1
|
Lim SY, Kim HW, Choe YJ, Ahn B, Kang HM, Park J, Kwon GY, Lee SH, Kwon S, Choi EH. The structure, role, and procedures of Korean expert committee on immunization practices. Vaccine X 2025; 22:100601. [PMID: 39759569 PMCID: PMC11700290 DOI: 10.1016/j.jvacx.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/17/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Vaccination is a cornerstone of public health, preventing infectious diseases with significant contribution to human health. In South Korea, the Korea Expert Committee on Immunization Practices (KECIP) plays a pivotal role in guiding national vaccination policies. In this comprehensive review, we investigated the history, legal basis, operation, and achievements of the KECIP, highlighting its critical role in shaping the country's successful vaccination program. We analyze the KECIP's diverse responsibilities, including deliberating on national immunization programs, establishing vaccination criteria, managing targeted infectious diseases, and formulating eradication strategies. Also, we revealed its well-defined structure, specialized subcommittees, and ethical protocols that ensure transparency and integrity. Furthermore, we explored the KECIP's strategic evolution, showcasing its contributions to expanding vaccine coverage, implementing emergency approvals, and optimizing foundational vaccinations for all age groups as well as special populations including immunocompromised individuals. By combining scientific rigor, expert insights, and a commitment to public health, the KECIP had navigated the dynamic landscape of infectious disease control, contributing significantly to South Korea's impressive vaccination achievements.
Collapse
Affiliation(s)
- So Yun Lim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Han Wool Kim
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Young June Choe
- Department of Pediatrics, Korea University College of Medicine and Korea University Anam Hospital, Seoul, Republic of Korea
| | - Bin Ahn
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Mi Kang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jiyoung Park
- Department of Pediatrics, Korea University Ansan Hospital
| | - Geun Yong Kwon
- Division of Immunization Planning, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seung Ho Lee
- Division of Immunization Planning, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sunghee Kwon
- Division of Immunization Planning, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University College of Medicine, Republic of Korea
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Seoul National University Children's Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Viral Vaccines. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022. [PMCID: PMC8830773 DOI: 10.1016/b978-0-12-818731-9.00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Lim H, In HJ, Kim YJ, Jang S, Lee YH, Kim SH, Lee SH, Park JH, Yang HJ, Yoo JS, Lee SW, Kim MY, Chung GT, Yeo SG. Development of an attenuated smallpox vaccine candidate: The KVAC103 strain. Vaccine 2021; 39:5214-5223. [PMID: 34334254 DOI: 10.1016/j.vaccine.2021.06.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
Smallpox, a disease caused by the variola virus, is one of the most dangerous diseases and had killed numerous people before it was eradicated in 1980. However, smallpox has emerged as the most threatening bio-terrorism agent; as the first- and second-generation smallpox vaccines have been controversial and have caused severe adverse reactions, new demands for safe smallpox vaccines have been raised and some attenuated smallpox vaccines have been developed. We have developed a cell culture-based highly attenuated third-generation smallpox vaccine candidate KVAC103 strain by 103 serial passages of the Lancy-Vaxina strain derived from the Lister in Vero cells. Several clones were selected, taking into consideration their shape, size, and growth rate in mammalian cells. The clones were then inoculated intracerebrally in suckling mice to test for neurovirulence by observing survival. Protective immune responses in adult mice were examined by measuring the levels of neutralization antibodies and IFN-γ expression. Among several clones, clone 7 was considered the best alternative candidate because there was no mortality in suckling mice against a lethal challenge. In addition, enhanced neutralizing antibodies and T-cell mediated IFN-γ production were observed in clone 7-immunized mice. Clone 7 was named "KVAC103" and was used for the skin toxicity test and full-genome analysis. KVAC103-inoculated rabbits showed reduced skin lesions compared to those inoculated with the Lister strain, Lancy-Vaxina. A whole genome analysis of KVAC103 revealed two major deleted regions that might contribute to the reduced virulence of KVAC103 compared to the Lister strain. Phylogenetic inference supported the close relationship with the Lister strain. Collectively, our data demonstrate that KVAC103 holds promise for use as a third-generation smallpox vaccine strain due to its enhanced safety and efficacy.
