1
|
Ma Y, Du Y, Yang J, Wang H, Lin X. Effect of Inactivated Vaccines Against SARS-CoV-2 on Immunogenicity Outcome. Disaster Med Public Health Prep 2025; 19:e50. [PMID: 40033891 DOI: 10.1017/dmp.2024.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVES The purpose of this study was to measure and examine the levels of IgG, IgM, and Spike antibody induced by inactivated vaccines, including CoronaVac and BBIBP-CorV. METHODS Two groups of healthy adults over 18 years old (50 participants per group), who had previously received 1 dose of either BBIBP-CorV or CoronaVac and receiving either a homologous booster of BBIBP-CorV or a heterologous booster of CoronaVac. Serum IgG, IgM, and Spike antibody levels against SARS-COV-2 were measured using magnetic particle chemiluminescence immunoassay and the ELISA method. RESULTS The results showed that both spike antibody and IgG/IgM antibodies elicited by a CoronaVac booster following 1 dose of BBIBP-CorV were significantly higher than those elicited by either a homologous BBIBP-CorV booster or a heterologous BBIBP-CorV booster. The Spike antibody against SARS-COV-2 induced by the heterologous CoronaVac booster reached 200.3, which is substantially greater than that induced by the homologous BBIBP-CorV booster (127.5 pg/mL). Conversely, the Spike antibody against SARS-COV-2 induced by the heterologous BBIBP-CorV booster reached 53.93 pg/mL, which is substantially greater than that induced by the homologous CoronaVac booster (9.60 pg/mL). CONCLUSIONS In summary, CoronaVac is immunogenic as a booster dose following 1 dose of BBIBP-CorV and is immunogenically superior to both the homologous booster and the heterologous BBIBP-CorV booster.
Collapse
Affiliation(s)
- Yuke Ma
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yukuan Du
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jingnan Yang
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, China
| | - Huichao Wang
- Department of Nephrology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xuhong Lin
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
2
|
Infante V, Cintra MADCT, Fernandes EG, Loch AP, Ragiotto L, Braga PE, Salomão MDG, Lucchesi MBB, de Oliveira MMM, Gattás VL, da Silva AS, Boas PJFV, Lopes MH, Moreira J, Boulos FC. Evaluating the safety profile of the CoronaVac in adult and older adult populations: A phase IV prospective observational study in Brazil. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004069. [PMID: 39999100 DOI: 10.1371/journal.pgph.0004069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/25/2024] [Indexed: 02/27/2025]
Abstract
This Phase IV prospective observational study aimed to evaluate the frequency of solicited and unsolicited adverse reactions within seven days following the administration of each dose of CoronaVac (14-day interval) by age group (18-59 years and ≥60 years). Participants (n = 538; 487 adults and 51 older adults) were enrolled from three public health centers in São Paulo, Brazil from May 2021 to January 2022. The study involved a two-dose vaccination regimen administered 14 days apart. Solicited and unsolicited adverse reactions (ARs) were assessed within seven days after each dose, and medically attended adverse events following immunization (AEFI) were monitored for 42 days. Safety data were collected through participant diary cards, telephone follow-ups, and on-site visits. Among adults, the most frequently reported local AR after the first and second doses was pain (256 [52.6%] and 129 [29.5%], respectively), while the most common systemic AR was headache (158 [34.5%] and 51 [11.6%], respectively). Most local and systemic solicited ARs were of Grade 1 or 2 severity, with ARs being more prevalent in adults following the first dose. One serious adverse event related to the vaccine was reported in adults, with no fatalities. Nine adult participants experienced adverse events of special interest, including five cases of COVID-19. These findings support the overall safety profile of CoronaVac in adults and older adult individuals, with adverse events being generally mild and self-limited.
