1
|
Zhou Y, Zhan X, Luo J, Li D, Zhou R, Zhang J, Pan Z, Zhang Y, Jia T, Zhang X, Li Y, Tao L. Structural dynamics of the CROPs domain control stability and toxicity of Paeniclostridium sordellii lethal toxin. Nat Commun 2023; 14:8426. [PMID: 38114525 PMCID: PMC10730571 DOI: 10.1038/s41467-023-44169-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Paeniclostridium sordellii lethal toxin (TcsL) is a potent exotoxin that causes lethal toxic shock syndrome associated with fulminant bacterial infections. TcsL belongs to the large clostridial toxin (LCT) family. Here, we report that TcsL with varied lengths of combined repetitive oligopeptides (CROPs) deleted show increased autoproteolysis as well as higher cytotoxicity. We next present cryo-EM structures of full-length TcsL, at neutral (pH 7.4) and acidic (pH 5.0) conditions. The TcsL at neutral pH exhibits in the open conformation, which resembles reported TcdB structures. Low pH induces the conformational change of partial TcsL to the closed form. Two intracellular interfaces are observed in the closed conformation, which possibly locks the cysteine protease domain and hinders the binding of the host receptor. Our findings provide insights into the structure and function of TcsL and reveal mechanisms for CROPs-mediated modulation of autoproteolysis and cytotoxicity, which could be common across the LCT family.
Collapse
Affiliation(s)
- Yao Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xiechao Zhan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| | - Jianhua Luo
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Diyin Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Ruoyu Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Jiahao Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zhenrui Pan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Tianhui Jia
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xiaofeng Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yanyan Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Liang Tao
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
2
|
Varley CD, Rogers LM, Dixon BR, Bernard SC, Lacy DB, Sulpizio E, Aronoff DM, Townes JM. Persistent bacteremia and psoas abscess caused by a lethal toxin-deficient Paeniclostridiumsordellii. Anaerobe 2022; 75:102520. [PMID: 35085782 PMCID: PMC9197960 DOI: 10.1016/j.anaerobe.2022.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/18/2022]
Abstract
We present a case of persistent bacteremia and psoas abscess from Paeniclostridium sordellii without severe symptoms or the classically associated toxic shock syndrome. Further laboratory evaluation demonstrated that the Paeniclostridium sordellii isolate lacked the lethal toxin gene and there was no cytotoxicity to exposed Vero cells.
Collapse
Affiliation(s)
- Cara D Varley
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, 97239, USA; School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, 97239, USA.
| | - Lisa M Rogers
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Beverly Rea Dixon
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sarah C Bernard
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - D Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37232, USA
| | - Emilio Sulpizio
- Department of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - John M Townes
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
3
|
Bhattacharjee D, Sorg JA. Conservation of the "Outside-in" Germination Pathway in Paraclostridium bifermentans. Front Microbiol 2018; 9:2487. [PMID: 30386321 PMCID: PMC6199464 DOI: 10.3389/fmicb.2018.02487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile spore germination is initiated in response to certain bile acids and amino acids (e.g., glycine). Though the amino acid-recognizing germinant receptor is unknown, the bile acid germinant receptor is the germination-specific, subtilisin-like pseudoprotease, CspC. In C. difficile the CspB, CspA, and CspC proteins are involved in spore germination. Of these, only CspB is predicted to have catalytic activity because the residues important for catalysis are mutated in the cspA and cspC sequence. The CspB, CspA, and CspC proteins are likely localized to the outer layers of the spore (e.g., the cortex or the coat layers) and not the inner membrane where the Ger-type germinant receptors are located. In C. difficile, germination proceeds in an “outside-in” direction, instead of the “‘inside-out” direction observed during the germination of Bacillus subtilis spores. During C. difficile spore germination, cortex fragments are released prior to the release of 2,4-dipicolinic acid (DPA) from the spore core. This is opposite to what occurs during B. subtilis spore germination. To understand if the mechanism C. difficile spore germination is unique or if spores from other organisms germinate in a similar fashion, we analyzed the germination of Paraclostridium bifermentans spores. We find that P. bifermentans spores release cortex fragments prior to DPA during germination and the DPA release from the P. bifermentans spore core can be blocked by high concentrations of osmolytes. Moreover, we find that P. bifermentans spores do not respond to steroid-like compounds (unlike the related C. difficile and P. sordellii organisms), indicating that the mere presence of the Csp proteins does permit germination in response to steroid compounds. Our findings indicate that the “outside in” mechanism of spore germination observed in C. difficile can be found in other bacteria suggesting that this mechanism is a novel pathway for endospore germination.
