1
|
Munro M, Yadavalli T, Fonteh C, Arfeen S, Lobo-Chan AM. Cytomegalovirus Retinitis in HIV and Non-HIV Individuals. Microorganisms 2019; 8:microorganisms8010055. [PMID: 31905656 PMCID: PMC7022607 DOI: 10.3390/microorganisms8010055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus retinitis (CMVR) is a severe, vision-threatening disease that primarily affects immunosuppressed patients. CMVR is the most common ocular opportunistic infection in human immunodeficiency virus (HIV) infected patients and is the leading cause of blindness in this group; however, the incidence of CMVR in HIV patients has dramatically decreased with antiretroviral therapy. Other causes of immunosuppression, including organ transplantation, hematologic malignancies, and iatrogenic immunosuppression, can also lead to the development of CMVR. Herein, we describe the pathogenesis of CMVR and compare clinical features, epidemiology, and risk factors in HIV and non-HIV infected individuals with CMVR.
Collapse
Affiliation(s)
- Monique Munro
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cheryl Fonteh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Safa Arfeen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ann-Marie Lobo-Chan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
2
|
van Lieshout LP, Soule G, Sorensen D, Frost KL, He S, Tierney K, Safronetz D, Booth SA, Kobinger GP, Qiu X, Wootton SK. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice. J Infect Dis 2019; 217:916-925. [PMID: 29365142 DOI: 10.1093/infdis/jix644] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/30/2017] [Indexed: 01/14/2023] Open
Abstract
The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.
Collapse
Affiliation(s)
| | - Geoff Soule
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - Debra Sorensen
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Kathy L Frost
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Shihua He
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens Program, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Stephanie A Booth
- Molecular Pathobiology, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Gary P Kobinger
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Québec City, Canada
| | - Xiangguo Qiu
- Zoonotic Diseases and Special Pathogens Program, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
3
|
Adenosine signaling and adenosine deaminase regulation of immune responses: impact on the immunopathogenesis of HIV infection. Purinergic Signal 2018; 14:309-320. [PMID: 30097807 DOI: 10.1007/s11302-018-9619-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Infection by human immunodeficiency virus (HIV) causes the acquired immune deficiency syndrome (AIDS), which has devastating effects on the host immune system. HIV entry into host cells and subsequent viral replication induce a proinflammatory response, hyperactivating immune cells and leading them to death, disfunction, and exhaustion. Adenosine is an immunomodulatory molecule that suppresses immune cell function to protect tissue integrity. The anti-inflammatory properties of adenosine modulate the chronic inflammation and immune activation caused by HIV. Lack of adenosine contributes to pathogenic events in HIV infection. However, immunosuppression by adenosine has its shortcomings, such as impairing the immune response, hindering the elimination of the virus and control of viral replication. By attempting to control inflammation, adenosine feeds a pathogenic cycle affecting immune cells. Deamination of adenosine by ADA (adenosine deaminase) counteracts the negative effects of adenosine in immune cells, boosting the immune response. This review comprises the connection between adenosinergic system and HIV immunopathogenesis, exploring defects in immune cell function and the role of ADA in protecting these cells against damage.
Collapse
|
4
|
Dalwadi DA, Ozuna L, Harvey BH, Viljoen M, Schetz JA. Adverse Neuropsychiatric Events and Recreational Use of Efavirenz and Other HIV-1 Antiretroviral Drugs. Pharmacol Rev 2018; 70:684-711. [DOI: 10.1124/pr.117.013706] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
5
|
HIV enteropathy and aging: gastrointestinal immunity, mucosal epithelial barrier, and microbial translocation. Curr Opin HIV AIDS 2015; 9:309-16. [PMID: 24871087 DOI: 10.1097/coh.0000000000000066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Despite decreases in morbidity and mortality as a result of antiretroviral therapy, gastrointestinal dysfunction remains common in HIV infection. Treated patients are at risk for complications of 'premature' aging, such as cardiovascular disease, osteopenia, neurocognitive decline, malignancies, and frailty. This review summarizes recent observations in this field. RECENT FINDINGS Mucosal CD4 lymphocytes, especially Th17 cells, are depleted in acute HIV and simian immune deficiency virus (SIV) infections, although other cell types also are affected. Reconstitution during therapy often is incomplete, especially in mucosa. Mucosal barrier function is affected by both HIV infection and aging and includes paracellular transport via tight junctions and uptake through areas of apoptosis; other factors may affect systemic antigen exposure. The resultant microbial translocation is associated with systemic immune activation in HIV and SIV infections. There is evidence of immune activation and microbial translocation in the elderly. The immune phenotypes of immunosenescence in HIV infection and aging appear similar. There are several targets for intervention; blockage of residual mucosal virus replication, preventing antigen uptake, modulating the microbiome, improving T cell recovery, combining therapies aimed at mucosal integrity, augmenting mucosal immunity, and managing traditional risk factors for premature aging in the general population. SUMMARY Aging may interact with HIV enteropathy to enhance microbial translocation and immune activation.
