimicrobial peptides.
Collapse
Affiliation(s)
- Xianglong Kong
- School of Pharmacy, Weifang Medical University Weifang 261053 PR China
| | - Nan Zhang
- School of Medicine, Shanghai University Shanghai 200444 China
| | - Huaxing Shen
- School of Medicine, Shanghai University Shanghai 200444 China
| | - Nan Wang
- School of Medicine, Shanghai University Shanghai 200444 China
| | - Wei Cong
- School of Medicine, Shanghai University Shanghai 200444 China
| | - Chao Liu
- School of Medicine, Shanghai University Shanghai 200444 China
| | - Hong-Gang Hu
- School of Pharmacy, Weifang Medical University Weifang 261053 PR China
- School of Medicine, Shanghai University Shanghai 200444 China
| |
Collapse
|
33
|
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D, Platten M, Rolls A, Sloan EK, Wang TC, Wick W, Venkataramani V, Monje M. Cancer neuroscience: State of the field, emerging directions. Cell 2023; 186:1689-1707. [PMID: 37059069 PMCID: PMC10107403 DOI: 10.1016/j.cell.2023.02.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 04/16/2023]
Abstract
The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Humsa S Venkatesh
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Moran Amit
- Department of Head and Neck Surgery, MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ihsan Ekin Demir
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Benjamin Deneen
- Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Shawn Hervey-Jumper
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kuner
- Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Donald Mabbott
- Department of Psychology, University of Toronto and Neuroscience & Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville, VIC, Australia
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Gastrointestinal Diseases, Columbia University, New York, NY, USA
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Abstract
The recently uncovered key role of the peripheral and central nervous systems in controlling tumorigenesis and metastasis has opened a new area of research to identify innovative approaches against cancer. Although the 'neural addiction' of cancer is only partially understood, in this Perspective we discuss the current knowledge and perspectives on peripheral and central nerve circuitries and brain areas that can support tumorigenesis and metastasis and the possible reciprocal influence that the brain and peripheral tumours exert on one another. Tumours can build up local autonomic and sensory nerve networks and are able to develop a long-distance relationship with the brain through circulating adipokines, inflammatory cytokines, neurotrophic factors or afferent nerve inputs, to promote cancer initiation, growth and dissemination. In turn, the central nervous system can affect tumour development and metastasis through the activation or dysregulation of specific central neural areas or circuits, as well as neuroendocrine, neuroimmune or neurovascular systems. Studying neural circuitries in the brain and tumours, as well as understanding how the brain communicates with the tumour or how intratumour nerves interplay with the tumour microenvironment, can reveal unrecognized mechanisms that promote cancer development and progression and open up opportunities for the development of novel therapeutic strategies. Targeting the dysregulated peripheral and central nervous systems might represent a novel strategy for next-generation cancer treatment that could, in part, be achieved through the repurposing of neuropsychiatric drugs in oncology.
Collapse
Affiliation(s)
- Claire Magnon
- Laboratory of Cancer and Microenvironment-National Institute of Health and Medical Research (INSERM), Institute of Biology François Jacob-Atomic Energy Commission (CEA), University of Paris Cité, University of Paris-Saclay, Paris, France.