Collapse
Affiliation(s)
- Disha Bhattacharjee
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Popoff MR. Clostridium difficile and Clostridium sordellii toxins, proinflammatory versus anti-inflammatory response. Toxicon 2018; 149:54-64. [DOI: 10.1016/j.toxicon.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022]
|
5
|
Abstract
Alteration in the host microbiome at skin and mucosal surfaces plays a role in the function of the immune system, and may predispose immunocompromised patients to infection. Because obligate anaerobes are the predominant type of bacteria present in humans at skin and mucosal surfaces, immunocompromised patients are at increased risk for serious invasive infection due to anaerobes. Laboratory approaches to the diagnosis of anaerobe infections that occur due to pyogenic, polymicrobial, or toxin-producing organisms are described. The clinical interpretation and limitations of anaerobe recovery from specimens, anaerobe-identification procedures, and antibiotic-susceptibility testing are outlined. Bacteriotherapy following analysis of disruption of the host microbiome has been effective for treatment of refractory or recurrent Clostridium difficile infection, and may become feasible for other conditions in the future.
Collapse
Affiliation(s)
- Deirdre L Church
- Departments of Pathology & Laboratory Medicine and Medicine, University of Calgary, and Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
6
|
Varela Chavez C, Haustant GM, Baron B, England P, Chenal A, Pauillac S, Blondel A, Popoff MR. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation. Toxins (Basel) 2016; 8:90. [PMID: 27023605 PMCID: PMC4848617 DOI: 10.3390/toxins8040090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022] Open
Abstract
Clostridium sordellii lethal toxin (TcsL) is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT) family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP)-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat) into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS)-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain) recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases.
Collapse
Affiliation(s)
- Carolina Varela Chavez
- Unité des Bactéries anaérobies et Toxines, Institut Pasteur, 75724 Paris cedex15, France.
| | | | - Bruno Baron
- Plate-Forme de Biophysique Moléculaires, Institut Pasteur, 75724 Paris cedex15, France.
| | - Patrick England
- Plate-Forme de Biophysique Moléculaires, Institut Pasteur, 75724 Paris cedex15, France.
| | - Alexandre Chenal
- Unité de Biochimie des Interactions Macromoléculaires, Institut Pasteur, 75724 Paris cedex15, France.
| | - Serge Pauillac
- Unité des Bactéries anaérobies et Toxines, Institut Pasteur, 75724 Paris cedex15, France.
| | - Arnaud Blondel
- Unité de Bioinformatique Structurale, Institut Pasteur, 75724 Paris cedex15, France.
| | - Michel-Robert Popoff
- Unité des Bactéries anaérobies et Toxines, Institut Pasteur, 75724 Paris cedex15, France.
| |
Collapse
|
7
|
Popoff MR. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host. Small GTPases 2014; 5:28209. [PMID: 25203748 DOI: 10.4161/sgtp.28209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin cytoskeleton is a main target of many bacterial pathogens. Among the multiple regulation steps of the actin cytoskeleton, bacterial factors interact preferentially with RhoGTPases. Pathogens secrete either toxins which diffuse in the surrounding environment, or directly inject virulence factors into target cells. Bacterial toxins, which interfere with RhoGTPases, and to some extent with RasGTPases, catalyze a covalent modification (ADPribosylation, glucosylation, deamidation, adenylation, proteolysis) blocking these molecules in their active or inactive state, resulting in alteration of epithelial and/or endothelial barriers, which contributes to dissemination of bacteria in the host. Injected bacterial virulence factors preferentially manipulate the RhoGTPase signaling cascade by mimicry of eukaryotic regulatory proteins leading to local actin cytoskeleton rearrangement, which mediates bacterial entry into host cells or in contrast escape to phagocytosis and immune defense. Invasive bacteria can also manipulate RhoGTPase signaling through recognition and stimulation of cell surface receptor(s). Changes in RhoGTPase activation state is sensed by the innate immunity pathways and allows the host cell to adapt an appropriate defense response.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Bactéries anaérobies et Toxines; Institut Pasteur; Paris, France
| |
Collapse
|
8
|
Aronoff DM. Clostridium novyi, sordellii, and tetani: mechanisms of disease. Anaerobe 2013; 24:98-101. [PMID: 24036420 DOI: 10.1016/j.anaerobe.2013.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/15/2013] [Accepted: 08/27/2013] [Indexed: 01/09/2023]
Abstract
Clostridia represent a diverse group of spore-forming gram positive anaerobes that include several pathogenic species. In general, diseases caused by clostridia are a result of intoxication of the infected host. Thus, clostridial toxins have been targeted for diagnostic, therapeutic, and preventive strategies against infection. Studying the mechanisms of action of clostridial toxins has not only shed light on the pathogenesis of infection but has provided important new insights into cell biology and immunology. A primary purpose of this manuscript is to provide a succinct review on the mechanisms of disease caused by intoxication by the pathogens Clostridium tetani, Clostridium novyi, and Clostridium sordellii.