Collapse
Affiliation(s)
- Vanessa Infante
- Clinical Trials and Pharmacovigilance Center, Instituto Butantan, São Paulo, Brazil
| | | | - Eder Gatti Fernandes
- Clinical Trials and Pharmacovigilance Center, Instituto Butantan, São Paulo, Brazil
| | - Ana Paula Loch
- Clinical Trials and Pharmacovigilance Center, Instituto Butantan, São Paulo, Brazil
| | - Lucas Ragiotto
- Clinical Trials and Pharmacovigilance Center, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | - Vera Lúcia Gattás
- Clinical Trials and Pharmacovigilance Center, Instituto Butantan, São Paulo, Brazil
| | - Anderson Soares da Silva
- Centro de Saúde Escola da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP) Dr. Joel Domingos Machado, São Paulo, Brazil
| | | | - Marta Heloisa Lopes
- Centro de Referência de Imunobiológicos Especiais Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (CRIE-HCFMUSP), São Paulo, Brazil
| | - José Moreira
- Clinical Trials and Pharmacovigilance Center, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
3
|
da Silva JG, Arruk VG, Veiga GRLD, Sousa LVDA, Alves BDCA, Fonseca FLA, van der Heijden Natário IM. Quantitative and qualitative analysis of seroconversion after one year of vaccination with inactivated SARS-CoV-2 vaccine (CoronaVac®) in healthcare workers: Cross-sectional analytical study. J Virol Methods 2025; 332:115067. [PMID: 39551445 DOI: 10.1016/j.jviromet.2024.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
A descriptive study was carried out with health professionals in Sao Paulo city. Were included individuals vaccinated with 2 doses of the inactivated vaccine. Demographic, clinical and vaccination information was obtained from professionals with or without comorbidities. Two serological assays were used to identify the presence and quantity of anti-Spike IgG in serum samples. 433 healthy healthcare professionals were included and 58.9 % completed the 4 clinical stages of serological assessment. Among adults and elderly people, 25.2 % had chronic diseases (hypertension 50.5 %, diabetes 10 % and obesity 6.5 %). Most individuals have 95 % protection in the first 3 months after the second dose, and 67.68 % protection after 6 months. Total antibodies ranged from 3 to 10 on the reactivity index, and the anti-RBD IgG levels were high. CoronaVac has a 94 % seroconversion rate after 2 doses and can prevent serious cases and outbreaks of the disease, if used on a large scale.
Collapse
Affiliation(s)
| | - Viviana Galimberti Arruk
- Clinical Microbiology Laboratory, Department of Pathology - Centro Universitário FMABC, SP, Brazil; Clinical Analysis Laboratory of Centro Universitário FMABC, SP, Brazil
| | | | | | | | - Fernando Luiz Affonso Fonseca
- Clinical Analysis Laboratory of Centro Universitário FMABC, SP, Brazil; Department of Pharmaceutical Sciences - UNIFESP (Universidade Federal de São Paulo), Diadema, SP, Brazil
| | - Inneke Marie van der Heijden Natário
- Clinical Microbiology Laboratory, Department of Pathology - Centro Universitário FMABC, SP, Brazil; Clinical Analysis Laboratory of Centro Universitário FMABC, SP, Brazil.
| |
Collapse
|
4
|
Alexander N, Dye C, Busch MP, Buss L, Prete CA, Brady OJ, Mee P, Abrahim CMM, Crispim MAE, da Costa AG, Salomon T, Mayaud P, Oikawa MK, Faria NR, Sabino EC. Dynamics of SARS-CoV-2 infection over two epidemic waves in Manaus, Brazil: A serological study of seven thousand blood donors. PLoS One 2025; 20:e0308319. [PMID: 39813299 PMCID: PMC11734911 DOI: 10.1371/journal.pone.0308319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/22/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Most longitudinal studies of COVID-19 incidence have used unlinked samples. The city of Manaus, Brazil, has a blood donation program which allows sample linkage, and was struck by two large COVID-19 epidemic waves between mid-2020 and early 2021. METHODS We estimated the changing force of infection, i.e. incidence in susceptible individuals. Seroconversion was inferred by a mixture model for serial values from the Abbott Architect SARS-CoV-2 nucleocapsid (N) IgG assay. We estimated the number of suspected COVID-19 hospitalizations arising from each infection over calendar time. RESULTS Whole blood donations between April 2020 and March 2021 were included from 6734 people, 2747 with two or more donations. The inferred criterion for seroconversion, and thus an incident infection, was a 6.07 fold increase in N IgG reactivity. The overall force of infection was 1.19 per person year (95% confidence interval 1.14-1.24) during the two main waves. The estimated number of suspected hospitalizations per infection, was approximately 4.1 times higher in the second wave than in the first. CONCLUSIONS Serial values from this assay can be used to infer seroconversion over time, and in Manaus show a higher number of suspected COVID-19 hospitalizations per infection in the second wave relative to the first.