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
35
|
Yang C, He Y, Chen F, Zhang F, Shao D, Wang Z. Leveraging β-Adrenergic Receptor Signaling Blockade for Improved Cancer Immunotherapy Through Biomimetic Nanovaccine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207029. [PMID: 36703529 DOI: 10.1002/smll.202207029] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The establishment of effective antitumor immune responses of vaccines is mainly limited by insufficient priming tumor infiltration of T cells and immunosuppressive tumor microenvironment (TME). Targeting β-adrenergic receptor (β-AR) signaling exerts promising benefits on reversing the suppressive effects directly on T cells, but it appears to have considerably limited antitumor performance when combined with vaccine-based immunotherapies. Herein, a tumor membrane-coated nanoplatform for codelivery of adjuvant CpG and propranolol (Pro), a β-AR inhibitor is designed. The biomimetic nanovaccine displayed an improved accumulation in lymph nodes and sufficient drug release, thereby inducing dendritic cell maturation and antigen presentation. Meanwhile, the integration of vaccination and blockade of β-AR signaling not only promoted the priming of the naive CD8+ T cells and effector T cell egress from lymph nodes, but also alleviated the immunosuppressive TME by decreasing the frequency of immunosuppressive cells and increasing the tumor infiltration of B cells and NK cells. Consequently, the biomimetic nanovaccines outperformed greater prophylactic and therapeutic efficacy than nanovaccines without Pro encapsulation in B16-F10 melanoma mice. Taken together, the work explored a biomimetic nanovaccine for priming tumor infiltration of T cells and immunosuppressive TME regulation, offering tremendous potential for a combined β-AR signaling-targeting strategy in cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Fangman Chen
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Fan Zhang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
36
|
Chang VT, Sandifer C, Zhong F. GI Symptoms in Pancreatic Cancer. Clin Colorectal Cancer 2023; 22:24-33. [PMID: 36623952 DOI: 10.1016/j.clcc.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
This review will apply a multidisciplinary approach to GI symptoms with attention to symptom assessment (instruments and qualitative aspects), differential diagnosis, and recent findings relevant to management of symptoms and underlying diseases. We conclude that further development of supportive interventions for GI symptoms for both patient and caregivers has the potential to reduce distress from GI symptoms, and anticipate better symptom control with advances in scientific knowledge and improvement of the evidence base.
Collapse
Affiliation(s)
- Victor T Chang
- Section Hematology Oncology (111), VA New Jersey Health Care System, East Orange, NJ; Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ.
| | | | - Fengming Zhong
- Section Hematology Oncology (111), VA New Jersey Health Care System, East Orange, NJ; Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ
| |
Collapse
|
37
|
Li YT, Yuan WZ, Jin WL. Vagus innervation in the gastrointestinal tumor: Current understanding and challenges. Biochim Biophys Acta Rev Cancer 2023; 1878:188884. [PMID: 36990250 DOI: 10.1016/j.bbcan.2023.188884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
The vagus nerve (VN) is the main parasympathetic nerve of the autonomic nervous system. It is widely distributed in the gastrointestinal tract and maintains gastrointestinal homeostasis with the sympathetic nerve under physiological conditions. The VN communicates with various components of the tumor microenvironment to positively and dynamically affect the progression of gastrointestinal tumors (GITs). The intervention in vagus innervation delays GIT progression. Developments in adeno-associated virus vectors, nanotechnology, and in vivo neurobiological techniques have enabled the creation of precisely regulated "tumor neurotherapies". Furthermore, the combination of neurobiological techniques and single cell sequencing may reveal more insights into VN and GIT. The present review aimed to summarize the mechanisms of communication between the VN and the gastrointestinal TME and to explore the potential and challenges of VN-based tumor neurotherapy in GITs.
Collapse
|
38
|
Yan J, Chen Y, Luo M, Hu X, Li H, Liu Q, Zou Z. Chronic stress in solid tumor development: from mechanisms to interventions. J Biomed Sci 2023; 30:8. [PMID: 36707854 PMCID: PMC9883141 DOI: 10.1186/s12929-023-00903-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Chronic stress results in disturbances of body hormones through the neuroendocrine system. Cancer patients often experience recurrent anxiety and restlessness during disease progression and treatment, which aggravates disease progression and hinders treatment effects. Recent studies have shown that chronic stress-regulated neuroendocrine systems secret hormones to activate many signaling pathways related to tumor development in tumor cells. The activated neuroendocrine system acts not only on tumor cells but also modulates the survival and metabolic changes of surrounding non-cancerous cells. Current clinical evidences also suggest that chronic stress affects the outcome of cancer treatment. However, in clinic, there is lack of effective treatment for chronic stress in cancer patients. In this review, we discuss the main mechanisms by which chronic stress regulates the tumor microenvironment, including functional regulation of tumor cells by stress hormones (stem cell-like properties, metastasis, angiogenesis, DNA damage accumulation, and apoptotic resistance), metabolic reprogramming and immune escape, and peritumor neuromodulation. Based on the current clinical treatment framework for cancer and chronic stress, we also summarize pharmacological and non-pharmacological therapeutic approaches to provide some directions for cancer therapy.