Collapse
|
6
|
Kahle EM, Bolton M, Hughes JP, Donnell D, Celum C, Lingappa JR, Ronald A, Cohen CR, de Bruyn G, Fong Y, Katabira E, McElrath MJ, Baeten JM. Plasma cytokine levels and risk of HIV type 1 (HIV-1) transmission and acquisition: a nested case-control study among HIV-1-serodiscordant couples. J Infect Dis 2014; 211:1451-60. [PMID: 25389306 DOI: 10.1093/infdis/jiu621] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A heightened proinflammatory state has been hypothesized to enhance human immunodeficiency virus type 1 (HIV-1) transmission - both susceptibility of HIV-1-exposed persons and infectiousness of HIV-1-infected persons. METHODS Using prospective data from heterosexual African couples with HIV-1 serodiscordance, we conducted a nested case-control analysis to assess the relationship between cytokine concentrations and the risk of HIV-1 acquisition. Case couples (n = 120) were initially serodiscordant couples in which HIV-1 was transmitted to the seronegative partner during the study; control couples (n = 321) were serodiscordant couples in which HIV-1 was not transmitted to the seronegative partner. Differences in a panel of 30 cytokines were measured using plasma specimens from both HIV-1-susceptible and HIV-1-infected partners. Plasma was collected before seroconversion for cases. RESULTS For both HIV-1-infected and HIV-1-susceptible partners, cases and controls had significantly different mean responses in cytokine panels (P < .001, by the Hotelling T(2) test), suggesting a broadly different pattern of immune activation for couples in which HIV-1 was transmitted, compared with couples without transmission. Individually, log10 mean concentrations of interleukin 10 (IL-10) and CXCL10 were significantly higher for both HIV-1-susceptible and HIV-1-infected case partners, compared with HIV-1-susceptible and HIV-1-infected control partners (P < .01 for all comparisons). In multivariate analysis, HIV-1 transmission was significantly associated with elevated CXCL10 concentrations in HIV-1-susceptible partners (P = .001) and with elevated IL-10 concentrations in HIV-1-infected partners (P = .02). CONCLUSIONS Immune activation, as measured by levels of cytokine markers, particularly elevated levels of IL-10 and CXCL1, are associated with increased HIV-1 susceptibility and infectiousness.
