1
|
Gong X, Xuan Y, Pang C, Dong C, Cao R, Wei Z, Liang C. DUPAN-2 in pancreatic cancer: Systematic review and meta-analysis. Clin Chim Acta 2025; 567:120080. [PMID: 39653322 DOI: 10.1016/j.cca.2024.120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE Pancreatic cancer (PC) is a highly aggressive malignancy with poor prognosis and high mortality rate. Identifying reliable biomarkers for the early diagnosis and treatment is urgently needed. This study aims to comprehensively evaluate the diagnostic and prognostic value of DUPAN-2 in PC through a meta-analysis. METHODS We systematically searched PubMed, Embase, and other databases for studies related to DUPAN-2 and its prognostic and diagnostic relevance in PC, covering publications up to August 2024. We used pooled hazard ratios (HRs) to evaluate the prognostic value of DUPAN-2 in PC, the summary receiver operating characteristic (SROC) curve and the area under the curve (AUC) to assess diagnostic performance, while pooled odds ratios (ORs) analyzed associations with clinicopathological features. RESULTS A total of 22 studies involving 4765 patients were included in this meta-analysis, with 11 studies focusing on diagnostic analysis, 10 on prognostic analysis, and 3 on clinicopathological features. The diagnostic meta-analysis revealed a pooled sensitivity of 0.63 (95 % CI: 0.56-0.69), a pooled specificity of 0.98 (95 % CI: 0.95-0.99), and an AUC of 0.83 (95 % CI: 0.79-0.86). Subgroup analysis indicated that a DUPAN-2 threshold at 150 U/mL achieved the highest diagnostic performance. The prognostic meta-analysis demonstrated that elevated DUPAN-2 levels were associated with poorer OS (HR = 1.70, 95 % CI: 1.36-2.14) and PFS (HR = 1.33, 95 % CI: 1.14-1.56). Additionally, the clinicopathological features meta-analysis showed that elevated DUPAN-2 levels were associated with vascular invasion (OR = 3.48, 95 % CI: 1.26-9.59), while normalized DUPAN-2 levels were associated with higher resectability (OR = 0.57, 95 % CI: 0.36-0.90) and lower N-stage (OR = 0.39, 95 % CI: 0.24-0.63) CONCLUSION: Serum DUPAN-2 demonstrates significant potential as a biomarker for diagnosis and prognosis in patients with PC.
Collapse
Affiliation(s)
- Xiaowen Gong
- Department of Biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, 85(th) Jiefangnan Road, Yingze District, Taiyuan, Shanxi 030001, China.
| | - Yuerong Xuan
- Department of Biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, 85(th) Jiefangnan Road, Yingze District, Taiyuan, Shanxi 030001, China.
| | - Chengshuai Pang
- Department of Biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, 85(th) Jiefangnan Road, Yingze District, Taiyuan, Shanxi 030001, China.
| | - Chenyang Dong
- Department of Biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, 85(th) Jiefangnan Road, Yingze District, Taiyuan, Shanxi 030001, China.
| | - Rui Cao
- Department of Biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, 85(th) Jiefangnan Road, Yingze District, Taiyuan, Shanxi 030001, China.
| | - Zhigang Wei
- Department of Biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, 85(th) Jiefangnan Road, Yingze District, Taiyuan, Shanxi 030001, China.
| | - Chaojie Liang
- Department of Biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, 85(th) Jiefangnan Road, Yingze District, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
2
|
Ji P, Chen T, Li C, Zhang J, Li X, Zhu H. Comprehensive review of signaling pathways and therapeutic targets in gastrointestinal cancers. Crit Rev Oncol Hematol 2024; 206:104586. [PMID: 39653094 DOI: 10.1016/j.critrevonc.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Targeted therapy, the milestone in the development of human medicine, originated in 2004 when the FDA approved the first targeted agent bevacizumab for colorectal cancer treatment. This new development has resulted from drug developers moving beyond traditional chemotherapy, and several trials have popped up in the last two decades with an unprecedented speed. Specifically, EGF/EGFR, VEGF/VEGFR, HGF/c-MET, and Claudin 18.2 therapeutic targets have been developed in recent years. Some targets previously thought to be undruggable are now being newly explored, such as the RAS site. However, the efficacy of targeted therapy is extremely variable, especially with the emergence of new drugs and the innovative use of traditional targets for other tumors in recent years. Accordingly, this review provides an overview of the major signaling pathway mechanisms and recent advances in targeted therapy for gastrointestinal cancers, as well as future perspectives.
Collapse
Affiliation(s)
- Pengfei Ji
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Chick RC, Pawlik TM. Updates in Immunotherapy for Pancreatic Cancer. J Clin Med 2024; 13:6419. [PMID: 39518557 PMCID: PMC11546190 DOI: 10.3390/jcm13216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with limited effective therapeutic options. Due to a variety of cancer cell-intrinsic factors, including KRAS mutations, chemokine production, and other mechanisms that elicit a dysregulated host immune response, PDAC is often characterized by poor immune infiltration and an immune-privileged fibrotic stroma. As understanding of the tumor microenvironment (TME) evolves, novel therapies are being developed to target immunosuppressive mechanisms. Immune checkpoint inhibitors have limited efficacy when used alone or with radiation. Combinations of immune therapies, along with chemotherapy or chemoradiation, have demonstrated promise in preclinical and early clinical trials. Despite dismal response rates for immunotherapy for metastatic PDAC, response rates with neoadjuvant immunotherapy are somewhat encouraging, suggesting that incorporation of immunotherapy in the treatment of PDAC should be earlier in the disease course. Precision therapy for PDAC may be informed by advances in transcriptomic sequencing that can identify immunophenotypes, allowing for more appropriate treatment selection for each individual patient. Personalized and antigen-specific therapies are an increasing topic of interest, including adjuvant immunotherapy using personalized mRNA vaccines to prevent recurrence. Further development of personalized immune therapies will need to balance precision with generalizability and cost.
Collapse
Affiliation(s)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
4
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Ala M. Noncoding Ribonucleic Acids (RNAs) May Improve Response to Immunotherapy in Pancreatic Cancer. ACS Pharmacol Transl Sci 2024; 7:2557-2572. [PMID: 39296265 PMCID: PMC11406708 DOI: 10.1021/acsptsci.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the seventh most common cause of cancer-related mortality. Despite different methods of treatment, nearly more than 90% of patients with PDAC die shortly after diagnosis. Contrary to promising results in other cancers, immune checkpoint inhibitors (ICIs) showed limited success in PDAC. Recent studies have shown that noncoding RNAs (ncRNAs) are extensively involved in PDAC cell-immune cell interaction and mediate immune evasion in this vicious cancer. PDAC cells recruit numerous ncRNAs to widely affect the phenotype and function of immune cells through various mechanisms. For instance, PDAC cells upregulate miR-301a and downregulate miR-340 to induce M2 polarization of macrophages or overexpress miR-203, miR-146a, and miR-212-3p to downregulate toll-like receptor 4 (TLR4), CD80, CD86, CD1a, major histocompatibility complex (MHC) II, and CD83, thereby evading recognition by dendritic cells. By downregulating miR-4299 and miR-153, PDAC cells can decrease the expression of NK group 2D (NKG2D) and MHC class I chain-related molecules A and B (MICA/B) to blunt the natural killer (NK) cell response. PDAC cells also highly express lncRNA AL137789.1, hsa_circ_0046523, lncRNA LINC00460, and miR-155-5p to upregulate immune checkpoint proteins and escape T cell cytotoxicity. On the other hand, ncRNAs derived from suppressive immune cells promote proliferation, invasion, and drug resistance in PDAC cells. ncRNAs can be applied to overcome resistance to ICIs, monitor the immune microenvironment of PDAC, and predict response to ICIs. This Review article comprehensively discusses recent findings regarding the roles of ncRNAs in the immune evasion of PDAC.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), Tehran 1416634793, Iran
| |
Collapse
|
6
|
Chi BJ, Duan ZL, Hasan AKHAM, Yin XZ, Cui BY, Wang FF. Effect and Mechanism of Curdione Combined with Gemcitabine on Migration and Invasion of Bladder Cancer. Biochem Genet 2024; 62:2933-2945. [PMID: 38049684 DOI: 10.1007/s10528-023-10584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/29/2023] [Indexed: 12/06/2023]
Abstract
Bladder cancer (BCa), which usually occurs in bladder epithelial cells and is the fifth most common type of cancer in the world. he recurrence rate within 5 years after surgery is 0.8-45% of patients with early bladder cancer. Therefore, finding appropriate drug therapy for patients with bladder cancer can provide a reference for clinical treatment and play an important role in improving the prognosis of patients. In this study, CCK8 assay result showed that the inhibition of bladder cancer cell activity by Curdione and GEM increased with time and dose. Subsequently, CCK8, clone formation assay and Transwell result showed Curdione enhances GEM inhibition of bladder cancer cell activity, clonal formation and migration, these combine therapeutic schedule also could inhibited growth of in vivo xenograft tumors. The comprehensive database showed that CA2 is a potential target genes of Curdione, and Knockdown CA2 enhances GEM induced inhibition of cell proliferation and migration. Based on these advantages, Curdione may be a new type of action drug or adjunct for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Bao-Jin Chi
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Heilongjiang, 154002, People's Republic of China
| | - Zhong-Lei Duan
- Graduate School, Jiamusi University, 148 Xuefu Road, Jiamusi, Heilongjiang, 154007, People's Republic of China.
