1
|
Patel RS, Tomlinson JE, Divers TJ, Van de Walle GR, Rosenberg BR. Single-cell resolution landscape of equine peripheral blood mononuclear cells reveals diverse cell types including T-bet + B cells. BMC Biol 2021; 19:13. [PMID: 33482825 PMCID: PMC7820527 DOI: 10.1186/s12915-020-00947-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Traditional laboratory model organisms represent a small fraction of the diversity of multicellular life, and findings in any given experimental model often do not translate to other species. Immunology research in non-traditional model organisms can be advantageous or even necessary, such as when studying host-pathogen interactions. However, such research presents multiple challenges, many stemming from an incomplete understanding of potentially species-specific immune cell types, frequencies, and phenotypes. Identifying and characterizing immune cells in such organisms is frequently limited by the availability of species-reactive immunophenotyping reagents for flow cytometry, and insufficient prior knowledge of cell type-defining markers. RESULTS Here, we demonstrate the utility of single-cell RNA sequencing (scRNA-Seq) to characterize immune cells for which traditional experimental tools are limited. Specifically, we used scRNA-Seq to comprehensively define the cellular diversity of equine peripheral blood mononuclear cells (PBMC) from healthy horses across different breeds, ages, and sexes. We identified 30 cell type clusters partitioned into five major populations: monocytes/dendritic cells, B cells, CD3+PRF1+ lymphocytes, CD3+PRF1- lymphocytes, and basophils. Comparative analyses revealed many cell populations analogous to human PBMC, including transcriptionally heterogeneous monocytes and distinct dendritic cell subsets (cDC1, cDC2, plasmacytoid DC). Remarkably, we found that a majority of the equine peripheral B cell compartment is comprised of T-bet+ B cells, an immune cell subpopulation typically associated with chronic infection and inflammation in human and mouse. CONCLUSIONS Taken together, our results demonstrate the potential of scRNA-Seq for cellular analyses in non-traditional model organisms and form the basis for an immune cell atlas of horse peripheral blood.
Collapse
Affiliation(s)
- Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas J Divers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
2
|
The equine immune responses to infectious and allergic disease: a model for humans? Mol Immunol 2014; 66:89-96. [PMID: 25457878 DOI: 10.1016/j.molimm.2014.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
The modern horse, Equus caballus has historically made important contributions to the field of immunology, dating back to Emil von Behring's description of curative antibodies in equine serum over a century ago. While the horse continues to play an important role in human serotherapy, the mouse has replaced the horse as the predominant experimental animal in immunology research. Nevertheless, continuing efforts have led to an improved understanding of the equine immune response in a variety of infectious and non-infectious diseases. Based on this information, we can begin to identify specific situations where the horse may provide a unique immunological model for certain human diseases.
Collapse
|
3
|
Kulbrock M, Distl O, Ohnesorge B. A Review of Candidate Genes for Development of Equine Recurrent Uveitis. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Schnabel CL, Wagner S, Wagner B, Durán MC, Babasyan S, Nolte I, Pfarrer C, Feige K, Murua Escobar H, Cavalleri JMV. Evaluation of the reactivity of commercially available monoclonal antibodies with equine cytokines. Vet Immunol Immunopathol 2013; 156:1-19. [PMID: 24139393 DOI: 10.1016/j.vetimm.2013.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 09/06/2013] [Accepted: 09/19/2013] [Indexed: 01/23/2023]
Abstract
Research on equine cytokines is often performed by analyses of mRNA. For many equine cytokines an analysis on the actual protein level is limited by the availability of antibodies against the targeted cytokines. Generation of new antibodies is ongoing but time consuming. Thus, testing the reactivity of commercially available antibodies for cross-reactivity with equine cytokines is of particular interest. Fifteen monoclonal antibodies against IL-1β, IL-6, IL-8, IL-12, IL-18 and Granulocyte Macrophage Colony stimulating factor (GM-CSF) of different species were evaluated for reactivity with their corresponding equine cytokines. Dot Blot (DB) and Western Blot (WB) analyses were performed using recombinant equine cytokines as positive controls. Immunohistochemistry (IHC) was carried out on equine tissue and flow cytometry on equine PBMC as positive controls. As expected, three equine IL-1β antibodies detected equine IL-1β in DB, WB and IHC. For these, reactivity in IHC has not been described before. One of them was also found to be suitable for intracellular staining of equine PBMC and flow cytometric analysis. Two antibodies raised against ovine GM-CSF cross-reacted with equine GM-CSF in DB, WB and IHC. For these anti-GM-CSF mAbs this is the first experimental description of cross-reactivity with equine GM-CSF (one mAb was predicted to be cross-reactive in WB in the respective data sheet). The other clone additionally proved to be appropriate in flow cytometric analysis. Two mAbs targeting porcine IL-18 cross-reacted in IHC, but did not show specificity in the other applications. No reactivity was shown for the remaining five antibodies in DB, although cross-reactivity of two of the antibodies was described previously. The results obtained in this study can provide beneficial information for choosing of antibodies for immunological tests on equine cytokines.