Collapse
Affiliation(s)
| | - Michael Bolton
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | | | - Deborah Donnell
- Department of Epidemiology Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | - Connie Celum
- Department of Epidemiology Department of Global Health Department of Medicine
| | - Jairam R Lingappa
- Department of Global Health Department of Medicine Department of Pediatrics, University of Washington
| | - Allan Ronald
- Department of Medicine, University of Manitoba, Winnepeg, Canada
| | - Craig R Cohen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco
| | - Guy de Bruyn
- Perinatal HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | - Elly Katabira
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - M Juliana McElrath
- Department of Global Health Department of Medicine Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | - Jared M Baeten
- Department of Epidemiology Department of Global Health Department of Medicine
| | | |
Collapse
|
7
|
Serrao E, Wang CH, Frederick T, Lee CL, Anthony P, Arribas-Layton D, Baker K, Millstein J, Kovacs A, Neamati N. Alteration of select gene expression patterns in individuals infected with HIV-1. J Med Virol 2014; 86:678-86. [PMID: 24482297 DOI: 10.1002/jmv.23872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2013] [Indexed: 01/06/2023]
Abstract
Multiple human proteins have been shown to both support and restrict viral replication, and confirmation of virus-associated changes in the expression of these genes is relevant for future therapeutic efforts. In this study a well-characterized panel of 49 individuals either infected with HIV-1 or uninfected was compiled and analyzed for the effect of HIV infection status, viral load, and antiretroviral treatment on specific gene expression. mRNA was extracted and reverse transcribed from purified CD4+ cells, and quantitative real-time PCR was utilized to scrutinize differences in the expression of four host genes that have been demonstrated to either stimulate (HSP90 and LEDGF/p75) or restrict (p21/WAF1 and APOBEC3G) proviral integration. HIV infection status was associated with slight to moderate alterations in the expression of all four genes. After adjusting for age, mRNA expression levels of HSP90, LEDGF/p75 and APOBEC3G were found to all be decreased in infected patients compared to healthy controls by 1.43-, 1.26-, and 4.71-fold, respectively, while p21/WAF1 expression was increased 2.35-fold. Furthermore, individuals receiving raltegravir exhibited a 1.28-fold reduction in LEDGF/p75 compared to those on non-raltegravir antiretroviral treatment. Identification of these and similar HIV-induced changes in gene expression may be valuable for delineating the extent of host cell molecular mechanisms stimulating viral replication.
Collapse
Affiliation(s)
- Erik Serrao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Casazza JP, Bowman KA, Adzaku S, Smith EC, Enama ME, Bailer RT, Price DA, Gostick E, Gordon IJ, Ambrozak DR, Nason MC, Roederer M, Andrews CA, Maldarelli FM, Wiegand A, Kearney MF, Persaud D, Ziemniak C, Gottardo R, Ledgerwood JE, Graham BS, Koup RA. Therapeutic vaccination expands and improves the function of the HIV-specific memory T-cell repertoire. J Infect Dis 2013; 207:1829-40. [PMID: 23482645 DOI: 10.1093/infdis/jit098] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The licensing of herpes zoster vaccine has demonstrated that therapeutic vaccination can help control chronic viral infection. Unfortunately, human trials of immunodeficiency virus (HIV) vaccine have shown only marginal efficacy. METHODS In this double-blind study, 17 HIV-infected individuals with viral loads of <50 copies/mL and CD4(+) T-cell counts of >350 cells/µL were randomly assigned to the vaccine or placebo arm. Vaccine recipients received 3 intramuscular injections of HIV DNA (4 mg) coding for clade B Gag, Pol, and Nef and clade A, B, and C Env, followed by a replication-deficient adenovirus type 5 boost (10(10) particle units) encoding all DNA vaccine antigens except Nef. Humoral, total T-cell, and CD8(+) cytotoxic T-lymphocyte (CTL) responses were studied before and after vaccination. Single-copy viral loads and frequencies of latently infected CD4(+) T cells were determined. RESULTS Vaccination was safe and well tolerated. Significantly stronger HIV-specific T-cell responses against Gag, Pol, and Env, with increased polyfunctionality and a broadened epitope-specific CTL repertoire, were observed after vaccination. No changes in single-copy viral load or the frequency of latent infection were observed. CONCLUSIONS Vaccination of individuals with existing HIV-specific immunity improved the magnitude, breadth, and polyfunctionality of HIV-specific memory T-cell responses but did not impact markers of viral control. CLINICAL TRIALS REGISTRATION NCT00270465.