Collapse
Affiliation(s)
- David M Aronoff
- Division of Infectious Diseases, Department of Internal Medicine, The University of Michigan Health System, Ann Arbor, MI 48109, United States; Department of Microbiology and Immunology, The University of Michigan Health System, Ann Arbor, MI 48109, United States; Reproductive Sciences Program, The University of Michigan Health System, Ann Arbor, MI 48109, United States.
| |
Collapse
|
9
|
Smith C, Goslin B. Clostridium sordellii Surgical Site Infection after Breast Mass Excision: Case Report. Surg Infect (Larchmt) 2013; 14:160-2. [DOI: 10.1089/sur.2011.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Craig Smith
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Brent Goslin
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
- Grand Rapids Medical Education Partners, General Surgery Residency, Grand Rapids, Michigan
| |
Collapse
|
10
|
Zane S, Guarner J. Gynecologic clostridial toxic shock in women of reproductive age. Curr Infect Dis Rep 2011; 13:561-70. [PMID: 21882086 DOI: 10.1007/s11908-011-0207-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clostridial toxic shock, caused by Clostridium sordellii or Clostridium perfringens, is a rare and largely fatal syndrome among reproductive-aged women with genital tract infection, and may occur following various pregnancy outcomes or without pregnancy. Clinicians should be aware of common clinical features of this very rapidly-progressing syndrome including abdominal pain, tachycardia, hypotension, third-space fluid accumulations, hemoconcentration, and marked leukemoid response, often with lack of fever. In this review, we summarize known cases through mid-2011 and information on clinical presentation, diagnosis, treatment, and results of recent investigations regarding pathogenesis, including germination, toxins, and host response that may have important implications for development of preventive or therapeutic interventions.
Collapse
Affiliation(s)
- Suzanne Zane
- Division of Reproductive Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Mailstop K-23, Atlanta, GA, 30341, USA,
| | | |
Collapse
|
11
|
Clostridium sordellii as a cause of constrictive pericarditis with pyopericardium and tamponade. J Clin Microbiol 2011; 49:3700-2. [PMID: 21813719 DOI: 10.1128/jcm.00933-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Systemic infections caused by Clostridium sordellii are rare. They are usually reported in cases of skin and soft tissue infections and sometimes in cases of toxic shock syndrome involving exotoxins. We report here the first case of Clostridium sordellii infection associated with acute constrictive pericarditis and with pyopericardium and tamponade.
Collapse
|
12
|
Walk ST, Jain R, Trivedi I, Grossman S, Newton DW, Thelen T, Hao Y, Songer JG, Carter GP, Lyras D, Young VB, Aronoff DM. Non-toxigenic Clostridium sordellii: clinical and microbiological features of a case of cholangitis-associated bacteremia. Anaerobe 2011; 17:252-6. [PMID: 21726656 DOI: 10.1016/j.anaerobe.2011.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
Toxigenic Clostridium sordellii strains are increasingly recognized to cause highly lethal infections in humans that are typified by a toxic shock syndrome (TSS). Two glucosylating toxins, lethal toxin (TcsL) and hemorrhagic toxin (TcsH) are believed to be important in the pathogenesis of TSS. While non-toxigenic strains of C. sordellii demonstrate reduced cytotoxicity in vitro and lower virulence in animal models of infection, there are few data regarding their behavior in humans. Here we report a non-TSS C. sordellii infection in the context of a polymicrobial bacterial cholangitis. The C. sordellii strain associated with this infection did not carry either the TcsL-encoding tcsL gene or the tcsH gene for TcsH. In addition, the strain was neither cytotoxic in vitro nor lethal in a murine sepsis model. These results provide additional correlative evidence that TcsL and TcsH increase the risk of mortality during C. sordellii infections.