Collapse
Affiliation(s)
- Heeji Lim
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Hyun Ju In
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - You-Jin Kim
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Sundong Jang
- College of Pharmacy, Chungbuk National University, CheongJu, Chungbuk 28160, Republic of Korea
| | - Yun Ha Lee
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Su Hwan Kim
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Sun Hwa Lee
- Department of Laboratory Medicine, KU Medicine, Seoul 02841, Republic of Korea
| | - Jun Hyuk Park
- Department of Laboratory Medicine Chungcheongnam-do Institute of Health and Environment Research, Hongseong 32254, Republic of Korea
| | - Hyo Jin Yang
- Korea Disease Control and Prevention Agency, CheongJu, Chungbuk 28159, Republic of Korea
| | - Jung-Sik Yoo
- Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Sang-Won Lee
- Korea Disease Control and Prevention Agency, CheongJu, Chungbuk 28159, Republic of Korea
| | - Mi Young Kim
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Gyung Tae Chung
- Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, CheongJu, Chungbuk 28159, Republic of Korea
| | - Sang Gu Yeo
- Division of Infectious Diseases, Sejong Institute of Health and Environment Research, Sejong City 30015, Republic of Korea.
| |
Collapse
|
4
|
Hidalgo J, Woc-Colburn L. Influenza, Measles, SARS, MERS, and Smallpox. HIGHLY INFECTIOUS DISEASES IN CRITICAL CARE 2020. [PMCID: PMC7120728 DOI: 10.1007/978-3-030-33803-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Influenza, measles, SARS, MERS, and smallpox illnesses are caused by highly infectious viral pathogens that induce critical illness. These biologically diverse viruses enter and replicate within host cells triggering viral- and host-mediated damage that results in pneumonia and multiorgan failure in severe cases. Early case identification and strict infection control limit healthcare transmission. Vaccination allowed smallpox eradication and limits global measles and seasonal influenza mortality. While SARS-coronavirus (CoV) is no longer circulating, MERS-CoV and zoonotic influenza viruses, with pandemic potential, remain persistent threats. Supportive critical care is the mainstay of treatment for severe disease due to these viral infections.
Collapse
Affiliation(s)
- Jorge Hidalgo
- Division of Critical Care, Karl Heusner Memorial Hospital, Belize City, Belize
| | - Laila Woc-Colburn
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
5
|
A Critical Analysis of the Scientific and Commercial Rationales for the De Novo Synthesis of Horsepox Virus. mSphere 2018; 3:mSphere00040-18. [PMID: 29569633 PMCID: PMC5853483 DOI: 10.1128/msphere.00040-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This article evaluates the scientific and commercial rationales for the synthesis of horsepox virus. I find that the claimed benefits of using horsepox virus as a smallpox vaccine rest on a weak scientific foundation and an even weaker business case that this project will lead to a licensed medical countermeasure. The combination of questionable benefits and known risks of this dual use research raises serious questions about the wisdom of undertaking research that could be used to recreate variola virus. This analysis also raises important questions about the propriety of a private company sponsoring such dual use research without appropriate oversight and highlights an important gap in United States dual use research regulations.
Collapse
|
6
|
Eto A, Saito T, Yokote H, Kurane I, Kanatani Y. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine 2015; 33:6106-11. [PMID: 26319072 PMCID: PMC9533910 DOI: 10.1016/j.vaccine.2015.07.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 12/02/2022]
Abstract
LC16m8 is a live, attenuated, cell-cultured smallpox vaccine that was developed and licensed in Japan in the 1970s, but was not used in the campaign to eradicate smallpox. In the early 2000s, the potential threat of bioterrorism led to reconsideration of the need for a smallpox vaccine. Subsequently, LC16m8 production was restarted in Japan in 2002, requiring re-evaluation of its safety and efficacy. Approximately 50,000 children in the 1970s and about 3500 healthy adults in the 2000s were vaccinated with LC16m8 in Japan, and 153 adults have been vaccinated with LC16m8 or Dryvax in phase I/II clinical trials in the USA. These studies confirmed the safety and efficacy of LC16m8, while several studies in animal models have shown that LC16m8 protects the host against viral challenge. The World Health Organization Strategic Advisory Group of Experts on Immunization recommended LC16m8, together with ACAM2000, as a stockpile vaccine in 2013. In addition, LC16m8 is expected to be a viable alternative to first-generation smallpox vaccines to prevent human monkeypox.
Collapse
Affiliation(s)
- Akiko Eto
- Department of Health Crisis Management, National Institute of Public Health, 2-3-6 Minami, Wako-shi, 351-0197, Saitama, Japan
| | - Tomoya Saito
- Department of Health Crisis Management, National Institute of Public Health, 2-3-6 Minami, Wako-shi, 351-0197, Saitama, Japan
| | - Hiroyuki Yokote
- Chemo-Sero-Therapeutic Research Institute (Kaketsuken), 1-6-1 Okubo, Kita-ku, Kumamoto-shi, 860-8568, Kumamoto, Japan
| | - Ichiro Kurane
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640, Tokyo, Japan
| | - Yasuhiro Kanatani
- Department of Health Crisis Management, National Institute of Public Health, 2-3-6 Minami, Wako-shi, 351-0197, Saitama, Japan.