| | | | - Xing-Zhong Yin
- Basic Medical College, Jiamusi University, Heilongjiang, 154007, People's Republic of China
| | - Bo-Yang Cui
- Graduate School, Jiamusi University, 148 Xuefu Road, Jiamusi, Heilongjiang, 154007, People's Republic of China
| | - Fang-Fang Wang
- Basic Medical College, Jiamusi University, Heilongjiang, 154007, People's Republic of China.
| |
Collapse
|
7
|
Zhou SQ, Wan P, Zhang S, Ren Y, Li HT, Ke QH. Programmed cell death 1 inhibitor sintilimab plus concurrent chemoradiotherapy for locally advanced pancreatic adenocarcinoma. World J Clin Oncol 2024; 15:859-866. [PMID: 39071470 PMCID: PMC11271726 DOI: 10.5306/wjco.v15.i7.859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma, a malignancy that arises in the cells of the pancreas, is a devastating disease with unclear etiology and often poor prognosis. Locally advanced pancreatic cancer, a stage where the tumor has grown significantly but has not yet spread to distant organs, presents unique challenges in treatment. This article aims to discuss the current strategies, challenges, and future directions in the management of locally advanced pancreatic adenocarcinoma (LAPC). AIM To investigate the feasibility and efficacy of programmed cell death 1 (PD-1) inhibitor sintilimab plus concurrent chemoradiotherapy for LAPC. METHODS Eligible patients had LAPC, an Eastern cooperative oncology group performance status of 0 or 1, adequate organ and marrow functions, and no prior anticancer therapy. In the observation group, participants received intravenous sintilimab 200 mg once every 3 wk, and received concurrent chemoradiotherapy (concurrent conventional fractionated radiotherapy with doses planning target volume 50.4 Gy and gross tumor volume 60 Gy in 28 fractions and oral S-1 40 mg/m2 twice daily on days 1-14 of a 21-d cycle and intravenous gemcitabine 1000 mg/m2 on days 1 and 8 of a 21-d cycle for eight cycles until disease progression, death, or unacceptable toxicity). In the control group, participants only received concurrent chemoradiotherapy. From April 2020 to November 2021, 64 participants were finally enrolled with 34 in the observation group and 30 in the control group. RESULTS Thirty-four patients completed the scheduled course of chemoradiotherapy, while 32 (94.1%) received sintilimab plus concurrent chemoradiotherapy with 2 patients discontinuing sintilimab in the observation group. Thirty patients completed the scheduled course of chemoradiotherapy in the control group. Based on the Response Evaluation Criteria in Solid Tumors guidelines, the analysis of the observation group revealed that a partial response was observed in 11 patients (32.4%), stable disease was evident in 19 patients (55.9%), and 4 patients (11.8%) experienced progressive disease; a partial response was observed in 6 (20.0%) patients, stable disease in 18 (60%), and progressive disease in 6 (20%) in the control group. The major toxic effects were leukopenia and nausea. The incidence of severe adverse events (AEs) (grade 3 or 4) was 26.5% (9/34) in the observation group and 23.3% (7/30) in the control group. There were no treatment-related deaths. The observation group demonstrated a significantly longer median overall survival (22.1 mo compared to 15.8 mo) (P < 0.05) and progression-free survival (12.2 mo vs 10.1 mo) (P < 0.05) in comparison to the control group. The occurrence of severe AEs did not exhibit a statistically significant difference between the observation group and the control group (P > 0.05). CONCLUSION Sintilimab plus concurrent chemoradiotherapy was effective and safe for LAPC patients, and warrants further investigation.
Collapse
Affiliation(s)
- Shi-Qiong Zhou
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Peng Wan
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Sen Zhang
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Yuan Ren
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Hong-Tao Li
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Qing-Hua Ke
- Department of Chemoradiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| |
Collapse
|
8
|
Shi C, De B, Tran Cao HS, Liu S, Florez MA, Kouzy R, Grippin AJ, Katz MHG, Tzeng CD, Ikoma N, Kim MP, Lee S, Willis J, Noticewala SS, Minsky BD, Smith GL, Holliday EB, Taniguchi CM, Koong AC, Das P, Ludmir EB, Koay EJ. Escalated-dose radiotherapy for unresected locally advanced pancreatic cancer: Patterns of care and survival in the United States. Cancer Med 2024; 13:e7434. [PMID: 38923407 PMCID: PMC11200087 DOI: 10.1002/cam4.7434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION With locally advanced pancreatic cancer (LAPC), uncontrolled local tumor growth frequently leads to mortality. Advancements in radiotherapy (RT) techniques have enabled conformal delivery of escalated-dose RT (EDR), which may have potential local control and overall survival (OS) benefits based on retrospective and early prospective studies. With evidence for EDR emerging, we characterized the adoption of EDR across the United States and its associated outcomes. METHODS We searched the National Cancer Database for nonsurgically managed LAPC patients diagnosed between 2004 and 2019. Pancreas-directed RT with biologically effective doses (BED10) ≥39 and ≤70 Gy was labeled conventional-dose RT (CDR), and BED10 >70 and ≤132 Gy was labeled EDR. We identified associations of EDR and OS using logistic and Cox regressions, respectively. RESULTS Among the definitive therapy subset (n = 54,115) of the entire study cohort (n = 91,493), the most common treatments were chemotherapy alone (69%), chemotherapy and radiation (29%), and RT alone (2%). For the radiation therapy subset (n = 16,978), use of pancreas-directed RT remained between 13% and 17% over the study period (ptrend > 0.999). Using multivariable logistic regression, treatment at an academic/research facility (adjusted odds ratio [aOR] 1.46, p < 0.001) and treatment between 2016 and 2019 (aOR 2.54, p < 0.001) were associated with greater receipt of EDR, whereas use of chemotherapy (aOR 0.60, p < 0.001) was associated with less receipt. Median OS estimates for EDR and CDR were 14.5 months and 13.0 months (p < 0.0001), respectively. For radiation therapy subset patients with available survival data (n = 13,579), multivariable Cox regression correlated EDR (adjusted hazard ratio 0.85, 95% confidence interval 0.80-0.91; p < 0.001) with longer OS versus CDR. DISCUSSION AND CONCLUSIONS Utilization of EDR has increased since 2016, but overall utilization of RT for LAPC has remained at less than one in five patients for almost two decades. These real-world results additionally provide an estimate of effect size of EDR for future prospective trials.