Collapse
Affiliation(s)
- Neal Alexander
- Department of Infectious Disease Epidemiology, MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher Dye
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States of America
| | - Lewis Buss
- Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical, São Paulo, Brazil
| | - Carlos A. Prete
- Department of Electronic Systems Engineering, Universidade de São Paulo, São Paulo, Brazil
| | - Oliver J. Brady
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul Mee
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Claudia M. M. Abrahim
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HemoAM), Manaus, Brazil
| | - Myuki A. E. Crispim
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HemoAM), Manaus, Brazil
| | - Allyson G. da Costa
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HemoAM), Manaus, Brazil
| | - Tassila Salomon
- Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Mayaud
- Faculty of Infectious and Tropical Diseases, Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Márcio K. Oikawa
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Nuno R. Faria
- Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, United Kingdom
| | - Ester C. Sabino
- Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical, São Paulo, Brazil
| |
Collapse
|
5
|
Zhou J, Han Y, Huang X, Zhang Z, Zhang J, Ji T. Safety observation of COVID-19 inactivated vaccine in immature mice. Immunopharmacol Immunotoxicol 2024:1-7. [PMID: 39529205 DOI: 10.1080/08923973.2024.2421524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the safety of COVID-19 inactivated vaccine in immature mice. METHODS We selected 3-week-old immature BALB/c mice, continuously observed until 7 weeks old after continuous immunization with fully inactivated vaccine (initial strengthening), and sacrificed BALB/c mice at 7 weeks old, and used H&E, Masson, mast cells and Ki-67 staining to analyze the changes of heart, liver, spleen, kidney, lung and brain. In addition, RNA was extracted from important organs such as the heart, liver, spleen, kidney, lung, and brain, and to evaluate whether there was any effect after vaccination through bulk-RNA sequencing. RESULTS After H&E, Masson, mast cells and Ki-67 staining analyses, there are no significant differences between tissues and organs in the vaccine group and the PBS group, and RNA-Seq did not show that the vaccine had any effect on immature mice. CONCLUSION COVID-19 inactivated vaccine is safe in immature mice.
Collapse
Affiliation(s)
- Jingxuan Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co.Ltd, Wuhan, China
| | - Yingyan Han
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co.Ltd, Wuhan, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co.Ltd, Wuhan, China
| | - Teng Ji
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wang S, Zhu Y, Chen T, Lin C, Chen L, Niu Y, Li C. Is COVID-19 Vaccination Beneficial for Tumor Patients: A Cross-Sectional Investigation in China. Immun Inflamm Dis 2024; 12:e70069. [PMID: 39601455 PMCID: PMC11600451 DOI: 10.1002/iid3.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION Tumor patients take a high risk of SARS-CoV-2 infection, high incidence of serious events, poor prognosis and high mortality in the coronavirus disease 2019 (COVID-19) epidemic, but there is still lack of supporting evidence that the COVID-19 vaccination is beneficial for tumor patients to encourage them to receive the vaccination. METHODS A cross-sectional study was conducted in Shantou, China and questionnaires were collected in the hospitals from February 13, 2023 to April 23, 2023. Using the receiving of COVID-19 vaccination as the primary outcome, descriptive, univariate and multivariate analyses were generated. RESULTS 161 out of 241 patients (66.80%) had received at least one dose of COVID-19 vaccine and 61.00% patients had been infected with SARS-CoV-2. Patients with general symptoms (p = 0.013) and others (p = 0.022) had a higher proportion of nonvaccinated patients than vaccinated ones. In the multivariate analysis, age (aOR = 0.971, 95% CI = 0.946-0.997, p = 0.031), the cognition of vaccines' impact on tumor treatment (aOR = 4.475, 95% CI = 1.772-11.299, p = 0.002), time since tumor diagnosis (aOR = 4.586, 95% CI = 2.122-9.909, p < 0.001) were identified as factors of COVID-19 vaccination uptake. CONCLUSION COVID-19 vaccination in China offers numerous advantages for tumor patients, helping to alleviate symptoms following infection and potentially decreasing the chances of tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Sixiu Wang