| |
Collapse
|
7
|
Yen C, Hyde TB, Costa AJ, Fernandez K, Tam JS, Hugonnet S, Huvos AM, Duclos P, Dietz VJ, Burkholder BT. The development of global vaccine stockpiles. THE LANCET. INFECTIOUS DISEASES 2015; 15:340-7. [PMID: 25661473 DOI: 10.1016/s1473-3099(14)70999-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Global vaccine stockpiles, in which vaccines are reserved for use when needed for emergencies or supply shortages, have effectively provided countries with the capacity for rapid response to emergency situations, such as outbreaks of yellow fever and meningococcal meningitis. The high cost and insufficient supply of many vaccines, including oral cholera vaccine and pandemic influenza vaccine, have prompted discussion on expansion of the use of vaccine stockpiles to address a wider range of emerging and re-emerging diseases. However, the decision to establish and maintain a vaccine stockpile is complex and must take account of disease and vaccine characteristics, stockpile management, funding, and ethical concerns, such as equity. Past experience with global vaccine stockpiles provide valuable information about the processes for their establishment and maintenance. In this Review we explored existing literature and stockpile data to discuss the lessons learned and to inform the development of future vaccine stockpiles.
Collapse
Affiliation(s)
- Catherine Yen
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Terri B Hyde
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Katya Fernandez
- Pandemic and Epidemic Diseases Department, WHO, Geneva, Switzerland
| | - John S Tam
- Department of Immunization, Vaccines and Biologicals, WHO, Geneva, Switzerland
| | | | - Anne M Huvos
- Pandemic and Epidemic Diseases Department, WHO, Geneva, Switzerland
| | - Philippe Duclos
- Department of Immunization, Vaccines and Biologicals, WHO, Geneva, Switzerland
| | - Vance J Dietz
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
8
|
Human antibody responses to the polyclonal Dryvax vaccine for smallpox prevention can be distinguished from responses to the monoclonal replacement vaccine ACAM2000. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:877-85. [PMID: 24759651 DOI: 10.1128/cvi.00035-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dryvax (Wyeth Laboratories, Inc., Marietta, PA) is representative of the vaccinia virus preparations that were previously used for preventing smallpox. While Dryvax was highly effective, the national supply stocks were depleted, and there were manufacturing concerns regarding sterility and the clonal heterogeneity of the vaccine. ACAM2000 (Acambis, Inc./Sanofi-Pasteur Biologics Co., Cambridge, MA), a single-plaque-purified vaccinia virus derivative of Dryvax, recently replaced the polyclonal smallpox vaccine for use in the United States. A substantial amount of sequence heterogeneity exists within the polyclonal proteome of Dryvax, including proteins that are missing from ACAM2000. Reasoning that a detailed comparison of antibody responses to the polyclonal and monoclonal vaccines may be useful for identifying unique properties of each antibody response, we utilized a protein microarray comprised of approximately 94% of the vaccinia poxvirus proteome (245 proteins) to measure protein-specific antibody responses of 71 individuals receiving a single vaccination with ACAM2000 or Dryvax. We observed robust antibody responses to 21 poxvirus proteins in vaccinated individuals, including 11 proteins that distinguished Dryvax responses from ACAM2000. Analysis of protein sequences from Dryvax clones revealed amino acid level differences in these 11 antigenic proteins and suggested that sequence variation and clonal heterogeneity may contribute to the observed differences between Dryvax and ACAM2000 antibody responses.
Collapse
|
9
|
Henderson DA. Smallpox virus destruction and the implications of a new vaccine. Biosecur Bioterror 2011; 9:163-8. [PMID: 21410355 DOI: 10.1089/bsp.2011.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The World Health Assembly is scheduled to decide in May 2011 whether the 2 known remaining stockpiles of smallpox virus are to be destroyed or retained. In preparation for this, a WHO-appointed committee undertook a comprehensive review of the status of smallpox virus research from 1999 to 2010. It concluded that, considering the nature of the studies already completed with respect to vaccine, drugs, and diagnostics, there was no reason to retain live smallpox virus except to satisfy restrictive regulatory requirements. The committee advised that researchers and regulators define alternative models for testing the vaccines and drugs. Apart from other considerations, the costs of new products are significant and important. These include prospective expenditures required for the development, manufacture, testing, and storage of new products. This commentary provides approximations of these costs and the incremental contribution that a newly developed vaccine might make in terms of public health security.