Collapse
Affiliation(s)
- Joseph P Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH),Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
HIV infection and acquired immunodeficiency syndrome. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Papadopoulos AI, Ferwerda B, Antoniadou A, Sakka V, Galani L, Kavatha D, Panagopoulos P, Poulakou G, Protopapas K, van der Meer JW, Netea MG, Giamarellos-Bourboulis EJ. Association of Mal/TIRAP S180L variant polymorphism with decreased infection risk in patients with advanced HIV-1 infection. Cytokine 2012; 60:104-7. [DOI: 10.1016/j.cyto.2012.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/27/2012] [Accepted: 05/11/2012] [Indexed: 01/04/2023]
|
11
|
Glances in Immunology of HIV and HCV Infection. Adv Virol 2012; 2012:434036. [PMID: 22754568 PMCID: PMC3375159 DOI: 10.1155/2012/434036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/12/2012] [Indexed: 12/16/2022] Open
Abstract
Since the identification of HIV and HCV much progress has been made in the understanding of their life cycle and interaction with the host immune system. Despite these viruses markedly differ in their virological properties and in their pathogenesis, they share many common features in their immune escape and survival strategy. Both viruses have developed sophisticated ways to subvert and antagonize host innate and adaptive immune responses. In the last years, much effort has been done in the study of the AIDS pathogenesis and in the development of efficient treatment strategies, and a fatal infection has been transformed in a potentially chronic pathology. Much of this knowledge is now being transferred in the HCV research field, especially in the development of new drugs, although a big difference still remains between the outcome of the two infections, being HCV eradicable after treatment, whereas HIV eradication remains at present unachievable due to the establishment of reservoirs. In this review, we present current knowledge on innate and adaptive immune recognition and activation during HIV and HCV mono-infections and evasion strategies. We also discuss the genetic associations between components of the immune system, the course of infection, and the outcome of the therapies.
Collapse
|
12
|
Sued O, Quiroga MF, Socías ME, Turk G, Salomón H, Cahn P. Acute HIV seroconversion presenting with active tuberculosis and associated with high levels of T-regulatory cells. Viral Immunol 2011; 24:347-9. [PMID: 21774688 DOI: 10.1089/vim.2010.0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A patient with well-defined acute HIV infection who developed concomitant pulmonary tuberculosis during the retroviral acute syndrome is reported here. In this patient high levels of T-regulatory cells (Tregs) and a low proliferation response to M. tuberculosis were initially detected, which normalized throughout follow-up. This case calls for the consideration of tuberculosis in patients in the early stages of HIV, and emphasizes the need for further study of the potential causal relationship between Treg cells and the risk of TB reactivation in HIV patients.
Collapse
Affiliation(s)
- Omar Sued
- Área de Investigaciones Clínicas-Fundación Huésped, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
13
|
Nicoletti F, Fagone P, Meroni P, McCubrey J, Bendtzen K. mTOR as a multifunctional therapeutic target in HIV infection. Drug Discov Today 2011; 16:715-21. [PMID: 21624501 DOI: 10.1016/j.drudis.2011.05.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/03/2011] [Accepted: 05/11/2011] [Indexed: 12/31/2022]
Abstract
Patients undergoing long-term highly active antiretroviral therapy treatment are probably at a higher risk of various HIV-related complications. Hyperactivation of The mammalian target of rapamycin (mTOR) has been found to contribute to dysregulated apoptosis and autophagy which determine CD4(+)-T-cell loss, impaired function of innate immunity and development of neurocognitive disorders. Dysregulated mTOR activation has also been shown to play a key part in the development of nephropathy and in the pathogenesis of HIV-associated malignancies. These studies strongly support a multifunctional key role for mTOR in the pathogenesis of HIV-related disorders and suggest that specific mTOR inhibitors could represent a novel approach for the prevention and treatment of these pathologies.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Department of Bio-Medical Sciences, School of Medicine, University of Catania, Italy.
| | | | | | | | | |
Collapse
|
14
|
Pashov A, Garimalla S, Monzavi-Karbassi B, Kieber-Emmons T. Carbohydrate targets in HIV vaccine research: lessons from failures. Immunotherapy 2011; 1:777-94. [PMID: 20636023 DOI: 10.2217/imt.09.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Learning from the successes of other vaccines that enhance natural and existing protective responses to pathogens, the current effort in HIV vaccine research is directed toward inducing cytotoxic responses. Nevertheless, antibodies are fundamental players in vaccine development and are still considered in the context of passive specific immunotherapy of HIV, especially since several broadly neutralizing monoclonals are available. Special interest is directed toward antibodies binding to the glycan array on gp120 since they have the potential of broader reactivity and cross-clade neutralizing capacity. Humoral responses to carbohydrate antigens have proven effective against other pathogens, why not HIV? The variability of the epitope targets on HIV may not be the only problem to developing active or passive immunotherapeutic strategies. The dynamics of the infected immune system leads to ambiguous effects of most of the effector mechanisms calling for new approaches; some may already be available, while others are in the making.