- School of Public HealthShantou UniversityShantouChina
| | - Yan Zhu
- Department of Gynecologic OncologyCancer Hospital of Shantou University Medical CollegeShantouChina
| | - Tao Chen
- Zhongshan Medical SchoolSun Yat‐sen UniversityGuangzhouChina
| | - Chunying Lin
- School of Public HealthShantou UniversityShantouChina
| | - Liming Chen
- Department of OncologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yongdong Niu
- Department of Pharmacology, School of MedicineShantou UniversityShantouChina
| | - Congzhu Li
- Department of Gynecologic OncologyCancer Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
7
|
Lim RJ, Qiu X, Leong RN, Gutierrez JL, Halima A, Mostafa M, Ghoneim Y, Abdrabo M, Rashad M, Hannawi S, Liu Y, Mojares Z. Safety, tolerability, and immunogenicity of PIKA-adjuvanted recombinant SARS-CoV-2 spike protein subunit vaccine in healthy adults: an open-label randomized phase I clinical trial. Clin Exp Vaccine Res 2024; 13:315-328. [PMID: 39525677 PMCID: PMC11543792 DOI: 10.7774/cevr.2024.13.4.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This phase I study aimed to assess the safety, tolerability, and immunogenicity of the PIKA-adjuvanted recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein subunit vaccine in healthy adults aged 18 years and older. Materials and Methods This is a phase I, open-label, dose-escalation study at three dose levels (5 µg, 10 µg, and 20 µg) of the PIKA coronavirus disease 2019 (COVID-19) vaccine administered intramuscularly. The three vaccine arms are (A) subjects who have never received any COVID-19 vaccination or have had COVID-19 infection for >6 months prior to enrolment; (B1) subjects whose COVID-19 primary vaccination series was completed with an inactivated COVID-19 vaccine; and (B2) subjects whose primary series was completed with messenger RNA COVID-19 vaccine. Results Subjects who reported solicited adverse events (AEs) within seven days post-vaccination ranged from 35% to 60% within each vaccine arm. Most solicited AEs were mild local pain and tenderness. Systemic solicited AEs were only reported in Arm A. In all three vaccine arms, neutralizing antibody geometric mean titers were highest at day 28 (Arms B1 and B2) or day 35 (Arm A) than at baseline for all dose levels against the Wuhan (wild original SARS-CoV-2 virus, Wuhan-Hu-1), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. These were sustained at day 183. Seroconversion rates at day 35 (Arm A, 85.7%-92.9%) or day 183 (Arms B1, 90.9%-100.0%, and B2, 18.2%-36.4%) and geometric mean fold rises were highest in the 5-µg dose level against all three variants. Conclusion The PIKA-adjuvanted recombinant SARS-CoV-2 S protein subunit vaccine showed promising immunogenicity profile with no safety concerns. A dose-dependent immune response was observed, with slight advantages seen in low-dose (5 µg and 10 µg) groups (ClinicalTrials.gov registration number: NCT05305300).
Collapse
Affiliation(s)
- Renan James Lim
- YS Biopharma (Philippines) Co. Ltd., Bonifacio Global City, Taguig, Philippines
| | | | - Robert Neil Leong
- YS Biopharma (Philippines) Co. Ltd., Bonifacio Global City, Taguig, Philippines
| | | | - Ahmad Halima
- PDC Contract Research Organization, Abu Dhabi, United Arab Emirates
| | - Mohamed Mostafa
- PDC Contract Research Organization, Abu Dhabi, United Arab Emirates
| | - Yasser Ghoneim
- PDC Contract Research Organization, Abu Dhabi, United Arab Emirates
| | - Mostafa Abdrabo
- PDC Contract Research Organization, Abu Dhabi, United Arab Emirates
| | - Moaz Rashad
- PDC Contract Research Organization, Abu Dhabi, United Arab Emirates
| | | | - Yuan Liu
- YS Biopharma (China) Co. Ltd., Beijing, China
| | | |
Collapse
|
8
|
Lim RJ, Qiu X, Alberto E, Capeding MR, Carlos J, Leong RN, Gutierrez JL, Trillana M, Liu Y, Mojares Z. Safety and immunogenicity of PIKA-adjuvanted recombinant SARS-CoV-2 spike protein subunit vaccine as a booster against SARS-CoV-2: a phase II, open-label, randomized, double-blinded study. Clin Exp Vaccine Res 2024; 13:329-337. [PMID: 39525672 PMCID: PMC11543791 DOI: 10.7774/cevr.2024.13.4.