Collapse
Affiliation(s)
- D A Henderson
- Center for Biosecurity of UPMC, Baltimore, Maryland 21202, USA.
| |
Collapse
|
10
|
Kennedy RB, Ovsyannikova I, Poland GA. Smallpox vaccines for biodefense. Vaccine 2009; 27 Suppl 4:D73-9. [PMID: 19837292 PMCID: PMC2764553 DOI: 10.1016/j.vaccine.2009.07.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/28/2009] [Indexed: 11/18/2022]
Abstract
Few diseases can match the enormous impact that smallpox has had on mankind. Its influence can be seen in the earliest recorded histories of ancient civilizations in Egypt and Mesopotamia. With fatality rates up to 30%, smallpox left its survivors with extensive scarring and other serious sequelae. It is estimated that smallpox killed 500 million people in the 19th and 20th centuries. Given the ongoing concerns regarding the use of variola as a biological weapon, this review will focus on the licensed vaccines as well as current research into next-generation vaccines to protect against smallpox and other poxviruses.
Collapse
|
11
|
Handley L, Buller RM, Frey SE, Bellone C, Parker S. The new ACAM2000 vaccine and other therapies to control orthopoxvirus outbreaks and bioterror attacks. Expert Rev Vaccines 2009; 8:841-50. [PMID: 19538111 DOI: 10.1586/erv.09.55] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quarantine, case tracing and population vaccination facilitated the global eradication, in 1980, of variola virus, the causative agent of smallpox. The vaccines used during the eradication period, including Dryvax, the smallpox vaccine used in the USA, were live vaccinia and cowpoxvirus-based vaccines, which induced long-lasting and cross-protective immunity against variola and other related poxviruses. These vaccine viruses were produced by serial propagation in domesticated animals. The drawbacks to such serially propagated live viral vaccines include the level of postvaccination local and systemic reactions and contraindications to their use in immunocompromised individuals, individuals with certain skin and cardiac diseases, and pregnant women. In the latter stages of the population-based smallpox vaccination campaign, research began with ways to improve safety and modernizing the manufacture of vaccinia vaccines; however, with the eradication of variola this work stopped. Outbreaks of monkeypoxvirus in humans and the bioterrorist threat of monkeypox and variola virus renewed the need for improved vaccinia vaccines. ACAM2000 is one of the new generation of smallpox vaccines. It is produced in cell culture from a clonally purified master seed stock of vaccinia derived from the New York City Board of Health strain of vaccinia. The clonally purified master seed assures a more homogeneous vaccine without the inherent mutations associated with serial propagation and the cell culture limits adventitious and bacterial contamination in vaccine production. In preclinical and clinical trials, ACAM2000 demonstrated an immunogenicity and safety profile similar to that of Dryvax.
Collapse
Affiliation(s)
- Lauren Handley
- Department of Molecular Microbiology & Immunology, Saint Louis University, Doisy Research Center, St Louis, MO 63104, USA.
| | | | | | | | | |
Collapse
|
12
|
Artenstein AW, Grabenstein JD. Smallpox vaccines for biodefense: need and feasibility. Expert Rev Vaccines 2008; 7:1225-37. [PMID: 18844596 DOI: 10.1586/14760584.7.8.1225] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Smallpox, eradicated as a cause of natural disease through an intensive global effort in the later part of the 20th Century, has resurfaced as a possible agent of bioterrorism. For this reason, there is renewed interest in smallpox vaccines. Live vaccinia virus, an orthopoxvirus related to smallpox, has a long and successful clinical track record as an effective smallpox vaccine; however, its use is associated with uncommon yet serious adverse events. This has led to a surge of recent research into newer-generation smallpox vaccines with improved safety profiles and retained efficacy. This article will review the history of smallpox vaccines, assess the status of newer-generation vaccines and examine the overall risk-versus-benefit profile of smallpox vaccination.
Collapse
Affiliation(s)
- Andrew W Artenstein
- Department of Medicine, Brown University, Memorial Hospital of RI, 111 Brewster Street, Pawtucket, RI 02860, USA.
| | | |
Collapse
|
13
|
Wiser I, Balicer RD, Cohen D. An update on smallpox vaccine candidates and their role in bioterrorism related vaccination strategies. Vaccine 2006; 25:976-84. [PMID: 17074424 DOI: 10.1016/j.vaccine.2006.09.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/02/2006] [Accepted: 09/12/2006] [Indexed: 11/22/2022]
Abstract
The threat of using variola virus in a bioterrorist attack urged different countries to renew the production of traditional vaccines and develop new generations of smallpox vaccines. Manufacturers try to combine smallpox vaccine past experience with technological advances in vaccine development to achieve protection similar to that of the traditional vaccines with a higher level of safety and fewer contraindications. In light of the reported immunogenicity and reactogenicity of the stockpiled smallpox vaccines employed in the last immunization campaigns of "first responders", we review recently accumulated data on the assessment of new smallpox vaccine candidates and discuss their role in possible vaccination policies.
Collapse
Affiliation(s)
- Itay Wiser
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel.
| | | | | |
Collapse
|