Collapse
Affiliation(s)
- Jiajing Yan
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Yibing Chen
- grid.207374.50000 0001 2189 3846Department of Gynecology and Obstetrics, First Affiliated Hospital, Genetic and Prenatal Diagnosis Center, Zhengzhou University, Zhengzhou, 450001 China
| | - Minhua Luo
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Xinyu Hu
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Hongsheng Li
- grid.410737.60000 0000 8653 1072Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Quentin Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510631 China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044 Liaoning China
| | - Zhengzhi Zou
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China ,grid.263785.d0000 0004 0368 7397Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
39
|
Magnetic Nanomaterials Mediate Electromagnetic Stimulations of Nerves for Applications in Stem Cell and Cancer Treatments. J Funct Biomater 2023; 14:jfb14020058. [PMID: 36826857 PMCID: PMC9960824 DOI: 10.3390/jfb14020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Although some progress has been made in the treatment of cancer, challenges remain. In recent years, advancements in nanotechnology and stem cell therapy have provided new approaches for use in regenerative medicine and cancer treatment. Among them, magnetic nanomaterials have attracted widespread attention in the field of regenerative medicine and cancer; this is because they have high levels of safety and low levels of invasibility, promote stem cell differentiation, and affect biological nerve signals. In contrast to pure magnetic stimulation, magnetic nanomaterials can act as amplifiers of an applied electromagnetic field in vivo, and by generating different effects (thermal, electrical, magnetic, mechanical, etc.), the corresponding ion channels are activated, thus enabling the modulation of neuronal activity with higher levels of precision and local modulation. In this review, first, we focused on the relationship between biological nerve signals and stem cell differentiation, and tumor development. In addition, the effects of magnetic nanomaterials on biological neural signals and the tumor environment were discussed. Finally, we introduced the application of magnetic-nanomaterial-mediated electromagnetic stimulation in regenerative medicine and its potential in the field of cancer therapy.
Collapse
|
40
|
Jin MZ, Gao XC, Jin WL. Editorial: Cancer neuroscience: Drug repurposing targeting the innervated niche. Front Pharmacol 2023; 14:1148706. [PMID: 36909193 PMCID: PMC9992969 DOI: 10.3389/fphar.2023.1148706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Affiliation(s)
- Ming-Zhu Jin
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Chun Gao
- Department of Immunology, School of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi, China.,Department of Neurosurgery, Yale University, New Haven, CT, United States
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
41
|
Jiang SH, Li RK, Liu DJ, Xue JL, Yu MH, Zhang S, Liu LM, Zhang JF, Hua R, Sun YW, Wang X, Yang Q, Zhang ZG. The genomic, transcriptomic, and immunological profiles of perineural invasion in pancreatic ductal adenocarcinoma. SCIENCE CHINA. LIFE SCIENCES 2023; 66:183-186. [PMID: 35804220 DOI: 10.1007/s11427-022-2146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rong-Kun Li
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, China
| | - Jun-Li Xue
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Min-Hao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, China
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li-Min Liu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jun-Feng Zhang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, China
| | - Xu Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Institute of Precision Medicine, Shanghai, 200125, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
42
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
43
|