Collapse
Affiliation(s)
- C L Schnabel
- University of Veterinary Medicine Hannover, Foundation, Clinic for Horses, Bünteweg 9, 30559 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Comparison of Skin Prick Tests with In Vitro Allergy Tests in the Characterization of Horses with Recurrent Airway Obstruction. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2012.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Hamza E, Gerber V, Steinbach F, Marti E. Equine CD4(+) CD25(high) T cells exhibit regulatory activity by close contact and cytokine-dependent mechanisms in vitro. Immunology 2011; 134:292-304. [PMID: 21977999 DOI: 10.1111/j.1365-2567.2011.03489.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Horses are particularly prone to allergic and autoimmune diseases, but little information about equine regulatory T cells (Treg) is currently available. The aim of this study therefore was to investigate the existence of CD4(+) Treg cells in horses, determine their suppressive function as well as their mechanism of action. Freshly isolated peripheral blood mononuclear cells (PBMC) from healthy horses were examined for CD4, CD25 and forkhead box P3 (FoxP3) expression. We show that equine FoxP3 is expressed constitutively by a population of CD4(+) CD25(+) T cells, mainly in the CD4(+) CD25(high) subpopulation. Proliferation of CD4(+) CD25(-) sorted cells stimulated with irradiated allogenic PBMC was significantly suppressed in co-culture with CD4(+) CD25(high) sorted cells in a dose-dependent manner. The mechanism of suppression by the CD4(+) CD25(high) cell population is mediated by close contact as well as interleukin (IL)-10 and transforming growth factor-β1 (TGF-β1) and probably other factors. In addition, we studied the in vitro induction of CD4(+) Treg and their characteristics compared to those of freshly isolated CD4(+) Treg cells. Upon stimulation with a combination of concanavalin A, TGF-β1 and IL-2, CD4(+) CD25(+) T cells which express FoxP3 and have suppressive capability were induced from CD4(+) CD25(-) cells. The induced CD4(+) CD25(high) express higher levels of IL-10 and TGF-β1 mRNA compared to the freshly isolated ones. Thus, in horses as in man, the circulating CD4(+) CD25(high) subpopulation contains natural Treg cells and functional Treg can be induced in vitro upon appropriate stimulation. Our study provides the first evidence of the regulatory function of CD4(+) CD25(+) cells in horses and offers insights into ex vivo manipulation of Treg cells.
Collapse
Affiliation(s)
- Eman Hamza
- Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
7
|
De Schauwer C, Meyer E, Van de Walle GR, Van Soom A. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology 2010; 75:1431-43. [PMID: 21196039 DOI: 10.1016/j.theriogenology.2010.11.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 01/16/2023]
Abstract
Mesenchymal stromal cells (MSC) are a very promising subpopulation of adult stem cells for cell-based regenerative therapies in veterinary medicine. Despite major progress in the knowledge on adult stem cells during recent years, a proper identification of MSC remains a challenge. In human medicine, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy (ISCT) recently proposed three criteria to define MSC. Firstly, cells must be plastic-adherent when maintained under standard culture conditions. Secondly, MSC must express CD73, CD90 and CD105, and lack expression of CD34, CD45, CD14 or CD11b, CD79α or CD19 and MHC class II antigens. Thirdly, MSC must be able to differentiate into osteoblasts, adipocytes and chondroblasts in vitro. Successful isolation and differentiation of equine MSC from different sources such as bone marrow, fat tissue, umbilical cord blood, Wharton's Jelly or peripheral blood has been widely reported. However, their unequivocal immunophenotyping is hampered by the lack of a single specific marker and the limited availability of monoclonal anti-horse antibodies, which are two major factors complicating successful research on equine MSC. Detection of gene expression on mRNA level is hereby a valuable alternative, although the need still exists to test several antibody clones in search for cross-reactivity. To date, commercial antibodies recognizing equine epitopes are only available for CD13, CD44 and MHC-II. Moreover, as the expression of certain adult stem cell markers may differ between species, it is mandatory to define a set of CD markers which can be uniformly applied for the identification of equine MSC.