Collapse
Affiliation(s)
- Christopher Shi
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Brian De
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Hop S. Tran Cao
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Suyu Liu
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Marcus A. Florez
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ramez Kouzy
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Adam J. Grippin
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Matthew H. G. Katz
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ching‐Wei D. Tzeng
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Naruhiko Ikoma
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Michael P. Kim
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sunyoung Lee
- Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jason Willis
- Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sonal S. Noticewala
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Bruce D. Minsky
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Grace L. Smith
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Emma B. Holliday
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Cullen M. Taniguchi
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Albert C. Koong
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Prajnan Das
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ethan B. Ludmir
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Eugene J. Koay
- Department of Gastrointestinal Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
9
|
Dee EC, Ng VC, O’Reilly EM, Wei AC, Lobaugh SM, Varghese AM, Zinovoy M, Romesser PB, Wu AJ, Hajj C, Cuaron JJ, Khalil DN, Park W, Yu KH, Zhang Z, Drebin JA, Jarnagin WR, Crane CH, Reyngold M. Salvage Ablative Radiotherapy for Isolated Local Recurrence of Pancreatic Adenocarcinoma following Definitive Surgery. J Clin Med 2024; 13:2631. [PMID: 38731159 PMCID: PMC11084663 DOI: 10.3390/jcm13092631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Introduction: The rate of isolated locoregional recurrence after surgery for pancreatic adenocarcinoma (PDAC) approaches 25%. Ablative radiation therapy (A-RT) has improved outcomes for locally advanced disease in the primary setting. We sought to evaluate the outcomes of salvage A-RT for isolated locoregional recurrence and examine the relationship between subsequent patterns of failure, radiation dose, and treatment volume. Methods: We conducted a retrospective analysis of all consecutive participants who underwent A-RT for an isolated locoregional recurrence of PDAC after prior surgery at our institution between 2016 and 2021. Treatment consisted of ablative dose (BED10 98-100 Gy) to the gross disease with an additional prophylactic low dose (BED10 < 50 Gy), with the elective volume covering a 1.5 cm isotropic expansion around the gross disease and the circumference of the involved vessels. Local and locoregional failure (LF and LRF, respectively) estimated by the cumulative incidence function with competing risks, distant metastasis-free and overall survival (DMFS and OS, respectively) estimated by the Kaplan-Meier method, and toxicities scored by CTCAE v5.0 are reported. Location of recurrence was mapped to the dose region on the initial radiation plan. Results: Among 65 participants (of whom two had two A-RT courses), the median age was 67 (range 37-87) years, 36 (55%) were male, and 53 (82%) had undergone pancreaticoduodenectomy with a median disease-free interval to locoregional recurrence of 16 (range, 6-71) months. Twenty-seven participants (42%) received chemotherapy prior to A-RT. With a median follow-up of 35 months (95%CI, 26-56 months) from diagnosis of recurrence, 24-month OS and DMFS were 57% (95%CI, 46-72%) and 22% (95%CI, 14-37%), respectively, while 24-month cumulative incidence of in-field LF and total LRF were 28% (95%CI, 17-40%) and 36% (95%CI 24-48%), respectively. First failure after A-RT was distant in 35 patients (53.8%), locoregional in 12 patients (18.5%), and synchronous distant and locoregional in 10 patients (15.4%). Most locoregional failures occurred in elective low-dose volumes. Acute and chronic grade 3-4 toxicities were noted in 1 (1.5%) and 5 patients (7.5%), respectively. Conclusions: Salvage A-RT achieves favorable OS and local control outcomes in participants with an isolated locoregional recurrence of PDAC after surgical resection. Consideration should be given to extending high-dose fields to include adjacent segments of at-risk vessels beyond direct contact with the gross disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marsha Reyngold
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (E.C.D.); (V.C.N.); (C.H.C.)
| |
Collapse
|
10
|
Zhang LT, Zhang Y, Cao BY, Wu CC, Wang J. Treatment patterns and survival outcomes in patients with non-metastatic early-onset pancreatic cancer. World J Gastroenterol 2024; 30:1739-1750. [PMID: 38617739 PMCID: PMC11008379 DOI: 10.3748/wjg.v30.i12.1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The incidence of patients with early-onset pancreatic cancer (EOPC; age ≤ 50 years at diagnosis) is on the rise, placing a heavy burden on individuals, families, and society. The role of combination therapy including surgery, radiotherapy, and chemotherapy in non-metastatic EOPC is not well-defined. AIM To investigate the treatment patterns and survival outcomes in patients with non-metastatic EOPC. METHODS A total of 277 patients with non-metastatic EOPC who were treated at our institution between 2017 and 2021 were investigated retrospectively. Overall survival (OS), disease-free survival, and progression-free survival were estimated using the Kaplan-Meier method. Univariate and multivariate analyses with the Cox proportional hazards model were used to identify prognostic factors. RESULTS With a median follow-up time of 34.6 months, the 1-year, 2-year, and 3-year OS rates for the entire cohort were 84.3%, 51.5%, and 27.6%, respectively. The median OS of patients with localized disease who received surgery alone and adjuvant therapy (AT) were 21.2 months and 28.8 months, respectively (P = 0.007). The median OS of patients with locally advanced disease who received radiotherapy-based combination therapy (RCT), surgery after neoadjuvant therapy (NAT), and chemotherapy were 28.5 months, 25.6 months, and 14.0 months, respectively (P = 0.002). The median OS after regional recurrence were 16.0 months, 13.4 months, and 8.9 months in the RCT, chemotherapy, and supportive therapy groups, respectively (P = 0.035). Multivariate analysis demonstrated that carbohydrate antigen 19-9 level, pathological grade, T-stage, N-stage, and resection were independent prognostic factors for non-metastatic EOPC. CONCLUSION AT improves postoperative survival in localized patients. Surgery after NAT and RCT are the preferred therapeutic options for patients with locally advanced EOPC.
Collapse
Affiliation(s)
- Le-Tian Zhang
- Graduate School, Chinese PLA Medical School, Beijing 100853, China
- Department of Radiation Oncology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Zhang
- Department of Internal Medicine, Hospital of University of Science and Technology Beijing, Beijing 100083, China
| | - Bi-Yang Cao
- Graduate School, Chinese PLA Medical School, Beijing 100853, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chen-Chen Wu
- Graduate School, Chinese PLA Medical School, Beijing 100853, China
| | - Jing Wang
- Department of Radiation Oncology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
11
|
Levy A, Morel D, Texier M, Sun R, Durand-Labrunie J, Rodriguez-Ruiz ME, Racadot S, Supiot S, Magné N, Cyrille S, Louvel G, Massard C, Verlingue L, Bouquet F, Bustillos A, Bouarroudj L, Quevrin C, Clémenson C, Mondini M, Meziani L, Tselikas L, Bahleda R, Hollebecque A, Deutsch E. An international phase II trial and immune profiling of SBRT and atezolizumab in advanced pretreated colorectal cancer. Mol Cancer 2024; 23:61. [PMID: 38519913 PMCID: PMC10960440 DOI: 10.1186/s12943-024-01970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Immuno-radiotherapy may improve outcomes for patients with advanced solid tumors, although optimized combination modalities remain unclear. Here, we report the colorectal (CRC) cohort analysis from the SABR-PDL1 trial that evaluated the PD-L1 inhibitor atezolizumab in combination with stereotactic body radiation therapy (SBRT) in advanced cancer patients. METHODS Eligible patients received atezolizumab 1200 mg every 3 weeks until progression or unmanageable toxicity, together with ablative SBRT delivered concurrently with the 2nd cycle (recommended dose of 45 Gy in 3 fractions, adapted upon normal tissue tolerance constraint). SBRT was delivered to at least one tumor site, with at least one additional measurable lesion being kept from the radiation field. The primary efficacy endpoint was one-year progression-free survival (PFS) rate from the start of atezolizumab. Sequential tumor biopsies were collected for deep multi-feature immune profiling. RESULTS Sixty pretreated (median of 2 prior lines) advanced CRC patients (38 men [63%]; median age, 59 years [range, 20-81 years]; 77% with liver metastases) were enrolled in five centers (France: n = 4, Spain: n = 1) from 11/2016 to 04/2019. All but one (98%) received atezolizumab and 54/60 (90%) received SBRT. The most frequently irradiated site was lung (n = 30/54; 56.3%). Treatment-related G3 (no G4-5) toxicity was observed in 3 (5%) patients. Median OS and PFS were respectively 8.4 [95%CI:5.9-11.6] and 1.4 months [95%CI:1.2-2.6], including five (9%) patients with PFS > 1 year (median time to progression: 19.2 months, including 2/5 MMR-proficient). Best overall responses consisted of stable disease (n = 38; 64%), partial (n = 3; 5%) and complete response (n = 1; 2%). Immune-centric multiplex IHC and RNAseq showed that SBRT redirected immune cells towards tumor lesions, even in the case of radio-induced lymphopenia. Baseline tumor PD-L1 and IRF1 nuclear expression (both in CD3 + T cells and in CD68 + cells) were higher in responding patients. Upregulation of genes that encode for proteins known to increase T and B cell trafficking to tumors (CCL19, CXCL9), migration (MACF1) and tumor cell killing (GZMB) correlated with responses. CONCLUSIONS This study provides new data on the feasibility, efficacy, and immune context of tumors that may help identifying advanced CRC patients most likely to respond to immuno-radiotherapy. TRIAL REGISTRATION EudraCT N°: 2015-005464-42; Clinicaltrial.gov number: NCT02992912.
Collapse
Affiliation(s)
- Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, 114 Rue E. Vaillant, 94850, Villejuif, France.
- INSERM U1030, Radiothérapie Moléculaire, Villejuif, France.