Cherifi F, Lefevre Arbogast S, Font J, Abdeddaim C, Becourt S, Penel N, Coquan E, Lequesne J, Gidron Y, Joly F. The promising prognostic value of vagal nerve activity at the initial management of ovarian cancer. Front Oncol 2022; 12:1049970. [PMID: 36523968 PMCID: PMC9745166 DOI: 10.3389/fonc.2022.1049970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE Identifying new modifiable prognostic markers is important for ovarian cancer (OC). Low parasympathic activity is associated with inflammation, oxidative stress and sympathetic nervous system activation. Previous studies reported that low vagal nerve activity, measured by low heart rate variability (HRV), may predict poor cancer prognosis. We aimed to examine the prognostic value of HRV in OC. METHODS This bicentric retrospective study included patients diagnosed with serous OC FIGO stage ≥IIB, between January 2015 and August 2019, with electrocardiograms (ECG) available around diagnosis. HRV was measured from ECG using the time domain parameter of standard deviation of all normal-to-normal heartbeat intervals (SDNN). Optimal SDNN cut-off was determined using the Youden index criteria of time-dependent ROC curves. We used multivariate cox proportional hazard models to investigate the association between HRV and overall survival (OS), while adjusting for well-known OC prognostic factors. RESULTS The 202 patients included were 65.7 years-old on average, 93% had stage FIGO IIIC/IV, 56% had complete surgical resection. Median OS was 38.6 months [95%CI:34.4-47.4]. The median SDNN was 11.1ms, with an optimal cut-off of 10ms to predict OS. OS was shorter for patients with low HRV compared to high HRV (26.4 vs 45.1 months; p<0.001). In multivariate analysis, HRV remained an independent prognostic factor with a two-fold higher risk of death among patients with low SDNN compared to those with high SDNN (HR=2.03, 95%CI=1.35-3.06, p<0.001). CONCLUSION Low HRV, was associated with worse OS in OC patients, supporting previous studies on the prognostic role of HRV in cancer. If replicated in prospective studies, vagal nerve activity may be a new therapeutic target in OC.
Collapse
Affiliation(s)
- François Cherifi
- Department of Medical Oncology, Centre François Baclesse, Caen, France
- Department of Clinical Research, Centre Francois Baclesse, Caen, France
| | - Sophie Lefevre Arbogast
- Department of Clinical Research, Centre Francois Baclesse, Caen, France
- Normandie Université, UNICAEN, Institut National de la Santé et de la Recherche Médicale (Inserm) U1086, ANTICIPE, Caen, France
| | - Jonaz Font
- Department of Cardiology, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Cyril Abdeddaim
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France
| | | | - Nicolas Penel
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France
| | - Elodie Coquan
- Department of Medical Oncology, Centre François Baclesse, Caen, France
- Department of Clinical Research, Centre Francois Baclesse, Caen, France
| | - Justine Lequesne
- Department of Clinical Research, Centre Francois Baclesse, Caen, France
| | - Yori Gidron
- Department of Nursing, Faculty of Health Sciences, Haifa University, Haifa, Israel
| | - Florence Joly
- Department of Medical Oncology, Centre François Baclesse, Caen, France
- Normandie Université, UNICAEN, Institut National de la Santé et de la Recherche Médicale (Inserm) U1086, ANTICIPE, Caen, France
| |
Collapse
|
44
|
An Overview of the Molecular Cues and Their Intracellular Signaling Shared by Cancer and the Nervous System: From Neurotransmitters to Synaptic Proteins, Anatomy of an All-Inclusive Cooperation. Int J Mol Sci 2022; 23:ijms232314695. [PMID: 36499024 PMCID: PMC9739679 DOI: 10.3390/ijms232314695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
We propose an overview of the molecular cues and their intracellular signaling involved in the crosstalk between cancer and the nervous system. While "cancer neuroscience" as a field is still in its infancy, the relation between cancer and the nervous system has been known for a long time, and a huge body of experimental data provides evidence that tumor-nervous system connections are widespread. They encompass different mechanisms at different tumor progression steps, are multifaceted, and display some intriguing analogies with the nervous system's physiological processes. Overall, we can say that many of the paradigmatic "hallmarks of cancer" depicted by Weinberg and Hanahan are affected by the nervous system in a variety of manners.