Collapse
Affiliation(s)
- Catharina De Schauwer
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium.
| | | | | | | |
Collapse
|
8
|
Krakowski L, Krawczyk CH, Wrona Z, Dąbrowski R, Jarosz Ł. Levels of selected T lymphocyte subpopulations in peripheral blood of mares which experienced early embryonic death. Anim Reprod Sci 2010; 120:71-7. [DOI: 10.1016/j.anireprosci.2010.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
|
9
|
Espino-Solis GP, Calderon-Amador J, Calderon-Aranda ES, Licea AF, Donis-Maturano L, Flores-Romo L, Possani LD. Rational design of synthetic peptides to generate antibodies that recognize in situ CD11c(+) putative dendritic cells in horse lymph nodes. Vet Immunol Immunopathol 2009; 132:181-90. [PMID: 19682754 DOI: 10.1016/j.vetimm.2009.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/08/2009] [Accepted: 06/10/2009] [Indexed: 11/29/2022]
Abstract
A three-dimensional model of the alphaX I-domain of the horse integrin CD11c from dendritic cells provided information for selecting two segments of the primary structure for peptide synthesis. Peptide 1 contains 20 amino acids and peptide 2 has 17 amino acid residues. The first spans from position Thr229 to Arg248 of an alpha-helix segment of the structure, whereas peptide 2 goes from Asp158 to Phe174 and corresponds to an exposed segment of the loop considered to be the metal ion-dependent adhesion site. Murine polyclonal antisera against both peptides were generated and assayed in peripheral blood cell suspensions and in cryosections of horse lymph nodes. Only the serum against peptide 2 was capable of identifying cells in suspension and in situ by immunohistochemistry, some with evident dendritic morphology. Using this approach, an immunogenic epitope exposed in CD11c was identified in cells from horse lymph node in situ.
Collapse
Affiliation(s)
- Gerardo P Espino-Solis
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
10
|
Neutralization of Bothrops asper venom by antibodies, natural products and synthetic drugs: Contributions to understanding snakebite envenomings and their treatment. Toxicon 2009; 54:1012-28. [DOI: 10.1016/j.toxicon.2009.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
|
11
|
Steinbach F, Bischoff S, Freund H, Metzner-Flemisch S, Ibrahim S, Walter J, Wilke I, Mauel S. Clinical application of dendritic cells and interleukin-2 and tools to study activated T cells in horses--first results and implications for quality control. Vet Immunol Immunopathol 2008; 128:16-23. [PMID: 19056130 DOI: 10.1016/j.vetimm.2008.10.317] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells, which are well known for their capacity to stimulate immunity. The ex vivo generation of myeloid DC from monocytes has facilitated the development of DC-vaccination protocols which have been extensively evaluated in tumour immunology and are regarded by some as a gold mine for clinical research. However, there is a considerable amount of work required to overcome the potential risks associated with such therapy. It is therefore mandatory to characterize the system to be applied and to study the reactions, particularly at the level of T cell responses. The first objective of the current study was to test if tumour lysates loaded autologous DC or recombinant human IL-2 are well tolerated in horses and performed an exploratory phase I study on equine sarcoids and squamous cell carcinomas. We consequently intended to establish a robust protocol for the magnetic separation of monocytes such as in use in human clinical studies. Finally we intended to address the limits in the reagents to study equine T cell based immune reactions, and analysed markers for CD25 and FoxP3. The data showed that local application of DC or IL-2 did not cause side effects. Additionally our data show that a polyclonal approach to detect antigens such as CD25 might be successful, where mAbs are not available. Our data also demonstrate that the mAb FJK16s, which has been used successfully in rodents, humans, and dogs, can also be applied in horses. We finally wish to share our concerns regarding quality control for clinical studies and encourage multi-central studies such as in human medicine to ensure that progress along established standards is made for the benefit of veterinary medicine.