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France.
| | - Daphné Morel
- Department of Radiation Oncology, Gustave Roussy, 114 Rue E. Vaillant, 94850, Villejuif, France
- INSERM U1030, Radiothérapie Moléculaire, Villejuif, France
| | - Matthieu Texier
- Biostatistics and Epidemiology Office, Gustave Roussy, Villejuif, France
- Oncostat 1018 INSERM, University Paris-Saclay, Villejuif, France
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy, 114 Rue E. Vaillant, 94850, Villejuif, France
- INSERM U1030, Radiothérapie Moléculaire, Villejuif, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Jerome Durand-Labrunie
- Department of Radiation Oncology, Gustave Roussy, 114 Rue E. Vaillant, 94850, Villejuif, France
| | | | - Severine Racadot
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Stéphane Supiot
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest-Centre Rene Gauducheau, St Herblain, Nantes, France
| | - Nicolas Magné
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Stacy Cyrille
- Biostatistics and Epidemiology Office, Gustave Roussy, Villejuif, France
- Oncostat 1018 INSERM, University Paris-Saclay, Villejuif, France
| | - Guillaume Louvel
- Department of Radiation Oncology, Gustave Roussy, 114 Rue E. Vaillant, 94850, Villejuif, France
| | - Christophe Massard
- INSERM U1030, Radiothérapie Moléculaire, Villejuif, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Drug Development Department (DITEP), Gustave Roussy-Cancer Campus, Villejuif, France
| | - Loic Verlingue
- Drug Development Department (DITEP), Gustave Roussy-Cancer Campus, Villejuif, France
| | - Fanny Bouquet
- Product Development Medical Affairs, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Alberto Bustillos
- Product Development Medical Affairs, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Lisa Bouarroudj
- Department of Radiation Oncology, Gustave Roussy, 114 Rue E. Vaillant, 94850, Villejuif, France
- INSERM U1030, Radiothérapie Moléculaire, Villejuif, France
- Bioinformatic Platform, Gustave Roussy, Villejuif, France
| | | | | | | | - Lydia Meziani
- INSERM U1030, Radiothérapie Moléculaire, Villejuif, France
| | - Lambros Tselikas
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Department of Interventional Radiology, Gustave Roussy, Villejuif, France
| | - Rastilav Bahleda
- Drug Development Department (DITEP), Gustave Roussy-Cancer Campus, Villejuif, France
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy-Cancer Campus, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, 114 Rue E. Vaillant, 94850, Villejuif, France.
- INSERM U1030, Radiothérapie Moléculaire, Villejuif, France.
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|
12
|
Kim J, Lee TS, Lee MH, Cho IR, Ryu JK, Kim YT, Lee SH, Paik WH. Pancreatic Cancer Treatment Targeting the HGF/c-MET Pathway: The MEK Inhibitor Trametinib. Cancers (Basel) 2024; 16:1056. [PMID: 38473413 DOI: 10.3390/cancers16051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic cancer is characterized by fibrosis/desmoplasia in the tumor microenvironment, which is primarily mediated by pancreatic stellate cells and cancer-associated fibroblasts. HGF/c-MET signaling, which is instrumental in embryonic development and wound healing, is also implicated for its mitogenic and motogenic properties. In pancreatic cancer, this pathway, along with its downstream signaling pathways, is associated with disease progression, prognosis, metastasis, chemoresistance, and other tumor-related factors. Other features of the microenvironment in pancreatic cancer with the HGF/c-MET pathway include hypoxia, angiogenesis, metastasis, and the urokinase plasminogen activator positive feed-forward loop. All these attributes critically influence the initiation, progression, and metastasis of pancreatic cancer. Therefore, targeting the HGF/c-MET signaling pathway appears promising for the development of innovative drugs for pancreatic cancer treatment. One of the primary downstream effects of c-MET activation is the MAPK/ERK (Ras, Ras/Raf/MEK/ERK) signaling cascade, and MEK (Mitogen-activated protein kinase kinase) inhibitors have demonstrated therapeutic value in RAS-mutant melanoma and lung cancer. Trametinib is a selective MEK1 and MEK2 inhibitor, and it has evolved as a pivotal therapeutic agent targeting the MAPK/ERK pathway in various malignancies, including BRAF-mutated melanoma, non-small cell lung cancer and thyroid cancer. The drug's effectiveness increases when combined with agents like BRAF inhibitors. However, resistance remains a challenge, necessitating ongoing research to counteract the resistance mechanisms. This review offers an in-depth exploration of the HGF/c-MET signaling pathway, trametinib's mechanism, clinical applications, combination strategies, and future directions in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Junyeol Kim
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Seung Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Myeong Hwan Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In Rae Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ji Kon Ryu
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Tae Kim
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Hyub Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Woo Hyun Paik
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
13
|
Han F, Wang Y, Dong X, Lin Q, Wang Y, Gao W, Yun M, Li Y, Gao S, Huang H, Li N, Luo T, Luo X, Qiu M, Zhang D, Yan K, Li A, Liu Z. Clinical sonochemotherapy of inoperable pancreatic cancer using diagnostic ultrasound and microbubbles: a multicentre, open-label, randomised, controlled trial. Eur Radiol 2024; 34:1481-1492. [PMID: 37796294 DOI: 10.1007/s00330-023-10210-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES Sonochemotherapy, which uses microbubble (MB)-assisted ultrasound (US) to deliver chemotherapeutic agents, has the potential to enhance tumour chemotherapy. The combination of US and MB has been demonstrated to prolong the survival of patients with pancreatic cancer. This phase 2 clinical trial aimed to determine the clinical efficacy and safety of sonochemotherapy for inoperable pancreatic ductal adenocarcinoma by using US and MB. METHODS Eighty-two patients with stage III or IV pancreatic cancer were recruited from July 2018 to March 2021 and followed up until September 2022. US treatment was performed with a modified diagnostic US scanner for 30 min after chemotherapeutic infusion. The primary endpoint was overall survival (OS), and the secondary endpoints were Eastern Cooperative Oncology Group (ECOG) status < 2, progression-free survival (PFS), disease control rate (DCR), and adverse events. RESULTS Seventy-eight patients were randomly allocated (40 to chemotherapy and 38 to sonochemotherapy). The median OS was longer with sonochemotherapy than with chemotherapy (9.10 vs. 6.10 months; p = 0.037). The median PFS with sonochemotherapy was 5.50 months, compared with 3.50 months (p = 0.080) for chemotherapy. The time of ECOG status < 2 was longer with sonochemotherapy (7.20 months) than with chemotherapy (5.00 months; p = 0.029). The DCR was 73.68% for sonochemotherapy compared with 42.50% for the control (p = 0.005). The incidence of overall adverse events was balanced between the two groups. CONCLUSIONS The use of sonochemotherapy can extend the survival and well-being time of stage III or IV pancreatic cancer patients without any increase in serious adverse events. TRIAL REGISTRATION ChineseClinicalTrials.gov ChiCTR2100044721 CLINICAL RELEVANCE STATEMENT: This multicentre, randomised, controlled trial has proven that sonochemotherapy, namely, the combination of diagnostic ultrasound, microbubbles, and chemotherapy, could extend the overall survival of patients with end-stage pancreatic ductal adenocarcinoma from 6.10 to 9.10 months without increasing any serious adverse events. KEY POINTS • This is the first multicentre, randomised, controlled trial of sonochemotherapy for clinical pancreatic cancer treatment using ultrasound and a commercial ultrasound contrast agent. • Sonochemotherapy extended the median overall survival from 6.10 (chemotherapy alone) to 9.10 months. • The disease control rate increased from 42.50% with chemotherapy to 73.68% with sonochemotherapy.
Collapse
Affiliation(s)
- Feng Han
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Yanjie Wang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 of Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaoxiao Dong
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qingguang Lin
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Yixi Wang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 of Fucheng Road, Haidian District, Beijing, 100142, China
| | - Wenhong Gao
- Department of Ultrasound, General Hospital of Central Theater, Wuhan, China
| | - Miao Yun
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China
| | - Yan Li
- Department of Gastrointestinal Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shunji Gao
- Department of Ultrasound, General Hospital of Central Theater, Wuhan, China
| | - Huilong Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao Luo
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Miaozhen Qiu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kun Yan
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 of Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Anhua Li
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, 651 Dongfengdong Road, Guangzhou, 510060, China.