Collapse
|
45
|
Fu J, Wang S, Li Z, Qin W, Tong Q, Liu C, Wang Z, Liu Z, Xu X. Comprehensive multiomics analysis of cuproptosis-related gene characteristics in hepatocellular carcinoma. Front Genet 2022; 13:942387. [PMID: 36147507 PMCID: PMC9486098 DOI: 10.3389/fgene.2022.942387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The mechanism of copper-induced cell death, which is called cuproptosis, has recently been clarified. However, the integrated role of cuproptosis-related genes in hepatocellular carcinoma (HCC) and its relationship with immune characteristics are still completely unknown. Methods: In this study, the expression, genetic, and transcriptional regulation states of 16 cuproptosis-related genes in HCC were systematically investigated. An unsupervised clustering method was used to identify distinct expression patterns in 370 HCC patients from the TCGA-HCC cohort. Differences in functional characteristics among different expression clusters were clarified by gene set variation analysis (GSVA). The abundances of immune cells in each HCC sample were calculated by the CIBERSORT algorithm. Next, a cuproptosis-related risk score was established based on the significant differentially expressed genes (DEGs) among different expression clusters. Results: A specific cluster of HCC patients with poor prognosis, an inhibitory immune microenvironment, and high expression levels of immune checkpoint molecules was identified based on the expression of the 16 cuproptosis-related genes. This cluster of patients could be well-identified by a cuproptosis-related risk score system. The prognostic value of this risk score was validated in the training and two validation cohorts (TCGA-HCC, China-HCC, and Japan-HCC cohorts). Moreover, the overall expression status of the cuproptosis-related genes and the genes used to establish the cuproptosis-related risk score in specific cell types of the tumor microenvironment were preliminarily clarified by single-cell RNA (scRNA) sequencing data. Conclusion: These results indicated that cuproptosis-related genes play an important role in HCC, and targeting these genes may ameliorate the inhibitory immune microenvironment to improve the efficacy of immunotherapy with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Jie Fu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenghao Li
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Qin
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qing Tong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chun Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zicheng Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiqiang Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xundi Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of General Surgery, South China Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Xundi Xu,
| |
Collapse
|
46
|
Wu Y, Berisha A, Borniger JC. Neuropeptides in Cancer: Friend and Foe? Adv Biol (Weinh) 2022; 6:e2200111. [PMID: 35775608 DOI: 10.1002/adbi.202200111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Indexed: 01/28/2023]
Abstract
Neuropeptides are small regulatory molecules found throughout the body, most notably in the nervous, cardiovascular, and gastrointestinal systems. They serve as neurotransmitters or hormones in the regulation of diverse physiological processes. Cancer cells escape normal growth control mechanisms by altering their expression of growth factors, receptors, or intracellular signals, and neuropeptides have recently been recognized as mitogens in cancer growth and development. Many neuropeptides and their receptors exist in multiple subtypes, coupling with different downstream signaling pathways and playing distinct roles in cancer progression. The consideration of neuropeptide/receptor systems as anticancer targets is already leading to new biological and diagnostic knowledge that has the potential to enhance the understanding and treatment of cancer. In this review, recent discoveries regarding neuropeptides in a wide range of cancers, emphasizing their mechanisms of action, signaling cascades, regulation, and therapeutic potential, are discussed. Current technologies used to manipulate and analyze neuropeptides/receptors are described. Applications of neuropeptide analogs and their receptor inhibitors in translational studies and radio-oncology are rapidly increasing, and the possibility for their integration into therapeutic trials and clinical treatment appears promising.
Collapse
Affiliation(s)
- Yue Wu
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
47
|
Shi J, Xu J, Li Y, Li B, Ming H, Nice EC, Huang C, Li Q, Wang C. Drug repurposing in cancer neuroscience: From the viewpoint of the autophagy-mediated innervated niche. Front Pharmacol 2022; 13:990665. [PMID: 36105204 PMCID: PMC9464986 DOI: 10.3389/fphar.2022.990665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the bidirectional interactions between neurology and cancer science, the burgeoning field “cancer neuroscience” has been proposed. An important node in the communications between nerves and cancer is the innervated niche, which has physical contact with the cancer parenchyma or nerve located in the proximity of the tumor. In the innervated niche, autophagy has recently been reported to be a double-edged sword that plays a significant role in maintaining homeostasis. Therefore, regulating the innervated niche by targeting the autophagy pathway may represent a novel therapeutic strategy for cancer treatment. Drug repurposing has received considerable attention for its advantages in cost-effectiveness and safety. The utilization of existing drugs that potentially regulate the innervated niche via the autophagy pathway is therefore a promising pharmacological approach for clinical practice and treatment selection in cancer neuroscience. Herein, we present the cancer neuroscience landscape with an emphasis on the crosstalk between the innervated niche and autophagy, while also summarizing the underlying mechanisms of candidate drugs in modulating the autophagy pathway. This review provides a strong rationale for drug repurposing in cancer treatment from the viewpoint of the autophagy-mediated innervated niche.