Collapse
Affiliation(s)
- Falko Steinbach
- Virology Department, Veterinary Laboratories Agency (VLA), Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dietze B, Cierpka E, Schäfer M, Schill W, Lutz MB. An improved method to generate equine dendritic cells from peripheral blood mononuclear cells: divergent maturation programs by IL-4 and LPS. Immunobiology 2008; 213:751-8. [PMID: 18926290 DOI: 10.1016/j.imbio.2008.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 11/18/2022]
Abstract
Equine dendritic cells (eqDC) can be generated from peripheral blood monocytes by propagation in GM-CSF and IL-4. Despite similarities with the generation of human DC, we found significant improvements for eqDC generation and functional influences on eqDC maturation. The fractionation of peripheral blood mononuclear cells (PBMC) by two subsequent gradients at densities of 1.090 and 1.077 as well as an adherence step in AIM V((R)) medium on dishes coated with extracellular matrix components (Primaria) improved the purity and yield of DC. After 3 days, eqDC cultures with GM-CSF alone developed into three subsets of (i) MHC II(neg) cells, (ii) MHC II(low) immature, endocytic cells and (iii) MHC II(high) spontaneously mature, non-endocytic DC. The immature DC fraction of the GM-CSF cultures matured, as detected by MHC II up-regulation, upon LPS exposure overnight. DC cultures in GM-CSF plus IL-4 resulted in higher cell yields, a loss of the immature MHC II(low) population but increased mature MHC II(high) DC, suggesting maturation. However, the MHC II(high) DC fraction was still endocytically active and did not lose their endocytic function after LPS treatment. They marginally up-regulated MHC II expression but this did not result in an enhanced stimulation of an allogeneic mixed lymphocyte reaction. However, LPS treatment clearly induced mRNA for IL-12p35 and p40, which was not observed by addition of IL-4 alone. Together our data indicate that IL-4 and LPS induce two different maturation programs. IL-4 induces a semi-maturation where the cells are still endocytic, which can be further matured to secrete cytokines in a second step by LPS.
Collapse
Affiliation(s)
- Barbara Dietze
- Department of Dermatology, University Hospital Erlangen, Germany
| | | | | | | | | |
Collapse
|
13
|
Ibrahim S, Steinbach F. Non-HLDA8 animal homologue section anti-leukocyte mAbs tested for reactivity with equine leukocytes. Vet Immunol Immunopathol 2007; 119:81-91. [PMID: 17692930 DOI: 10.1016/j.vetimm.2007.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In addition to the 379 monoclonal antibodies (mAbs) tested in the animal homologues section of HLDA8, another 155 mAbs were screened at the Institute for Zoo and Wildlife Research, Berlin for cross-reactivity with equine leukocytes. For this purpose, one colour flow-cytometric analysis was performed as screening test. This additional screening indicated further 16 mAbs as positive with staining homologous to human pattern, 1 mAb with weak (positive) reactivity, 11 mAbs with positive, but likely not valuable staining, 12 mAbs with alternate expression pattern from that expected from human immunology, 2 mAbs with questionable variable staining, 13 mAbs with weak-positive expression and alternate pattern, and 78 negative mAbs. In 23 cases, more appropriate target cells, such as thymocytes or stem cells, were not available for screening. The results support and add to the value of the "cross-reactivity" approach for equine immunology.
Collapse
Affiliation(s)
- Sherif Ibrahim
- Institute for Zoo and Wildlife Research, Alfred Kowalke Str. 17, 10315 Berlin, Germany
| | | |
Collapse
|
14
|
Ibrahim S, Saunders K, Kydd JH, Lunn DP, Steinbach F. Screening of anti-human leukocyte monoclonal antibodies for reactivity with equine leukocytes. Vet Immunol Immunopathol 2007; 119:63-80. [PMID: 17707518 DOI: 10.1016/j.vetimm.2007.06.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three hundred and seventy-nine monoclonal antibodies (mAbs) against various human CD molecules supplied to the HLDA8 animal homologues section (including four isotype controls) were analysed for cross-reactivity with equine leukocytes. First, flow cytometric identification of positively reacting mAbs was performed in one laboratory. Thereafter, a second round of flow cytometric evaluation was performed, involving three laboratories participating in the study. The first test-round indicated 17 mAbs as potentially positive. After the second round of flow cytometric analysis, 14 mAbs remained (directed against CD2, CD11a, CD18, CD44, CD45, CD49d, CD91, CD163 and CD172) where cross-reactivity was anticipated based on similarities between the human and equine staining pattern. Additionally, there was 1 mAb with weak likely positive reactivity, 12 mAbs with positive staining, which likely do not reflect valuable data, 5 mAbs with clear alternate expression pattern from that expected from humans, 5 mAbs with a questionable staining pattern itself, i.e. that was variable between the three labs, 32 mAbs with weak-positive expression and alternate staining pattern, and 279 negative mAbs (including the four isotype controls) were detected. In 31 cases, more appropriate target cells, such as thymocytes or stem cells, were not available for the screening. The results underline the value of this "cross-reactivity" approach for equine immunology. However, as only a few mAbs against leukocyte surface antigens reacted positively (approximately 4% of the mAbs submitted), the analysis of further anti-human mAbs and directed efforts to develop species-specific anti-CD mAb are still required.
