1
|
Wang Q, Wang R, Wang S, Zhang A, Duan Q, Sun S, Jin L, Wang X, Zhang Y, Wang C, Kang H, Zhang Z, Liao K, Guo Y, Jin L, Liu Z, Yang C, Wang H. Expansion and transmission dynamics of high risk carbapenem-resistant Klebsiella pneumoniae subclones in China: An epidemiological, spatial, genomic analysis. Drug Resist Updat 2024; 74:101083. [PMID: 38593500 DOI: 10.1016/j.drup.2024.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
AIMS Carbapenem-resistant Klebsiella pneumonia (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure. METHODS We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP. RESULTS Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China's southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (bmr3, mltC, pyrB, ppsC, and sdaC) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits in vitro. CONCLUSIONS The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.
Collapse
Affiliation(s)
- Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Anru Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qiaoyan Duan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Longyang Jin
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan, Friendship Hospital, Beijing, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chunlei Wang
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan, Friendship Hospital, Beijing, China
| | - Haiquan Kang
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhijie Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinghui Guo
- Hebei Children's Hospital, Shijiazhuang, China
| | - Liang Jin
- Department of Clinical Laboratory, First Hospital of Qinhuangdao, Hebei, China
| | - Zhiwu Liu
- Department of Medical Laboratory Center, the First Hospital of Lanzhou University, Lanzhou, China
| | - Chunxia Yang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
2
|
Li X, Zhang J, Wang J, Long W, Liang X, Yang Y, Gong X, Li J, Liu L, Zhang X. Activities of aztreonam in combination with several novel β-lactam-β-lactamase inhibitor combinations against carbapenem-resistant Klebsiella pneumoniae strains coproducing KPC and NDM. Front Microbiol 2024; 15:1210313. [PMID: 38505552 PMCID: PMC10949892 DOI: 10.3389/fmicb.2024.1210313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
Isolates coproducing serine/metallo-carbapenems are a serious emerging public health threat, given their rapid dissemination and the limited number of treatment options. The purposes of this study were to evaluate the in vitro antibacterial activity of novel β-lactam-β-lactamase inhibitor combinations (BLBLIs) against carbapenem-resistant Klebsiella pneumoniae (CRKP) coproducing metallo-β-lactamase and serine-β-lactamase, and to explore their effects in combination with aztreonam, meropenem, or polymyxin in order to identify the best therapeutic options. Four CRKP isolates coproducing K. pneumoniae carbapenemase (KPC) and New Delhi metallo-β-lactamase (NDM) were selected, and a microdilution broth method was used to determine their susceptibility to antibiotics. Time-kill assay was used to detect the bactericidal effects of the combinations of antibiotics. The minimum inhibitory concentration (MIC) values for imipenem and meropenem in three isolates did not decrease after the addition of relebactam or varbobactam, but the addition of avibactam to aztreonam reduced the MIC by more than 64-fold. Time-kill assay demonstrated that imipenem-cilastatin/relebactam (ICR) alone exerted a bacteriostatic effect against three isolates (average reduction: 1.88 log10 CFU/mL) and ICR combined with aztreonam exerted an additive effect. Aztreonam combined with meropenem/varbobactam (MEV) or ceftazidime/avibactam (CZA) showed synergistic effects, while the effect of aztreonam combined with CZA was inferior to that of MEV. Compared with the same concentration of aztreonam plus CZA combination, aztreonam/avibactam had a better bactericidal effect (24 h bacterial count reduction >3 log10CFU/mL). These data indicate that the combination of ATM with several new BLBLIs exerts powerful bactericidal activity, which suggests that these double β-lactam combinations might provide potential alternative treatments for infections caused by pathogens coproducing-serine/metallo-carbapenems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Farhat N, Khan AU. Inhibitors against New Delhi metallo-betalactamase-1 (NDM-1) and its variants endemic in Indian settings along with the laboratory functional gain mutant of NDM-1. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04761-7. [PMID: 38278986 DOI: 10.1007/s10096-024-04761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE The emergence of NDM-1 producing bacteria has become common in both hospital and community settings, but no inhibitor has yet been available for clinical treatment. Hence, demanding the urgent need of NDM-1 inhibitors, we initiated to screen broad spectrum inhibitors against NDM natural variants and laboratory mutant. METHODS We used docking and molecular dynamics simulations, in silico pharmacokinetic investigations, and density functional theory calculation to characterize molecules. Furthermore, an in vitro study, including MIC, kinetics, and fluorescence study were carried out to confirm the efficacies of the selected compounds. RESULTS According to the findings of the computational studies, three compounds were effective against NDM variants. Fourfold reduction in MIC of imipenem and meropenem was observed when combined with inhibitors (D2573, D2148, and D63) against blaNDM-1, blaNDM-4, blaNDM-6, and blaNDM-1Q123A, while twofold reduction in MIC of imipenem and meropenem was observed against blaNDM-5 and blaNDM-7. Similarly in the presence of inhibitors (D2573, D2148, and D63) the efficiency of nitrocefin hydrolysis by NDM-4, NDM-6, and Q123A decreases to much more extent as compared to NDM-5 and NDM-7. These results showed that the efficacy of these broad spectrum inhibitors decreases with increasing resistance of NDM variants. CONCLUSION This is the first time inhibitors were tested against different NDM natural variants which are endemic in Indian settings. Moreover, a functional gain laboratory mutant was also checked for their efficacies. We may propose these molecules for the pre-clinical trial to further translate.