Collapse
Affiliation(s)
- Seth T Walk
- The Department of Internal Medicine, University of Michigan Health System, Ann Arbor, 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Progesterone analogs influence germination of Clostridium sordellii and Clostridium difficile spores in vitro. J Bacteriol 2011; 193:2776-83. [PMID: 21478359 DOI: 10.1128/jb.00058-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium sordellii and Clostridium difficile are closely related anaerobic Gram-positive, spore-forming human pathogens. C. sordellii and C. difficile form spores that are believed to be the infectious form of these bacteria. These spores return to toxin-producing vegetative cells upon binding to small molecule germinants. The endogenous compounds that regulate clostridial spore germination are not fully understood. While C. sordellii spores require three structurally distinct amino acids to germinate, the occurrence of postpregnancy C. sordellii infections suggests that steroidal sex hormones might regulate its capacity to germinate. On the other hand, C. difficile spores require taurocholate (a bile salt) and glycine (an amino acid) to germinate. Bile salts and steroid hormones are biosynthesized from cholesterol, suggesting that the common sterane structure can affect the germination of both C. sordellii and C. difficile spores. Therefore, we tested the effect of sterane compounds on C. sordellii and C. difficile spore germination. Our results show that both steroid hormones and bile salts are able to increase C. sordellii spore germination rates. In contrast, a subset of steroid hormones acted as competitive inhibitors of C. difficile spore germination. Thus, even though C. sordellii and C. difficile are phylogenetically related, the two species' spores respond differently to steroidal compounds.
Collapse
|
14
|
Abstract
Clostridium sordellii is an important pathogen of humans and animals, causing a range of diseases, including myonecrosis, sepsis, and shock. Although relatively rare in humans, the incidence of disease is increasing, and it is associated with high mortality rates, approaching 70%. Currently, very little is known about the pathogenesis of C. sordellii infections or disease. Previous work suggested that the lethal large clostridial glucosylating toxin TcsL is the major virulence factor, but a lack of genetic tools has hindered our ability to conclusively assign a role for TcsL or, indeed, any of the other putative virulence factors produced by this organism. In this study, we have developed methods for the introduction of plasmids into C. sordellii using RP4-mediated conjugation from Escherichia coli and have successfully used these techniques to insertionally inactivate the tcsL gene in the reference strain ATCC 9714, using targetron technology. Virulence testing revealed that the production of TcsL is essential for the development of lethal infections by C. sordellii ATCC 9714 and also contributes significantly to edema seen during uterine infection. This study represents the first definitive identification of a virulence factor in C. sordellii and opens the way for in-depth studies of this important human pathogen at the molecular level.
Collapse
|
15
|
Thelen T, Hao Y, Medeiros AI, Curtis JL, Serezani CH, Kobzik L, Harris LH, Aronoff DM. The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for Clostridium sordellii expressed by human decidual macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 185:4328-35. [PMID: 20810988 DOI: 10.4049/jimmunol.1000989] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clostridium sordellii is an emerging pathogen associated with highly lethal female reproductive tract infections following childbirth, abortion, or cervical instrumentation. Gaps in our understanding of the pathogenesis of C. sordellii infections present major challenges to the development of better preventive and therapeutic strategies against this problem. We sought to determine the mechanisms whereby uterine decidual macrophages phagocytose this bacterium and tested the hypothesis that human decidual macrophages use class A scavenger receptors to internalize unopsonized C. sordellii. In vitro phagocytosis assays with human decidual macrophages incubated with pharmacological inhibitors of class A scavenger receptors (fucoidan, polyinosinic acid, and dextran sulfate) revealed a role for these receptors in C. sordellii phagocytosis. Soluble macrophage receptor with collagenous structure (MARCO) receptor prevented C. sordellii internalization, suggesting that MARCO is an important class A scavenger receptor in decidual macrophage phagocytosis of this microbe. Peritoneal macrophages from MARCO-deficient mice, but not wild-type or scavenger receptor AI/II-deficient mice, showed impaired C. sordellii phagocytosis. MARCO-null mice were more susceptible to death from C. sordellii uterine infection than wild-type mice and exhibited impaired clearance of this bacterium from the infected uterus. Thus, MARCO is an important phagocytic receptor used by human and mouse macrophages to clear C. sordellii from the infected uterus.