Collapse
Affiliation(s)
- Anastas Pashov
- Department of Pathology & Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, #824 Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
15
|
Dalgleish A, Galustian C. The potential of immunomodulatory drugs in the treatment of solid tumors. Future Oncol 2011; 6:1479-84. [PMID: 20919830 DOI: 10.2217/fon.10.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lenalidomide (REVLIMID®) CC-5013 (Celgene, NJ, USA) is approved, in both the USA and Europe, in combination with dexamethasone for the treatment of multiple myeloma patients who have received at least one prior therapy, and is rapidly being accepted worldwide for this condition. Lenalidomide is also approved in the USA and Canada for use in transfusion-dependent anemia in patients with low- and intermediate-1-risk myelodysplastic syndromes associated with del (5q) abnormality with or without additional abnormalities. Lenalidomide is an IMiD® immunomodulatory compound, incorporating structural modification of the drug thalidomide, which is active against a wide variety of autoimmune Th-2-dependent disorders, including erythema nodosum of leprosy, leishmaniasis, as well as severe ulcerative disorders such as Behcet's syndrome. Unfortunately, long-term use of thalidomide is limited, particularly by neurotoxicity. To date, results suggest that lenalidomide is more active than thalidomide and does not cause the neurotoxicity seen with thalidomide. Lenalidomide has multiple properties, including anti-inflammatory, antiangiogenic and costimulatory effects, as well as being able to inhibit T-regulatory cells, all of which are properties deemed desirable for anticancer activity. This article covers the evidence that lenalidomide may have a major role in the treatment and control of many cancer types other than del (5q) myelodysplastic syndrome and multiple myeloma.
Collapse
Affiliation(s)
- Angus Dalgleish
- St George’s University of London, Cranmer Terrace, London, UK
| | | |
Collapse
|
16
|
Kaufman L, Ross MJ. Biomarkers of HIV. Biomarkers 2010. [DOI: 10.1002/9780470918562.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Fiorentini S, Giagulli C, Caccuri F, Magiera AK, Caruso A. HIV-1 matrix protein p17: a candidate antigen for therapeutic vaccines against AIDS. Pharmacol Ther 2010; 128:433-44. [PMID: 20816696 DOI: 10.1016/j.pharmthera.2010.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
The success in the development of anti-retroviral therapies (HAART) that contain human immunodeficiency virus type 1 (HIV-1) infection is challenged by the cost of this lifelong therapy and by its toxicity. Immune-based therapeutic strategies that boost the immune response against HIV-1 proteins or protein subunits have been recently proposed to control virus replication in order to provide protection from disease development, reduce virus transmission, and help limit the use of anti-retroviral treatments. HIV-1 matrix protein p17 is a structural protein that is critically involved in most stages of the life cycle of the retrovirus. Besides its well established role in the virus life cycle, increasing evidence suggests that p17 may also be active extracellularly in deregulating biological activities of many different immune cells that are directly or indirectly involved in AIDS pathogenesis. Thus, p17 might represent a promising target for developing a therapeutic vaccine as a contribution to combating AIDS. In this article we review the biological characteristics of HIV-1 matrix protein p17 and we describe why a synthetic peptide representative of the p17 functional epitope may work as a vaccine molecule capable of inducing anti-p17 neutralizing response against p17 derived from divergent HIV-1 strains.
Collapse
Affiliation(s)
- Simona Fiorentini
- Section of Microbiology, Department of Experimental and Applied Medicine, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | |
Collapse
|
18
|
Mogensen TH, Melchjorsen J, Larsen CS, Paludan SR. Innate immune recognition and activation during HIV infection. Retrovirology 2010; 7:54. [PMID: 20569472 PMCID: PMC2904714 DOI: 10.1186/1742-4690-7-54] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/22/2010] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.