Collapse
Affiliation(s)
- Nabeela Farhat
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Wang Q, Chen M, Ou Q, Zheng L, Chen X, Mao G, Fang J, Jin D, Tang X. Carbapenem-resistant hypermucoviscous Klebsiella pneumoniae clinical isolates from a tertiary hospital in China: Antimicrobial susceptibility, resistance phenotype, epidemiological characteristics, microbial virulence, and risk factors. Front Cell Infect Microbiol 2022; 12:1083009. [PMID: 36619764 PMCID: PMC9811262 DOI: 10.3389/fcimb.2022.1083009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hypervirulent and multidrug-resistant Klebsiella pneumoniae poses a significant threat to public health. We aimed to determine the common carbapenemase genotypes and the carriage patterns, main antibiotic resistance mechanisms, and in vitro susceptibility of clinical isolates of carbapenem-resistant K. pneumoniae (CRKP) to ceftazidime/avibactam (CZA) for the reasonable selection of antimicrobial agents and determine whether hypermucoviscous (HMV) phenotype and virulence-associated genes are key factors for CRKP colonization and persistence. Antibiotics susceptibility of clinical CRKP isolates and carbapenemase types were detected. CRKP isolates were identified as hypermucoviscous K. pneumoniae (HMKP) using the string test, and detection of virulence gene was performed using capsular serotyping. The bla KPC-2, bla NDM, bla IMP, and/or bla OXA-48-like were detected in 96.4% (402/417) of the isolates, and the bla KPC-2 (64.7%, 260/402) was significantly higher (P<0.05) than those of bla NDM (25.1%), bla OXA-48-like (10.4%), and bla IMP (4.2%). Carriage of a single carbapenemase gene was observed in 96.3% of the isolates, making it the dominant antibiotic resistance genotype carriage pattern (P < 0.05). Approximately 3.7% of the isolates carried two or more carbapenemase genotypes, with bla KPC-2 + bla NDM and bla NDM + bla IMP being the dominant multiple antibiotic resistance genotype. In addition, 43 CRKP isolates were identified as HMKP, with a prevalence of 10.3% and 2.7% among CRKP and all K. pneumoniae isolates, respectively. Most clinical CRKP isolates were isolated from elderly patients, and carbapenemase production was the main mechanism of drug resistance. Tigecycline and polymyxin B exhibited exceptional antimicrobial activity against CRKP isolates in vitro. Furthermore, bla KPC-2, bla NDM, and bla OXA-48-like were the main carbapenemase genes carried by the CRKP isolates. CZA demonstrated excellent antimicrobial activity against isolates carrying the single bla KPC-2 or bla OXA-48-like genotype. Capsular serotype K2 was the main capsular serotype of the carbapenem-resistant HMKP isolates. Survival rates of Galleria mellonella injected with K. pneumoniae 1-7 were 20.0, 16.7, 6.7, 23.3, 16.7, 3.3, and 13.3, respectively. Therefore, worldwide surveillance of these novel CRKP isolates and carbapenem-resistant HMKP isolates as well as the implementation of stricter control measures are needed to prevent further dissemination in hospital settings.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengyuan Chen
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qian Ou
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Zheng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuejing Chen
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guofeng Mao
- Department of Clinical Laboratory, Shaoxing People’s Hospital, Shaoxing, China
| | - Jiaqi Fang
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China,Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| | - Xiaofang Tang
- Department of Cadre Health Care, Zhejiang Hospital, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| |
Collapse
|
5
|
Hou M, Chen N, Dong L, Fang Y, Pan R, Wang W, Wang L, Ning J, Dong H. Molecular Epidemiology, Clinical Characteristics and Risk Factors for Bloodstream Infection of Multidrug-Resistant Klebsiella pneumoniae Infections in Pediatric Patients from Tianjin, China. Infect Drug Resist 2022; 15:7015-7023. [PMID: 36483148 PMCID: PMC9725917 DOI: 10.2147/idr.s389279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/14/2022] [Indexed: 11/01/2023] Open
Abstract