Collapse
Affiliation(s)
- Sherif Ibrahim
- Institute for Zoo and Wildlife Research, Alfred Kowalke Street 17, 10315 Berlin, Germany
| | | | | | | | | |
Collapse
|
15
|
León G, Rodríguez MA, Rucavado A, Lomonte B, Gutiérrez JM. Anti-human erythrocyte antibodies in horse-derived antivenoms used in the treatment of snakebite envenomations. Biologicals 2007; 35:5-11. [PMID: 16490363 DOI: 10.1016/j.biologicals.2005.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/28/2005] [Accepted: 11/30/2005] [Indexed: 11/17/2022] Open
Abstract
This work examined the presence of antibodies reacting with human erythrocytes in horse-derived antivenoms used in the treatment of snakebite envenomations, and assessed the efficacy of various fractionation protocols in the elimination of agglutinating antibodies. A number of antivenoms produced by various fractionation protocols were tested for direct agglutination of human erythrocytes. Reactions were observed visually and microscopically, and an indirect anti-equine globulin test was also used. In addition, rabbits and mice were injected intravenously with antivenoms to observe possible intravascular hemolysis and erythrocyte sequestration. All tested antivenoms agglutinated human erythrocytes, albeit to different extent, and also gave a positive anti-globulin test. Agglutination was due to IgG(T) subclass of antibodies. Pepsin digestion of horse IgG, to obtain F(ab')(2) fragments, reduced the direct agglutination, but not the indirect anti-globulin test. Ion-exchange chromatography of IgG in a strongly basic quaternary ammonium cellulose membrane abrogated direct agglutination and reduced the indirect anti-globulin test. Binding of antivenom antibodies to erythrocytes in vivo was demonstrated in rabbits, although there was no evidence of intravascular hemolysis or erythrocyte sequestration in rabbits and mice. It is concluded that anti-human erythrocyte antibodies are present in horse-derived antivenoms, and that fractionation of horse plasma by pepsin digestion, and especially by anion-exchange chromatography, reduces the titer of these antibodies. Our in vivo experimental results do not support a role for these antibodies in early adverse reactions occurring after antivenom administration.
Collapse
Affiliation(s)
- Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | |
Collapse
|
16
|
Mauel S, Steinbach F, Ludwig H. Monocyte-derived dendritic cells from horses differ from dendritic cells of humans and mice. Immunology 2006; 117:463-73. [PMID: 16556260 PMCID: PMC1782256 DOI: 10.1111/j.1365-2567.2005.02319.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dendritic cells (DC) are the initiators of immune responses and are present in most tissues in vivo. To generate myeloid DC from monocytes (MoDC) in vitro the necessary cytokines are granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). Using degenerated primers delineated from other species and rapid amplification of cDNA ends reverse transcription-polymerase chain reaction (RACE RT-PCR), the cDNA of equine (eq.) GM-CSF was cloned and found to have a point deletion at the 3'-end of eq.GM-CSF, resulting in a 24-nucleotide extended open reading frame not described in any species thus far. For differentiating eq.MoDC, monocytes were stimulated with eq.GM-CSF and eq.IL-4. The eq.MoDC was analysed by both light and electron microscopy and by flow cytometry and mixed lymphocyte reaction. The eq.MoDC obtained had the typical morphology and function of DC, including the ability to stimulate allogeneic T cells in a mixed lymphocyte reaction. In contrast to the human system, however, monocytes had to be differentiated for 6-7 days before immature DC were obtained. Our data also indicate that lipopolysaccharide or poly(I:C) alone are not sufficient to confer the full phenotypic transition into mature DC. Thus our study contributes to understanding the heterogeneity of immunity and adds important information on the equine immune system, which is clearly distinct from those of mice or man.