Collapse
Affiliation(s)
- Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, DK-8200, Aarhus N, Denmark.
| | | | | | | |
Collapse
|
19
|
Van den Bergh R, Florence E, Vlieghe E, Boonefaes T, Grooten J, Houthuys E, Tran HTT, Gali Y, De Baetselier P, Vanham G, Raes G. Transcriptome analysis of monocyte-HIV interactions. Retrovirology 2010; 7:53. [PMID: 20546557 PMCID: PMC2900222 DOI: 10.1186/1742-4690-7-53] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 06/14/2010] [Indexed: 12/31/2022] Open
Abstract
Background During HIV infection and/or antiretroviral therapy (ART), monocytes and macrophages exhibit a wide range of dysfunctions which contribute significantly to HIV pathogenesis and therapy-associated complications. Nevertheless, the molecular components which contribute to these dysfunctions remain elusive. We therefore applied a parallel approach of genome-wide microarray analysis and focused gene expression profiling on monocytes from patients in different stages of HIV infection and/or ART to further characterise these dysfunctions. Results Processes involved in apoptosis, cell cycle, lipid metabolism, proteasome function, protein trafficking and transcriptional regulation were identified as areas of monocyte dysfunction during HIV infection. Individual genes potentially contributing to these monocyte dysfunctions included several novel factors. One of these is the adipocytokine NAMPT/visfatin, which we show to be capable of inhibiting HIV at an early step in its life cycle. Roughly half of all genes identified were restored to control levels under ART, while the others represented a persistent dysregulation. Additionally, several candidate biomarkers (in particular CCL1 and CYP2C19) for the development of the abacavir hypersensitivity reaction were suggested. Conclusions Previously described areas of monocyte dysfunction during HIV infection were confirmed, and novel themes were identified. Furthermore, individual genes associated with these dysfunctions and with ART-associated disorders were pinpointed. These genes form a useful basis for further functional studies concerning the contribution of monocytes/macrophages to HIV pathogenesis. One such gene, NAMPT/visfatin, represents a possible novel restriction factor for HIV.
Collapse
|
20
|
Microbial translocation induces persistent macrophage activation unrelated to HIV-1 levels or T-cell activation following therapy. AIDS 2010; 24:1281-90. [PMID: 20559035 DOI: 10.1097/qad.0b013e328339e228] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE HIV-1 replication and microbial translocation occur concomitant with systemic immune activation. This study delineates mechanisms of immune activation and CD4 T-cell decline in pediatric HIV-1 infection. DESIGN Cross-sectional and longitudinal cellular and soluble plasma markers for inflammation were evaluated in 14 healthy and 33 perinatally HIV-1-infected pediatric study volunteers prior to and over 96 weeks of protease-inhibitor-containing combination antiretroviral therapy (ART). All HIV-1-infected patients reconstituted CD4 T cells either with suppression of viremia or rebound of drug-resistant virus. METHODS Systemic immune activation was determined by polychromatic flow cytometry of blood lymphocytes and ELISA for plasma soluble CD27, soluble CD14, and tumor necrosis factor. Microbial translocation was evaluated by limulus amebocyte lysate assay to detect bacterial lipopolysaccharide (LPS) and ELISA for antiendotoxin core antigen immunoglobulin M (IgM) antibodies. Immune activation markers were compared with viral load, CD4 cell percentage, and LPS by regression models. Comparisons between healthy and HIV-1-infected or between different viral outcome groups were performed by nonparametric rank sum. RESULTS Microbial translocation was detected in healthy infants but resolved with age (P < 0.05). LPS and soluble CD14 levels were elevated in all HIV-1-infected patients (P < 0.05 and P < 0.0001, respectively) and persisted even if CD4 T cells were fully reconstituted, virus optimally suppressed, and lymphocyte activation resolved by ART. Children with CD4 T-cell reconstitution but viral rebound following ART continued to display high levels of soluble CD27. CONCLUSION Microbial translocation in pediatric HIV-1 infection is associated with persistent monocyte/macrophage activation independent of viral replication or T-cell activation.