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This study evaluated the safety and immunogenicity of the PIKA-adjuvanted recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein subunit vaccine as a booster dose for healthy adults who had previously received two or more doses of an inactivated coronavirus disease 2019 (COVID-19) vaccine. Materials and Methods The study was a phase II multicenter, double-blinded, comparator-controlled, randomized trial. Participants were randomly assigned to receive either the PIKA COVID-19 vaccine booster dose or an inactivated COVID-19 vaccine (Sinovac, China). Safety was assessed based on adverse events, while immunogenicity was measured by neutralizing antibodies against SARS-CoV-2 and serum immunoglobulin G (IgG) levels. Data on safety and immunogenicity were collected in the short-term (within 14 days after the booster dose) and long-term (from 90 to 365 days after the booster dose). Results The PIKA-adjuvanted vaccine demonstrated a significant increase in neutralizing antibodies against the Omicron variant (geometric mean ratio [GMR]=2.0 on day 7, p-value <0.001; GMR=2.7 on day 14, p-value <0.001) and the wild type SARS-CoV-2 virus (GMR=2.3 on day 7, p-value <0.001; GMR=2.8 on day 14, p-value<0.001) in the early post-vaccination period when compared to the inactivated vaccine. Additionally, the PIKA COVID-19 vaccine showed higher seroconversion rates for neutralizing antibodies against both variants during the first 14 days post-vaccination. However, there were no significant differences in neutralizing antibody levels between the two vaccines from day 90 to day 360 post-vaccination. Serum IgG antibody levels for the PIKA COVID-19 vaccine were also higher throughout the study period. The incidence of adverse events was slightly higher in the PIKA COVID-19 group, with the most common events being pain at the injection site and headache. All adverse events were mild or moderate, with no reports of severe or life-threatening adverse events in either group. Conclusion The PIKA COVID-19 vaccine, when administered as a booster dose, showed promising short- and long-term immunogenicity with no emergent safety issues identified. The booster dose of the PIKA COVID-19 vaccine elicited a robust immune response against various SARS-CoV-2 variants and provided some seroprotection for up to 360 days (ClinicalTrials.gov registration number: NCT05463419).
Collapse
Affiliation(s)
- Renan James Lim
- YS Biopharma Co. Ltd., Bonifacio Global City, Taguig, Philippines
| | | | - Edison Alberto
- Clinical Research Center, Health Index Multispecialty Clinic, Imus, Philippines
| | | | - Josefina Carlos
- Research Center, University of the East Ramon Magsaysay Memorial Medical Center Inc., Quezon City, Philippines
| | | | | | | | - Yuan Liu
- YS Biopharma (China) Co. Ltd., Beijing, China
| | | |
Collapse
|
9
|
Nafian F, Soleymani G, Pourmanouchehri Z, Kiyanjam M, Nafian S, Mohammadi SM, Jeyroudi H, Berenji Jalaei S, Sabzpoushan F. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins. Adv Virol 2024; 2024:3418062. [PMID: 39380944 PMCID: PMC11459942 DOI: 10.1155/2024/3418062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Nucleic acid-based vaccines allow scalable, rapid, and cell-free vaccine production in response to an emerging disease such as the current COVID-19 pandemic. Here, we objected to the design of a multiepitope mRNA vaccine against the structural proteins of SARS-CoV-2. Through an immunoinformatic approach, promising epitopes were predicted for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Fragments rich in overlapping epitopes were selected based on binding affinities with HLA classes I and II for the specific presentation to B and T lymphocytes. Two constructs were designed by fusing the fragments in different arrangements via GG linkers. Construct 1 showed better structural properties and interactions with toll-like receptor 2 (TLR-2), TLR-3, and TLR-4 during molecular docking and dynamic simulation. A 50S ribosomal L7/L12 adjuvant was added to its N-terminus to improve stability and immunogenicity. The final RNA sequence was used to design a trans-amplifying RNA (taRNA) vaccine in a split-vector system. It consists of two molecules: a nonreplicating RNA encoding a trans-acting replicase to amplify the second one, a trans-replicon (TR) RNA encoding the vaccine protein. Overall, the immune response simulation detected that activated B and T lymphocytes and increased memory cell formation. Macrophages and dendritic cells proliferated continuously, and IFN-γ and cytokines like IL-2 were released highly.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Laboratory SciencesFaculty of ParamedicsTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Ghazal Soleymani
- Department of Biological SciencesVirginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zahra Pourmanouchehri
- Department of BiologyTechnical University of Kaiserslautern, Kaiserslautern Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mahnaz Kiyanjam