PURPOSE The data on pediatrics with Multidrug-Resistant (MDR) Klebsiella pneumoniae infections are scarce. This study aims to investigate the molecular epidemiology of MDR Klebsiella pneumoniae, detect the mechanism of drug resistance, and determine the clinical risk factors for carbapenem-resistant Klebsiella pneumonia (CRKP) bloodstream infections (BSIs) in a children's hospital. METHODS A total of 62 strains were collected from Tianjin Children's Hospital. Carba NP and polymerase chain reactions (PCR) were performed to detect MDR mechanisms. Multilocus sequence typing (MLST) was used for analyzing strain homology. Clinical data were collected and logistic regression was used for BSI risk factors. RESULTS ST11 was the principal ST among the CRKP isolates clinically, accounting for 56.45% (35/62); there were also 57.14% (20/35) ST11 CRKP strains co-carrying bla NDM-5 and bla KPC-2, which were resistant to most of the tested antibiotics, being susceptible only to cotrimoxazole and tigecycline. The clinical data showed that 72.73% (40/55) of children with CRKP infection had serious underlying diseases; 20.00% (11/55) patients developed BSIs with the potential to cause multiple organ failure, shock and death. The logistic regression showed that the risk of BSIs caused by CRKP strain infections in children with hematological malignancies after chemotherapy was 7 times that of other children (95%Cl: 1.298-45.415, P=0.025). CONCLUSION ST11 was the prevalent clone in our hospital. The emergence of ST11 CRKP co-carrying bla NDM-5 and bla KPC-2 should be a cause for alarm as they were resistant to most of the tested antibiotics. CRKP strain infections are mainly occurring in young immunocompromised patients and the chemotherapy for hematological malignancies is an independent risk factor for BSIs.
Collapse
Affiliation(s)
- Mengzhu Hou
- Tianjin Pediatric Research Institute, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, People’s Republic of China
| | - Nan Chen
- Department of Clinical Lab, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, People’s Republic of China
| | - Lili Dong
- Department of Respiratory, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, People’s Republic of China
| | - Yulian Fang
- Tianjin Pediatric Research Institute, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, People’s Republic of China
| | - Rui Pan
- Department of Clinical Lab, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, People’s Republic of China
| | - Wei Wang
- Tianjin Pediatric Research Institute, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, People’s Republic of China
| | - Lu Wang
- Tianjin Pediatric Research Institute, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, People’s Republic of China
| | - Jing Ning
- Department of Respiratory, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, People’s Republic of China
| | - Hanquan Dong
- Department of Respiratory, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, People’s Republic of China
| |
Collapse
|
6
|
Zha L, Li X, Ren Z, Zhang D, Zou Y, Pan L, Li S, Chen S, Tefsen B. Pragmatic Comparison of Piperacillin/Tazobactam versus Carbapenems in Treating Patients with Nosocomial Pneumonia Caused by Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11101384. [PMID: 36290042 PMCID: PMC9598608 DOI: 10.3390/antibiotics11101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of piperacillin/tazobactam for managing nosocomial pneumonia caused by extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is unknown. To answer this question, we conducted a retrospective cohort study in two tertiary teaching hospitals of patients admitted between January 2018 and July 2021 with a diagnosis of nosocomial pneumonia caused by ESBL-producing K. pneumoniae receiving either piperacillin/tazobactam or carbapenems within 24 h from the onset of pneumonia for at least 72 h. Clinical outcomes, including 28-day mortality and 14-day clinical and microbiological cure, were analyzed. Of the 136 total patients, 64 received piperacillin/tazobactam and 72 received carbapenems. The overall 28-day mortality was 19.1% (26/136). In the inverse probability of treatment weighted cohort, piperacillin/tazobactam therapy was not associated with worse clinical outcomes, as the 28-day mortality (OR, 0.82, 95% CI, 0.23–2.87, p = 0.748), clinical cure (OR, 0.94, 95% CI, 0.38–2.35, p = 0.894), and microbiological cure (OR, 1.10, 95% CI, 0.53–2.30, p = 0.798) were comparable to those of carbapenems. Subgroup analyses also did not demonstrate any statistical differences. In conclusion, piperacillin/tazobactam could be an effective alternative to carbapenems for treating nosocomial pneumonia due to ESBL-producing K. pneumoniae when the MICs are ≤8 mg/L.