Collapse
Affiliation(s)
| | - Falko Steinbach
- Institute of Virology, FU BerlinBerlin, Germany
- Institute for Zoo and Wildlife Research BerlinGermany
- Correspondence and Present address: Virology Department, Veterinary Laboratories Agency (VLA), Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK. Senior author: Falko Steinbach,
| | | |
Collapse
|
17
|
Morton HC, Pleass RJ, Storset AK, Brandtzaeg P, Woof JM. Cloning and characterization of equine CD89 and identification of the CD89 gene in chimpanzees and rhesus macaques. Immunology 2005; 115:74-84. [PMID: 15819699 PMCID: PMC1782135 DOI: 10.1111/j.1365-2567.2005.02129.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Immunoglobulin A (IgA) is the major antibody class present in external secretions of mammals. At the vulnerable mucosal surfaces, IgA provides a crucial first-line defence by neutralizing pathogens. Primates also have a substantial level of IgA in serum and although not well understood, the biological role of this IgA depends, at least partly, on its ability to interact with specific receptors (FcalphaRs) on the surface of leucocytes. The human FcalphaR, CD89, was the first IgA Fc receptor to be identified and binding of IgA-coated particles to CD89 triggers numerous cellular effector functions, including phagocytosis, antibody-dependent cellular cytotoxicity, and release of inflammatory mediators, all of which may play an important role in both systemic and mucosal immunity. For many years humans were the only species known to express CD89, however, it has recently been cloned from cows and rats. Here, we describe the identification of the CD89 gene in three additional species: horses, chimpanzees, and Rhesus macaques. Equine CD89 was identified at the cDNA level, whereas the chimpanzee and Rhesus macaque genes were identified from the available draft genomic sequence. Interestingly, when compared with humans and other primates, horses, cows and rats have a relatively low concentration of serum IgA, so the role of CD89 in these species is of particular interest. The identification and characterization of CD89 in different species will contribute to a greater understanding of the biological role of IgA and CD89 in mucosal and systemic immunity throughout evolution.
Collapse
Affiliation(s)
- H Craig Morton
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, Rikshospitalet, University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
18
|
Steinbach F, Carter S, Charley B, Fossum C. Passage from India: the first European Veterinary Immunology Workshop. Vet Immunol Immunopathol 2004; 100:99-103. [PMID: 15182999 DOI: 10.1016/j.vetimm.2004.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The European Veterinary Immunology Group (EVIG) was founded under the auspices of the European Federation of Immunologic Societies (EFIS) in 2001, and held its first meeting in autumn 2003 in Berlin. Here, we summarize the short history of this group, report on the workshop in Berlin and outline some future perspectives up to the next meeting scheduled for 2006 in Paris.
Collapse
Affiliation(s)
- Falko Steinbach
- Institute for Zoo and Wildlife Research, Alfred Kowalke Str. 17, 10315 Berlin, Germany.
| | | | | | | |
Collapse
|
19
|
Deeg CA, Thurau SR, Gerhards H, Ehrenhofer M, Wildner G, Kaspers B. Uveitis in horses induced by interphotoreceptor retinoid-binding protein is similar to the spontaneous disease. Eur J Immunol 2002; 32:2598-606. [PMID: 12207344 DOI: 10.1002/1521-4141(200209)32:9<2598::aid-immu2598>3.0.co;2-#] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Equine recurrent uveitis (ERU) is an inflammatory eye disease with high similarity to uveitis in man. It is the only spontaneous animal model for uveitis and the most frequent eye disease in horses affecting up to 10% of the population. To further investigate the pathophysiology of ERU we now report the establishment of an inducible uveitis model in horses. An ERU-like disease was elicited in seven out of seven horses by injection of interphotoreceptor retinoid-binding protein (IRBP) in complete Freund's adjuvant. Control horses did not develop uveitis. The disease model is characterized by a highly reproducible disease course and recurrent episodes with an identical time course elicited in all horses by repeated IRBP injections. The histology revealed the formation of lymphoid follicle-like structures in the eyes and an intraocular infiltration dominated by CD3(+) lymphocytes, morphological patterns typical for the spontaneous disease. Antigen-specific T cell proliferation of PBL was monitored prior to clinical uveitis and during disease episodes. An initial T cell response to IRBP-derived peptides was followed by epitope spreading to S-antigen-derived peptides in response to subsequent immunizations. Thus, horse experimental uveitis represents a valuable disease model for comparative studies with the spontaneous disease and the investigation of immunomodulatory therapeutic approaches after onset of the disease.
Collapse
Affiliation(s)
- Cornelia A Deeg
- Institute for Animal Physiology, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|