Collapse
|
21
|
Blish CA, Sangaré L, Herrin BR, Richardson BA, John-Stewart G, Walson JL. Changes in plasma cytokines after treatment of ascaris lumbricoides infection in individuals with HIV-1 infection. J Infect Dis 2010; 201:1816-21. [PMID: 20441516 DOI: 10.1086/652784] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Albendazole treatment of individuals with human immunodeficiency virus type 1 (HIV-1) and Ascaris lumbricoides co-infection has led to significantly improved CD4(+) cell counts and a trend for lower plasma HIV-1 RNA levels in a previous randomized placebo-controlled trial. To define mechanisms by which deworming contributed to changes in markers of HIV-1 disease progression, plasma cytokine levels were evaluated. Albendazole treatment, compared with placebo, was associated with significantly decreased plasma interleukin (IL) 10 levels (P = .01)ot associated with significant changes in levels of IL-1beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-12p70, IL-13, interferon gamma, tumor necrosis factor alpha, or thymic stromal lymphopoietin. Treatment of A. lumbricoides co-infection may delay HIV-1 disease progression by reducing helminth-induced, IL-10-mediated immunosuppression.
Collapse
Affiliation(s)
- Catherine A Blish
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98104, USA
| | | | | | | | | | | |
Collapse
|
22
|
Barré-Sinoussi F. HIV: a discovery opening the road to novel scientific knowledge and global health improvement. Virology 2010; 397:255-9. [PMID: 20152475 DOI: 10.1016/j.virol.2009.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Françoise Barré-Sinoussi
- Institut Pasteur, Unit of Regulation of Retroviral Infections, Department of Virology, 25 rue du Docteur Roux, 75724 Paris, Cedex 15, France
| |
Collapse
|
23
|
Substituting nevirapine for efavirenz: risk factors for toxicity in nonnaive patients in a resource-constrained setting. AIDS 2009; 23:2374-6. [PMID: 19865033 DOI: 10.1097/qad.0b013e328331900c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Barré-Sinoussi F. HIV: A Discovery Opening the Road to Novel Scientific Knowledge and Global Health Improvement (Nobel Lecture). Angew Chem Int Ed Engl 2009; 48:5809-14. [DOI: 10.1002/anie.200901918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Barré-Sinoussi F. HIV: Eine Entdeckung zur Erschließung neuer wissenschaftlicher Erkenntnisse und weltweiter Fortschritte bei der Gesundheitsvorsorge (Nobel-Vortrag). Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Vani J, Bansal K, Kazatchkine MD, Kaveri SV, Bayry J. Immunointervention for patients with HIV and tuberculosis. THE LANCET. INFECTIOUS DISEASES 2009; 9:332-3. [PMID: 19467470 DOI: 10.1016/s1473-3099(09)70127-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Johnson PR, Schnepp BC, Zhang J, Connell MJ, Greene SM, Yuste E, Desrosiers RC, Clark KR. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med 2009; 15:901-6. [PMID: 19448633 PMCID: PMC2723177 DOI: 10.1038/nm.1967] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/11/2009] [Indexed: 12/24/2022]
Abstract
The holy grail for HIV vaccine development is an immunogen that elicits persisting antibodies with broad neutralizing activity against field strains of the virus. Unfortunately, very little progress has been made in finding or designing such immunogens. Using the SIV model, we have taken a markedly different approach: delivery of an adeno-associated virus (AAV) gene transfer vector to muscle for the expression of antibodies or antibody-like immunoadhesins having predetermined anti-SIV specificity. With this approach, anti-SIV molecules are endogenously synthesized in myofibers and passively distributed to the circulatory system. Using such an approach in monkeys, we have now generated long-lasting neutralizing activity in serum and observed complete protection against intravenous challenge with virulent SIV. In essence, this strategy bypasses the adaptive immune system and holds significant promise as a novel approach to an effective HIV vaccine.
Collapse
Affiliation(s)
- Philip R Johnson
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|