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
14
|
Pang Y, Lv J, Wu T, Yu C, Guo Y, Chen Y, Yang L, Millwood IY, Walters RG, Yang X, Stevens R, Clarke R, Chen J, Li L, Chen Z, Kartsonaki C. Associations of diabetes, circulating protein biomarkers, and risk of pancreatic cancer. Br J Cancer 2024; 130:504-510. [PMID: 38129526 PMCID: PMC10844301 DOI: 10.1038/s41416-023-02533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with higher risk of pancreatic cancer (PC), but the underlying mechanisms are not fully understood. METHODS We conducted a case-subcohort study involving 610 PC cases and 623 subcohort participants with 92 protein biomarkers measured in baseline plasma samples. Genetically-instrumented T2D was derived using 86 single-nucleotide polymorphisms (SNPs), including insulin resistance (IR) SNPs. RESULTS In observational analyses of 623 subcohort participants (mean age, 52 years; 61% women), T2D was positively associated with 13 proteins (SD difference: IL6: 0.52 [0.23-0.81]; IL10: 0.41 [0.12-0.70]), of which 8 were nominally associated with incident PC. The 8 proteins potentially mediated 36.9% (18.7-75.0%) of the association between T2D and PC. In MR, no associations were observed for genetically-determined T2D with proteins, but there were positive associations of genetically-determined IR with IL6 and IL10 (SD difference: 1.23 [0.05-2.41] and 1.28 [0.31-2.24]). In two-sample MR, fasting insulin was associated with both IL6 and PC, but no association was observed between IL6 and PC. CONCLUSIONS Proteomics were likely to explain the association between T2D and PC, but were not causal mediators. Elevated fasting insulin driven by insulin resistance might explain the associations of T2D, proteomics, and PC.
Collapse
Affiliation(s)
- Yuanjie Pang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Ting Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Yu Guo
- National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, 167 Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaoming Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Rebecca Stevens
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Robert Clarke
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Junshi Chen
- National Center for Food Safety Risk Assessment, 37 Guangqu Road, 100021, Beijing, China
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, 100191, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China.
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Zhong X, Sun J, Zeng N, Xiong Y, An Y, Wang S, Xia Q. The Effect of Sex on the Therapeutic Efficiency of Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis Based on Randomized Controlled Trials. Cancers (Basel) 2024; 16:382. [PMID: 38254871 PMCID: PMC10814446 DOI: 10.3390/cancers16020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Sex is an important factor influencing the immune system, and the distribution of tumors, including their types and subtypes, is characterized by sexual dichotomy. The aim of this study was to investigate whether there is an association between sex and the treatment effect of immune checkpoint inhibitors (ICI). METHODS Four bibliographic databases were searched. Studies of randomized controlled trials (RCTs) assessing the efficacy of ICI were identified and used, and the primary endpoint was the difference in efficacy of ICI between males and females, presented as overall survival (OS), progression-free survival (PFS) and recurrence-free survival (RFS). The study calculated the pooled HRs and 95% CIs for OS, PFS and RFS for males and females using a random effects model or a fixed effects model, and thereby assessed the effect of sex on the efficacy of ICI treatment. This study is registered with PROSPERO (CRD42022370939). RESULTS A total of 103 articles, including a total of 63,755 patients with cancer, were retrieved from the bibliographic database, of which approximately 70% were males. In studies with OS as the outcome, the combined hazard ratio (HR) was 0.77 (95% CI 0.74-0.79) for male patients treated with ICI and 0.81 (95% CI 0.78-0.85) for female patients compared to controls, respectively. The difference in efficacy between males and females was significant. CONCLUSIONS ICI therapy, under suitable conditions for its use, has a positive impact on survival in various types of tumors, and male patients benefit more than females. It may be necessary to develop different tumor immunotherapy strategies for patients of different sexes.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaogang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China; (X.Z.); (J.S.); (N.Z.); (Y.X.); (Y.A.)
| | - Qidong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan 430030, China; (X.Z.); (J.S.); (N.Z.); (Y.X.); (Y.A.)
| |
Collapse
|
16
|
Ghiringhelli F, Rébé C. Using immunogenic cell death to improve anticancer efficacy of immune checkpoint inhibitors: From basic science to clinical application. Immunol Rev 2024; 321:335-349. [PMID: 37593811 DOI: 10.1111/imr.13263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Even though the discovery of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, a high proportion of patients do not respond. Moreover, some types of cancers are refractory to these treatments. Thus, the need to find predictive biomarkers of efficacy and to evaluate the association with other treatments, such as chemotherapy or radiotherapy, appears to be essential. Because ICIs reactivate or maintain an active status of T cells, one possibility is to combine these treatments with therapies that engage an immune response against tumor cells. Thus, by inducing immunogenic cell death (ICD) of cancer cells, some conventional anticancer treatments induce such immune response and may have an interest to be combined with ICIs. In this review, we explore preclinical studies and clinical trials that evaluate the combination of ICIs with ICD inducers. More than inducing ICD, some of these treatments appear to modulate the tumor microenvironment and more particularly to inhibit immunosuppression, thus improving treatment efficacy.
Collapse
Affiliation(s)
- François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | - Cédric Rébé
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
17
|
Katano A, Minamitani M, Ohira S, Yamashita H. Recent Advances and Challenges in Stereotactic Body Radiotherapy. Technol Cancer Res Treat 2024; 23:15330338241229363. [PMID: 38321892 PMCID: PMC10851756 DOI: 10.1177/15330338241229363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Affiliation(s)
- Atsuto Katano
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Masanari Minamitani
- Department of Comprehensive Radiation Oncology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shingo Ohira
- Department of Comprehensive Radiation Oncology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideomi Yamashita
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
18
|
Zhu X, Liu W, Cao Y, Feng Z, Zhao X, Jiang L, Ye Y, Zhang H. Immune profiling of pancreatic cancer for radiotherapy with immunotherapy and targeted therapy: Biomarker analysis of a randomized phase 2 trial. Radiother Oncol 2024; 190:109941. [PMID: 37820884 DOI: 10.1016/j.radonc.2023.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Immunotherapy alone offered limited survival benefits in pancreatic cancer, while the role of immunotherapy-centric combined therapy remains controversial. Therefore, it is required to develop biomarkers to precisely deliver immunotherapy-based multimodality for pancreatic cancer. METHODS This is a secondary analysis of an open label, randomized, phase 2 trial, whereas patients with locally recurrent pancreatic cancer after surgery were enrolled. Eligible patients with mutant KRAS and positive immunohistochemical staining of PD-L1 were randomly assigned to receive stereotactic body radiation therapy (SBRT) plus pembrolizumab and trametinib (SBRT + K + M) or SBRT and gemcitabine (SBRT + G). Meanwhile, patients were classified into PD-L1+/tumor infiltrating lymphocytes [TIL(s)]- and PD-L1+/TIL + group for each arm. RESULTS A total of 170 patients were enrolled and randomly assigned to receive SBRT + K + M (n = 85) or SBRT + G (n = 85). The improved outcomes have been reported in patients with SBRT + K + M in the previous study. In this secondary analysis, the median overall survival (OS) was 17.2 months (95% CI 14.6-19.8 months) in patients with PD-L1+/TIL + and 12.7 months (95% CI 10.8-14.6 months) in patients with PD-L1+/TIL- (HR 0.62, 95% CI 0.39-0.97, p = 0.036) receiving SBRT + K + M. In SBRT + G group, the median OS was 13.1 months (95% CI 10.9-15.3 months) in patients with PD-L1+/TIL- and 12.7 months (95% CI 9.2-16.2 months) in patients with PD-L1+/TIL+ (HR 0.97, 95% CI 0.62-1.52, p = 0.896). Grade 3 or 4 adverse events were found in 16 patients (30.8%) and 10 patients (30.3%) with PD-L1+/TIL- and PD-L1+/TIL + in SBRT + K + M group respectively; whereas 9 (16.7%) and 8 patients (25.8%) with PD-L1+/TIL- and PD-L1+/TIL + in SBRT + G group. CONCLUSION PD-L1, TILs and mutant KRAS may be a biomarker to guide clinical practice of radiotherapy and immunotherapy-based regimens in pancreatic cancer if further combined with MEK inhibitors as targeted therapy.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Wenyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital Affiliated to Naval Medical University, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Zhiru Feng
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Xianzhi Zhao
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Lingong Jiang
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Yusheng Ye
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital Affiliated to Naval Medical University, China.