Collapse
Affiliation(s)
- Tennille Thelen
- Molecular, Cellular, and Developmental Biology Graduate Program, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Clostridium sordellii brain abscess diagnosed by 16S rRNA gene sequencing. J Clin Microbiol 2010; 48:3443-4. [PMID: 20610672 DOI: 10.1128/jcm.00307-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium sordellii is usually associated with skin and soft tissue infections. We describe the first case to our knowledge of a Clostridium sordellii-associated brain abscess, diagnosed by 16S rRNA gene sequencing, expanding the microbiological spectrum of brain abscesses, with emphasis on the role of 16S rRNA gene PCR in their etiologic diagnosis.
Collapse
|
17
|
Mallozzi M, Viswanathan VK, Vedantam G. Spore-forming Bacilli and Clostridia in human disease. Future Microbiol 2010; 5:1109-23. [DOI: 10.2217/fmb.10.60] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Gram-positive spore-forming bacteria in the Firmicute phylum are important members of the human commensal microbiota, which, in rare cases, cause opportunistic infections. Other spore-formers, however, have evolved to become dedicated pathogens that can cause a striking variety of diseases. Despite variations in disease presentation, the etiologic agent is often the spore, with bacterially produced toxins playing a central role in the pathophysiology of infection. This review will focus on the specific diseases caused by spores of the Clostridia and Bacilli.
Collapse
Affiliation(s)
- Michael Mallozzi
- Department of Veterinary Science and Microbiology, University of Arizona, 1117, East Lowell St., Building 90, Room 303, Tucson, AZ 85721, USA
| | - VK Viswanathan
- Department of Veterinary Science and Microbiology, University of Arizona, 1117, East Lowell St., Building 90, Room 303, Tucson, AZ 85721, USA
| | | |
Collapse
|
18
|
Comparative analysis of the extracellular proteomes of two Clostridium sordellii strains exhibiting contrasting virulence. Anaerobe 2010; 16:454-60. [PMID: 20338254 DOI: 10.1016/j.anaerobe.2010.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/10/2010] [Accepted: 03/07/2010] [Indexed: 11/24/2022]
Abstract
Clostridium sordellii is a toxin-producing anaerobic bacillus that causes severe infections in humans and livestock. C. sordellii infections can be accompanied by a highly lethal toxic shock syndrome (TSS). Lethal toxin (TcsL) is an important mediator of TSS. We recently obtained a clinical strain of C. sordellii (DA-108) lacking the TcsL-encoding tcsL gene, which was not fatal in rodent models of infection, in contrast to a tcsL(+) reference strain (ATCC9714). Protein preparations derived from cell-free, stationary phase cultures obtained from ATCC9714 were lethal when injected into mice, while those obtained from DA-108 were not, a difference that was attributed to the unique presence of TcsL in the ATCC9714-derived proteins. We questioned whether there were other major differences between the extracellular proteomes of these two strains, apart from TcsL. Two-dimensional gel electrophoresis was conducted using crude cell-free supernatants from these strains and 14 differentially expressed proteins were subjected to mass spectrometric analysis. Nine of these 14 proteins were more highly expressed by DA-108 and 5 by ATCC9714. Twelve of the 14 proteins isolated from the 2-D gels were putatively identified by mass spectrometry. Several of these proteins were identical, possibly reflecting enzymatic cleavage, degradation, and/or post-translational modifications. Excluding identical sequences, only 5 unique proteins were identified. Four proteins (ferredoxin-nitrite reductase; formate acetyltransferase; Translation Elongation Factor G; and purine nucleoside phosphorylase) were over-expressed by DA-108 and 1 (N-acetylmuramoyl-l-alanine amidase) by ATCC9714. These results support the concept that TcsL is the major determinant of C. sordellii TSS during infection.
Collapse
|