Collapse
Affiliation(s)
- Lei Zha
- Intensive Care Unit, Conch Hospital of Anhui Medical University, Wuhu 241000, China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
- Correspondence: (L.Z.); (B.T.)
| | - Xiang Li
- Postgraduate School, Wannan Medical College, Wuhu 241000, China
| | - Zhichu Ren
- Postgraduate School, Wannan Medical College, Wuhu 241000, China
| | - Dayan Zhang
- Postgraduate School, Wannan Medical College, Wuhu 241000, China
| | - Yi Zou
- Postgraduate School, Wannan Medical College, Wuhu 241000, China
| | - Lingling Pan
- Cardiology Department, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Shirong Li
- Pulmonary and Critical Care Department, The Second People’s Hospital of Wuhu, Wuhu 241000, China
| | - Shanghua Chen
- Intensive Care Unit, The Second People’s Hospital of Wuhu, Wuhu 241000, China
| | - Boris Tefsen
- Department of Molecular Microbiology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Natural Sciences, Ronin Institute, Montclair, NJ 07043, USA
- Correspondence: (L.Z.); (B.T.)
| |
Collapse
|
7
|
Zhai Y, Lee S, Teng L, Ma Z, Hilliard NB, May RJ, Brown SA, Yu F, Desear KE, Cherabuddi K, Rand KH, Morris JG, Iovine NM, Jeong KC. Dissemination mechanisms of NDM genes in hospitalized patients. JAC Antimicrob Resist 2021; 3:dlab032. [PMID: 34223104 PMCID: PMC8210240 DOI: 10.1093/jacamr/dlab032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background NDM-producing Enterobacteriaceae are a major clinical concern worldwide. We characterized NDM-positive pathogens isolated from patients and assessed the dissemination patterns of the blaNDM genes in a hospital setting. Methods Eleven NDM-positive Enterobacteriaceae (three Enterobacter hormaechei, six Klebsiella pneumoniae and two Escherichia coli) were isolated from nine patients over a 1 year period. Antimicrobial susceptibility was assessed by MICs. A combination of short- and long-read WGS was used for genome analysis. Clinical treatment history of patients was linked with genetic features of individual isolates to investigate the dissemination patterns of the blaNDM genes and NDM-positive strains. Results blaNDM in clonal K. pneumoniae were transmitted between two patients. In other instances, an identical IncC plasmid encoding NDM-1 was transmitted between E. coli and K. pneumoniae isolated from the same patient, and an IncX3 plasmid, carrying blaNDM-1 or blaNDM-5, was harboured in non-clonal E. hormaechei. Varying patterns of IS elements were identified as a critical transmission mechanism in association with blaNDM genes. Conclusions Multiple transmission patterns were identified in hospitalized patients, including dissemination of clonal bacterial strains carrying resistance genes and horizontal transfer of resistance genes among divergent bacterial strains. Controlling spread of NDM is complex: while attention to standard infection control practices is critically important, this needs to be matched by aggressive efforts to limit unnecessary antimicrobial use, to minimize the selection for and risk of transfer of ‘high mobility’ resistance genes among Enterobacteriaceae.
Collapse
Affiliation(s)
- Yuting Zhai
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Shinyoung Lee
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Lin Teng
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Zhengxin Ma
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Nicole B Hilliard
- Infection Control, University of Florida Health/Shands Hospital, Gainesville, FL, USA
| | - Robert J May
- Infection Control, University of Florida Health/Shands Hospital, Gainesville, FL, USA
| | - Scott A Brown
- Infection Control, University of Florida Health/Shands Hospital, Gainesville, FL, USA
| | - Fahong Yu
- ICBR, University of Florida, Gainesville, FL, USA
| | - Kathryn E Desear
- Department of Pharmacy, University of Florida Health/Shands Hospital, Gainesville, FL, USA
| | - Kartik Cherabuddi
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kenneth H Rand
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nicole M Iovine
- Infection Control, University of Florida Health/Shands Hospital, Gainesville, FL, USA.,Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - KwangCheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|