| |
Collapse
|
19
|
Zhang J, Darman L, Hassan MS, Von Holzen U, Awasthi N. Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review). Oncol Rep 2023; 50:206. [PMID: 37800636 PMCID: PMC10570661 DOI: 10.3892/or.2023.8643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 10/07/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the most frequently mutated oncogenes in solid tumors. More than 90% of pancreatic ductal adenocarcinoma (PDAC) are driven by mutations in the KRAS gene, suggesting the importance of targeting this oncogene in PDAC. Initial efforts to target KRAS have been unsuccessful due to its small size, high affinity for guanosine triphosphate/guanosine diphosphate, and lack of distinct drug‑binding pockets. Therefore, much of the focus has been directed at inhibiting the activation of major signaling pathways downstream of KRAS, most notably the PI3K/AKT and RAF/MAPK pathways, using tyrosine kinase inhibitors and monoclonal antibodies. While preclinical studies showed promising results, clinical data using the inhibitors alone and in combination with other standard therapies have shown limited practicality, largely due to the lack of efficacy and dose‑limiting toxicities. Recent therapeutic approaches for KRAS‑driven tumors focus on mutation‑specific drugs such as selective KRASG12C inhibitors and son of sevenless 1 pan‑KRAS inhibitors. While KRASG12C inhibitors showed great promise against patients with non‑small cell lung cancer (NSCLC) harboring KRASG12C mutations, they were not efficacious in PDAC largely because the major KRAS mutant isoforms in PDAC are G12D, G12V, and G12R. As a result, KRASG12D and pan‑KRAS inhibitors are currently under investigation as potential therapeutic options for PDAC. The present review summarized the importance of KRAS oncogenic signaling, challenges in its targeting, and preclinical and clinical targeted agents including recent direct KRAS inhibitors for blocking KRAS signaling in PDAC.
Collapse
Affiliation(s)
- Joshua Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lily Darman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Md Sazzad Hassan
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Urs Von Holzen
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
- Goshen Center for Cancer Care, Goshen, IN 46526, USA
- University of Basel School of Medicine, 4056 Basel, Switzerland
| | - Niranjan Awasthi
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
| |
Collapse
|
20
|
Kumar R, Kim J, Deek MP, Eskander MF, Gulhati P, In H, Kennedy T, Shah MM, Grandhi MS, Berim L, Spencer KR, Langan RC, Hochster HS, Boland PM, Jabbour SK. Combination of Immunotherapy and Radiation Therapy in Gastrointestinal Cancers: An Appraisal of the Current Literature and Ongoing Research. Curr Oncol 2023; 30:6432-6446. [PMID: 37504333 PMCID: PMC10378032 DOI: 10.3390/curroncol30070473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
Oncological outcomes are improving in gastrointestinal cancer with advancements in systemic therapies, and there is notable potential in combining immunotherapy and radiation therapy (RT) to allow for further improvements. Various preclinical and early phase II studies have shown promising synergy with immunotherapy and RT in gastrointestinal cancer. A few recent phase III studies have shown improved survival with the addition of immunotherapy to standard treatment for gastrointestinal cancer. The timing, duration, sequencing, and integration with other anti-cancer treatments are still areas of ongoing research. We have reviewed the published and ongoing studies of the combinations of immunotherapy and RT in gastrointestinal cancers.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Jongmyung Kim
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Matthew P. Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Mariam F. Eskander
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; (M.F.E.)
| | - Prateek Gulhati
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Haejin In
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; (M.F.E.)
| | - Timothy Kennedy
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; (M.F.E.)
| | - Mihir M. Shah
- Division of Surgical Oncology, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Miral S. Grandhi
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; (M.F.E.)
| | - Lyudmyla Berim
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Kristen R. Spencer
- Department of Medicine, Perlmutter Cancer Center of NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Russell C. Langan
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; (M.F.E.)
| | - Howard S. Hochster
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Patrick M. Boland
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Salma K. Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| |
Collapse
|
21
|
Guo Y, Xu T, Chai Y, Chen F. TGF-β Signaling in Progression of Oral Cancer. Int J Mol Sci 2023; 24:10263. [PMID: 37373414 DOI: 10.3390/ijms241210263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a common malignancy worldwide, accounting for 1.9% to 3.5% of all malignant tumors. Transforming growth factor β (TGF-β), as one of the most important cytokines, is found to play complex and crucial roles in oral cancers. It may act in a pro-tumorigenic and tumor-suppressive manner; activities of the former include cell cycle progression inhibition, tumor microenvironment preparation, apoptosis promotion, stimulation of cancer cell invasion and metastasis, and suppression of immune surveillance. However, the triggering mechanisms of these distinct actions remain unclear. This review summarizes the molecular mechanisms of TGF-β signal transduction, focusing on oral squamous cell and salivary adenoid systemic carcinomas as well as keratocystic odontogenic tumors. Both the supporting and contrary evidence of the roles of TGF-β is discussed. Importantly, the TGF-β pathway has been the target of new drugs developed in the past decade, some having demonstrated promising therapeutic effects in clinical trials. Therefore, the achievements of TGF-β pathway-based therapeutics and their challenges are also assessed. The summarization and discussion of the updated knowledge of TGF-β signaling pathways will provide insight into the design of new strategies for oral cancer treatment, leading to an improvement in oral cancer outcomes.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tiansong Xu
- Central Laboratory, Peking University School of Stomatology, Beijing 100081, China
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Central Laboratory, Peking University School of Stomatology, Beijing 100081, China
| |
Collapse
|
22
|
Hamdan FH, Abdelrahman AM, Kutschat AP, Wang X, Ekstrom TL, Jalan-Sakrikar N, Wegner Wippel C, Taheri N, Tamon L, Kopp W, Aggrey-Fynn J, Bhagwate AV, Alva-Ruiz R, Lynch I, Yonkus J, Kosinsky RL, Gaedcke J, Hahn SA, Siveke JT, Graham R, Najafova Z, Hessmann E, Truty MJ, Johnsen SA. Interactive enhancer hubs (iHUBs) mediate transcriptional reprogramming and adaptive resistance in pancreatic cancer. Gut 2023; 72:1174-1185. [PMID: 36889906 PMCID: PMC10402638 DOI: 10.1136/gutjnl-2022-328154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) displays a remarkable propensity towards therapy resistance. However, molecular epigenetic and transcriptional mechanisms enabling this are poorly understood. In this study, we aimed to identify novel mechanistic approaches to overcome or prevent resistance in PDAC. DESIGN We used in vitro and in vivo models of resistant PDAC and integrated epigenomic, transcriptomic, nascent RNA and chromatin topology data. We identified a JunD-driven subgroup of enhancers, called interactive hubs (iHUBs), which mediate transcriptional reprogramming and chemoresistance in PDAC. RESULTS iHUBs display characteristics typical for active enhancers (H3K27ac enrichment) in both therapy sensitive and resistant states but exhibit increased interactions and production of enhancer RNA (eRNA) in the resistant state. Notably, deletion of individual iHUBs was sufficient to decrease transcription of target genes and sensitise resistant cells to chemotherapy. Overlapping motif analysis and transcriptional profiling identified the activator protein 1 (AP1) transcription factor JunD as a master transcription factor of these enhancers. JunD depletion decreased iHUB interaction frequency and transcription of target genes. Moreover, targeting either eRNA production or signaling pathways upstream of iHUB activation using clinically tested small molecule inhibitors decreased eRNA production and interaction frequency, and restored chemotherapy responsiveness in vitro and in vivo. Representative iHUB target genes were found to be more expressed in patients with poor response to chemotherapy compared with responsive patients. CONCLUSION Our findings identify an important role for a subgroup of highly connected enhancers (iHUBs) in regulating chemotherapy response and demonstrate targetability in sensitisation to chemotherapy.
Collapse
Affiliation(s)
- Feda H Hamdan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ana Patricia Kutschat
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Xin Wang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas L Ekstrom
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Negar Taheri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Liezel Tamon
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Waltraut Kopp
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- Clinical Research Unit 5002 (KFO5002), University Medical Center Göttingen, Göttingen, Germany
| | - Joana Aggrey-Fynn
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Aditya V Bhagwate
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Isaac Lynch
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer Yonkus
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan A Hahn
- Department of Molecular GI Oncology, Ruhr University Bochum, Bochum, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rondell Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- Clinical Research Unit 5002 (KFO5002), University Medical Center Göttingen, Göttingen, Germany
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
23
|
Fudalej M, Kwaśniewska D, Nurzyński P, Badowska-Kozakiewicz A, Mękal D, Czerw A, Sygit K, Deptała A. New Treatment Options in Metastatic Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15082327. [PMID: 37190255 DOI: 10.3390/cancers15082327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer death across the world. Poor prognosis of PC is associated with several factors, such as diagnosis at an advanced stage, early distant metastases, and remarkable resistance to most conventional treatment options. The pathogenesis of PC seems to be significantly more complicated than originally assumed, and findings in other solid tumours cannot be extrapolated to this malignancy. To develop effective treatment schemes prolonging patient survival, a multidirectional approach encompassing different aspects of the cancer is needed. Particular directions have been established; however, further studies bringing them all together and connecting the strengths of each therapy are needed. This review summarises the current literature and provides an overview of new or emerging therapeutic strategies for the more effective management of metastatic PC.