Collapse
Affiliation(s)
- Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jia Xu
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qifu Li
- Department of Neurology and Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| |
Collapse
|
48
|
Hwang WL, Jagadeesh KA, Guo JA, Hoffman HI, Yadollahpour P, Reeves JW, Mohan R, Drokhlyansky E, Van Wittenberghe N, Ashenberg O, Farhi SL, Schapiro D, Divakar P, Miller E, Zollinger DR, Eng G, Schenkel JM, Su J, Shiau C, Yu P, Freed-Pastor WA, Abbondanza D, Mehta A, Gould J, Lambden C, Porter CBM, Tsankov A, Dionne D, Waldman J, Cuoco MS, Nguyen L, Delorey T, Phillips D, Barth JL, Kem M, Rodrigues C, Ciprani D, Roldan J, Zelga P, Jorgji V, Chen JH, Ely Z, Zhao D, Fuhrman K, Fropf R, Beechem JM, Loeffler JS, Ryan DP, Weekes CD, Ferrone CR, Qadan M, Aryee MJ, Jain RK, Neuberg DS, Wo JY, Hong TS, Xavier R, Aguirre AJ, Rozenblatt-Rosen O, Mino-Kenudson M, Castillo CFD, Liss AS, Ting DT, Jacks T, Regev A. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat Genet 2022; 54:1178-1191. [PMID: 35902743 PMCID: PMC10290535 DOI: 10.1038/s41588-022-01134-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.
Collapse
Affiliation(s)
- William L Hwang
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karthik A Jagadeesh
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jimmy A Guo
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Hannah I Hoffman
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT MD/PhD and Health Sciences and Technology Program, Harvard Medical School, Boston, MA, USA
| | - Payman Yadollahpour
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Rahul Mohan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Orr Ashenberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Denis Schapiro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Institute for Computational Biomedicine and Institute of Pathology, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | - George Eng
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason M Schenkel
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer Su
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carina Shiau
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick Yu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William A Freed-Pastor
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Arnav Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua Gould
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toni Delorey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Devan Phillips
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marina Kem
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clifton Rodrigues
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Debora Ciprani
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Roldan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Piotr Zelga
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vjola Jorgji
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zackery Ely
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | - Jay S Loeffler
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David P Ryan
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Colin D Weekes
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin J Aryee
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rakesh K Jain
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer Y Wo
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore S Hong
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J Aguirre
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Ting
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
49
|
Luan T, Li Y, Sun L, Xu S, Wang H, Wang J, Li C. Systemic immune effects of anesthetics and their intracellular targets in tumors. Front Med (Lausanne) 2022; 9:810189. [PMID: 35966857 PMCID: PMC9365985 DOI: 10.3389/fmed.2022.810189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
According to the result released by the World Health Organization (WHO), non-communicable diseases have occupied four of the top 10 current causes for death in the world. Cancer is one of the significant factors that trigger complications and deaths; more than 80% cancer patients require surgical or palliative treatment. In this case, anesthetic treatment is indispensable. Since cancer is a heterogeneous disease, various types of interventions can activate oncogenes or mutate tumor suppressor genes. More and more researchers believe that anesthetics have a certain effect on the long-term recurrence and metastasis of tumors, but it is still controversial whether they promote or inhibit the progression of cancer. On this basis, a series of retrospective or prospective randomized clinical trials have been conducted, but it seems to be difficult to reach a conclusion within 5 years or longer. This article focuses on the effects of anesthetic drugs on immune function and cancer and reviews their latest targets on the tumor cells, in order to provide a theoretical basis for optimizing the selection of anesthetic drugs, exploring therapeutic targets, and improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Lihui Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
| | - Siqi Xu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
- *Correspondence: Haifeng Wang,
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
- Jiansong Wang,
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
- Chong Li,
| |
Collapse
|