Collapse
Affiliation(s)
- Marta Fudalej
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Daria Kwaśniewska
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Paweł Nurzyński
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | | | - Dominika Mękal
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Andrzej Deptała
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
24
|
Du J, Lu C, Mao L, Zhu Y, Kong W, Shen S, Tang M, Bao S, Cheng H, Li G, Chen J, Li Q, He J, Li A, Qiu X, Gu Q, Chen D, Qi C, Song Y, Qian X, Wang L, Qiu Y, Liu B. PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with BRPC/LAPC: A biomolecular exploratory, phase II trial. Cell Rep Med 2023; 4:100972. [PMID: 36889321 PMCID: PMC10040412 DOI: 10.1016/j.xcrm.2023.100972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
This is a phase II study of PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with locally advanced or borderline resectable pancreatic cancer (LAPC or BRPC, respectively). Twenty-nine patients are enrolled in the study. The objective response rate (ORR) is 60%, and the R0 resection rate is 90% (9/10). The 12-month progression-free survival (PFS) rate and 12-month overall survival (OS) rate are 64% and 72%, respectively. Grade 3 or higher adverse events are anemia (8%), thrombocytopenia (8%), and jaundice (8%). Circulating tumor DNA analysis reveals that patients with a >50% decline in maximal somatic variant allelic frequency (maxVAF) between the first clinical evaluation and baseline have a longer survival outcome and a higher response rate and surgical rate than those who are not. PD-1 blockade plus chemoradiotherapy as preoperative therapy displays promising antitumor activity, and multiomics potential predictive biomarkers are identified and warrant further verification.
Collapse
Affiliation(s)
- Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Changchang Lu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Liang Mao
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yahui Zhu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Weiwei Kong
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Shanshan Shen
- Digestive Department of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Min Tang
- Imaging Department of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Shanhua Bao
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Hao Cheng
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Gang Li
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jun Chen
- Pathology Department of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Qi Li
- Pathology Department of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jian He
- Nuclear Medicine Department of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Aimei Li
- Nuclear Medicine Department of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xin Qiu
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Qing Gu
- National Institute of Healthcare Data Science at Nanjing University, Nanjing 210008, China
| | - Dongsheng Chen
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210002, China
| | - Chuang Qi
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210002, China
| | - Yunjie Song
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210002, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Lei Wang
- Digestive Department of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
25
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
26
|
Yang Y, Zhang H, Huang S, Chu Q. KRAS Mutations in Solid Tumors: Characteristics, Current Therapeutic Strategy, and Potential Treatment Exploration. J Clin Med 2023; 12:jcm12020709. [PMID: 36675641 PMCID: PMC9861148 DOI: 10.3390/jcm12020709] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Kristen rat sarcoma (KRAS) gene is one of the most common mutated oncogenes in solid tumors. Yet, KRAS inhibitors did not follow suit with the development of targeted therapy, for the structure of KRAS has been considered as being implausible to target for decades. Chemotherapy was the initial recommended therapy for KRAS-mutant cancer patients, which was then replaced by or combined with immunotherapy. KRAS G12C inhibitors became the most recent breakthrough in targeted therapy, with Sotorasib being approved by the Food and Drug Administration (FDA) based on its significant efficacy in multiple clinical studies. However, the subtypes of the KRAS mutations are complex, and the development of inhibitors targeting non-G12C subtypes is still at a relatively early stage. In addition, the monotherapy of KRAS inhibitors has accumulated possible resistance, acquiring the exploration of combination therapies or next-generation KRAS inhibitors. Thus, other non-target, conventional therapies have also been considered as being promising. Here in this review, we went through the characteristics of KRAS mutations in cancer patients, and the prognostic effect that it poses on different therapies and advanced therapeutic strategy, as well as cutting-edge research on the mechanisms of drug resistance, tumor development, and the immune microenvironment.
Collapse
|
27
|
Zhu X, Liu W, Cao Y, Ju X, Zhao X, Jiang L, Ye Y, Zhang H. Effect of stereotactic body radiotherapy dose escalation plus pembrolizumab and trametinib versus stereotactic body radiotherapy dose escalation plus gemcitabine for locally recurrent pancreatic cancer after surgical resection on survival outcomes: A secondary analysis of an open-label, randomised, controlled, phase 2 trial. EClinicalMedicine 2023; 55:101764. [PMID: 36471691 PMCID: PMC9718952 DOI: 10.1016/j.eclinm.2022.101764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND There are a lack of studies about whether radiation dose escalation synergizes with immunotherapy and targeted therapy in pancreatic cancer. In this study, we performed a secondary analysis to investigate whether a high radiation dose rather than a low dose plus pembrolizumab and trametinib provided improved survival compared with gemcitabine in post-operative locally recurrent pancreatic cancer. METHODS In this open-label, randomised, controlled, phase 2 trial, eligible patients with pancreatic ductal adenocarcinoma characterized by mutant KRAS and positive immunohistochemical staining of PD-L1 and documented post-operative local recurrence were randomly assigned using an interactive voice or web response system, without stratification, to receive stereotactic body radiation therapy (SBRT) with doses ranging from 35 to 40Gy in five fractions, pembrolizumab 200 mg every three weeks and oral trametinib 2 mg once daily (SBRT + K + M) or SBRT and gemcitabine (1000 mg/m2) on day 1 and 8 of each 21-day cycle (SBRT + G) until disease progression in our hospital in China. Those had radiotherapy, immunotherapy or targeted therapy were excluded. Patients and investigators were not masked to the assignment. In each arm, patients were stratified based on biologically effective dose (BED10; α/β = 10) of 60-65Gy and BED10 ≥65Gy. The primary endpoint was overall survival (OS) and the secondary endpoint was progression-free survival (PFS). All patients received their assigned treatment and were included in the efficacy and safety analyses. This study is registered with ClinicalTrials.gov, NCT02704156. FINDINGS Between Oct 10, 2016, and Oct 28, 2017, 147 of 170 randomly assigned participants were eligible for inclusion in this analysis. In BED10 of 60-65Gy group, 34 and 29 patients had SBRT + G and SBRT + K + M, respectively. While there were 42 and 42 patients with SBRT + G and SBRT + K + M in BED10 ≥65Gy group. Patients in the SBRT + K + M group had longer OS compared with the SBRT + G group, but this did not reach statistical significance (median: 15.1 vs. 12.4 months, HR 0.67 [95%CI 0.43-1.04]; p = 0.071). For BED10 of 60-65Gy, OS was similar between patients in the SBRT + K + M and SBRT + G groups (median, 13.6 vs. 12.4 months; HR 0.69 [95% CI 0.41-1.16]; p = 0.16). For BED10 of ≥65Gy, PFS was prolonged with SBRT + K + M versus SBRT + G (median: 8.6 vs. 5.0 months, HR 0.48 [95% CI 0.31-0.77]; p = 0.0021). For BED10 of 60-65Gy, there was no significant difference in PFS between the two groups (PFS: median, 7.9 vs. 4.3 months; HR 0.69 [95% CI 0.42-1.15]; p = 0.16). In BED10 of 60-65Gy group, 7 (20.6%) and 8 patients (27.6%) with SBRT + G and SBRT + K + M had grade 3 or 4 adverse events (p = 0.52). In BED10 ≥65Gy group, 8 (19.0%) and 12 patients (28.6%) with SBRT + G and SBRT + K + M had grade 3 or 4 adverse events (p = 0.31). No treatment-related death occurred. INTERPRETATION Dose escalation of SBRT may improve PFS with pembrolizumab and trametnib versus gemcitabine for patients with post-operative locally recurrent pancreatic cancer. However, benefits of PFS did not translate into longer OS. This may be ascribed to small sample size and post-hoc analysis that was not powered to determine the significance. Therefore, synergy of high dose of SBRT with immunotherapy and targeted therapy required further investigations in phase 3 trials. FUNDING Shanghai Shenkang Centre and Changhai Hospital.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
- Corresponding author. 168 Changhai Road, Shanghai, 200433, China.
| | - Wenyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xiaoping Ju
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xianzhi Zhao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Lingong Jiang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yusheng Ye
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| |
Collapse
|
28
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
29
|
Prognostic, Diagnostic, and Clinicopathological Significance of Circular RNAs in Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14246187. [PMID: 36551673 PMCID: PMC9777076 DOI: 10.3390/cancers14246187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive malignant tumor with a high mortality rate. It is urgent to find optimal molecular targets for the early diagnosis and treatment of PC. Here, we aimed to systematically analyze the prognostic, diagnostic, and clinicopathological significance of circular RNAs (circRNAs) in PC. Relevant studies were screened through PubMed, Web of Science, and other databases. The prognostic value of PC-associated circRNAs was assessed using the composite hazard ratio (HR), the diagnostic performance was assessed using the area under the summary receiver operator characteristic (SROC) curve (AUC), and the correlation with clinicopathological characteristics using the composite odds ratio (OR) was explored. In our study, 48 studies were included: 34 for prognosis, 11 for diagnosis, and 30 for correlation with clinicopathological characteristics. For prognosis, upregulated circRNAs were associated with poorer overall survival (OS) (HR = 2.02) and disease-free survival/progression-free survival (HR = 1.84) while downregulated circRNAs were associated with longer OS (HR = 0.55). Notably, the combination of circRNAs, including hsa_circ_0064288, hsa_circ_0000234, hsa_circ_0004680, hsa_circ_0071036, hsa_circ_0000677, and hsa_circ_0001460, was associated with worse OS (HR = 2.35). For diagnosis, the AUC was 0.83, and the pooled sensitivity and specificity were 0.79 and 0.73, respectively. For clinicopathologic characteristics, upregulated circRNAs were associated with poorer tumor differentiation, more nerve and vascular invasion, higher T stage, lymphatic metastasis, distant metastasis, advanced TNM stage, and higher preoperative CA19-9 level. In contrast, downregulated circRNAs were negatively associated with PC differentiation and lymphatic metastasis. Overall, our results showed that circRNAs are closely related to the prognosis and clinicopathological characteristics of PC patients and could be utilized for early diagnosis; thus, they are promising biomarkers for clinical application in PC.
Collapse
|
30
|
Hughes R, Snook AE, Mueller AC. The poorly immunogenic tumor microenvironment of pancreatic cancer: the impact of radiation therapy, and strategies targeting resistance. Immunotherapy 2022; 14:1393-1405. [PMID: 36468417 DOI: 10.2217/imt-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the most lethal cancers, due to its uniquely aggressive behavior and resistance to therapy. The tumor microenvironment of pancreatic cancer is immunosuppressive, and attempts at utilizing immunotherapies have been unsuccessful. Radiation therapy (RT) results in immune activation and antigen presentation in other cancers, but in pancreatic cancer has had limited success in stimulating immune responses. RT activates common pathways of fibrosis and chronic inflammation seen in pancreatic cancer, resulting in immune suppression. Here we describe the pancreatic tumor microenvironment with regard to fibrosis, myeloid and lymphoid cells, and the impact of RT. We also describe strategies of targeting these pathways that have promise to improve outcomes by harnessing the cytotoxic and immune-activating aspects of RT.
Collapse
Affiliation(s)
- Robert Hughes
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam C Mueller
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
31
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
32
|
Advances in Radiation Oncology for Pancreatic Cancer: An Updated Review. Cancers (Basel) 2022; 14:cancers14235725. [PMID: 36497207 PMCID: PMC9736314 DOI: 10.3390/cancers14235725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
This review aims to summarize the recent advances in radiation oncology for pancreatic cancer. A systematic search of the MEDLINE/PubMed database and Clinicaltrials.gov was performed, focusing on studies published within the last 10 years. Our search queried "locally advanced pancreatic cancer [AND] stereotactic body radiation therapy (SBRT) [OR] hypofractionation [OR] magnetic resonance guidance radiation therapy (MRgRT) [OR] proton" and "borderline resectable pancreatic cancer [AND] neoadjuvant radiation" and was limited only to prospective and retrospective studies and metanalyses. For locally advanced pancreatic cancers (LAPC), retrospective evidence supports the notion of radiation dose escalation to improve overall survival (OS). Novel methods for increasing the dose to high risk areas while avoiding dose to organs at risk (OARs) include SBRT or ablative hypofractionation using a simultaneous integrated boost (SIB) technique, MRgRT, or charged particle therapy. The use of molecularly targeted agents with radiation to improve radiosensitization has also shown promise in several prospective studies. For resectable and borderline resectable pancreatic cancers (RPC and BRPC), several randomized trials are currently underway to study whether current neoadjuvant regimens using radiation may be improved with the use of the multi-drug regimen FOLFIRINOX or immune checkpoint inhibitors.
Collapse
|
33
|
Park JH. Stereotactic body radiation therapy for pancreatic cancer: a potential ally in the era of immunotherapy? Radiat Oncol J 2022; 40:169-171. [PMID: 36200306 PMCID: PMC9535411 DOI: 10.3857/roj.2022.00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022] Open
Affiliation(s)
- Jin-hong Park
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Correspondence: Jin-hong Park Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea. Tel: +82-2-3010-5616 E-mail:
| |
Collapse
|
34
|
Bazeed AY, Day CM, Garg S. Pancreatic Cancer: Challenges and Opportunities in Locoregional Therapies. Cancers (Basel) 2022; 14:cancers14174257. [PMID: 36077794 PMCID: PMC9454856 DOI: 10.3390/cancers14174257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is a serious ongoing global health burden, with an overall 5-year survival rate of less than 5%. One major hurdle in the treatment of this disease is the predominantly elderly patient population, leading to their ineligibility for curative surgery and a low rate of successful outcomes. Systemic administration introduces chemo-agents throughout the body via the blood, attacking not only tumours but also healthy organs. When localised interventions are employed, chemo-agents are retained specifically at tumour site, minimizing unwanted toxicity. As a result, there is a growing interest in finding novel localised interventions as alternatives to systemic therapy. Here, we present a detailed review of current locoregional therapies used in pancreatic cancer therapy. This work aims to present a thorough guide for researchers and clinicians intended to employ established and novel localised interventions in the treatment of pancreatic cancer. Furthermore, we present our insights and opinions on the potential ideals to improve these tools. Abstract Pancreatic cancer (PC) remains the seventh leading cause of cancer-related deaths worldwide and the third in the United States, making it one of the most lethal solid malignancies. Unfortunately, the symptoms of this disease are not very apparent despite an increasing incidence rate. Therefore, at the time of diagnosis, 45% of patients have already developed metastatic tumours. Due to the aggressive nature of the pancreatic tumours, local interventions are required in addition to first-line treatments. Locoregional interventions affect a specific area of the pancreas to minimize local tumour recurrence and reduce the side effects on surrounding healthy tissues. However, compared to the number of new studies on systemic therapy, very little research has been conducted on localised interventions for PC. To address this unbalanced focus and to shed light on the tremendous potentials of locoregional therapies, this work will provide a detailed discussion of various localised treatment strategies. Most importantly, to the best of our knowledge, the aspect of localised drug delivery systems used in PC was unprecedentedly discussed in this work. This review is meant for researchers and clinicians considering utilizing local therapy for the effective treatment of PC, providing a thorough guide on recent advancements in research and clinical trials toward locoregional interventions, together with the authors’ insight into their potential improvements.
Collapse
|
35
|
Sun R, Henry T, Laville A, Carré A, Hamaoui A, Bockel S, Chaffai I, Levy A, Chargari C, Robert C, Deutsch E. Imaging approaches and radiomics: toward a new era of ultraprecision radioimmunotherapy? J Immunother Cancer 2022; 10:e004848. [PMID: 35793875 PMCID: PMC9260846 DOI: 10.1136/jitc-2022-004848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Strong rationale and a growing number of preclinical and clinical studies support combining radiotherapy and immunotherapy to improve patient outcomes. However, several critical questions remain, such as the identification of patients who will benefit from immunotherapy and the identification of the best modalities of treatment to optimize patient response. Imaging biomarkers and radiomics have recently emerged as promising tools for the non-invasive assessment of the whole disease of the patient, allowing comprehensive analysis of the tumor microenvironment, the spatial heterogeneity of the disease and its temporal changes. This review presents the potential applications of medical imaging and the challenges to address, in order to help clinicians choose the optimal modalities of both radiotherapy and immunotherapy, to predict patient's outcomes and to assess response to these promising combinations.
Collapse
Affiliation(s)
- Roger Sun
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Théophraste Henry
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Nuclear Medicine, Gustave Roussy, Villejuif, France
| | - Adrien Laville
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Alexandre Carré
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Anthony Hamaoui
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Sophie Bockel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Ines Chaffai
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Cyrus Chargari
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Brachytherapy Unit, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- INSERM U1030, Gustave Roussy, Villejuif, France
| |
Collapse
|