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cell and Regenerative MedicineNational Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sayed Mohammad Mohammadi
- Department of BiotechnologyFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Hanie Jeyroudi
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Sharareh Berenji Jalaei
- Department of BiochemistryFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Fatemeh Sabzpoushan
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
11
|
Seong H, Yoon JG, Nham E, Choi YJ, Noh JY, Cheong HJ, Kim WJ, Kim EH, Kim C, Han YH, Lim S, Song JY. The gut microbiota modifies antibody durability and booster responses after SARS-CoV-2 vaccination. J Transl Med 2024; 22:827. [PMID: 39242525 PMCID: PMC11380214 DOI: 10.1186/s12967-024-05637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are pivotal in combating coronavirus disease 2019 (COVID-19); however, the declining antibody titers postvaccination pose challenges for sustained protection and herd immunity. Although gut microbiome is reported to affect the early antibody response after vaccination, its impact on the longevity of vaccine-induced antibodies remains unexplored. METHODS A prospective cohort study was conducted involving 44 healthy adults who received two doses of either the BNT162b2 or ChAdOx1 vaccine, followed by a BNT162b2 booster at six months. The gut microbiome was serially analyzed using 16S rRNA and shotgun sequencing, while humoral immune response was assessed using a SARS-CoV-2 spike protein immunoassay. RESULTS Faecalibacterium prausnitzii was associated with robust and persistent antibody responses post-BNT162b2 vaccination. In comparison, Escherichia coli was associated with a slower antibody decay following ChAdOx1 vaccination. The booster immune response was correlated with metabolic pathways involving cellular functions and aromatic amino acid synthesis. CONCLUSIONS The findings of this study underscored the potential interaction between the gut microbiome and the longevity/boosting effect of antibodies following vaccination against SARS-CoV-2. The identification of specific microbial associations suggests the prospect of microbiome-based strategies for enhancing vaccine efficacy.
Collapse
Affiliation(s)
- Hye Seong
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Eliel Nham
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Yu Jung Choi
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Chulwoo Kim
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young-Hee Han
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea
| | - Sooyeon Lim
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea.
| | - Joon Young Song
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Meng L, Pan Y, Liu Y, He R, Sun Y, Wang C, Fei L, Zhu A, Wang Z, An Y, Wu Y, Diao B, Chen Y. Individuals carrying the HLA-B*15 allele exhibit favorable responses to COVID-19 vaccines but are more susceptible to Omicron BA.5.2 and XBB.1.16 infection. Front Immunol 2024; 15:1440819. [PMID: 39257586 PMCID: PMC11383769 DOI: 10.3389/fimmu.2024.1440819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024] Open
Abstract
Background Natural infection or vaccination have provided robust immune defense against SARS-CoV-2 invasion, nevertheless, Omicron variants still successfully cause breakthrough infection, and the underlying mechanisms are poorly understood. Methods Sequential blood samples were continuously collected at different time points from 252 volunteers who were received the CanSino Ad5-nCoV (n= 183) vaccine or the Sinovac CoronaVac inactivated vaccine (n= 69). The anti-SARS-CoV-2 prototype and Omicron BA.5.2 as well as XBB.1.16 variant neutralizing antibodies (Nab) in sera were detected by ELISA. Sera were also used to measure pseudo and live virus neutralization assay. The associations between the anti-prototype Nab levels and different HLA-ABC alleles were analyzed using artificial intelligence (AI)-deep learning techniques. The frequency of B cells in PBMCs was investigated by flow cytometry assay (FACs). Results Individuals carrying the HLA-B*15 allele manifested the highest concentrations of anti-SARS-CoV-2 prototype Nab after vax administration. Unfortunately, these volunteers are more susceptible to Omicron BA.5.2 breakthrough infection due to their sera have poorer anti-BA.5.2 Nab and lower levels of viral neutralization efficacy. FACs confirmed that a significant decrease in CD19+CD27+RBD+ memory B cells in these HLA-B*15 population compared to other cohorts. Importantly, generating lower concentrations of cross-reactive anti-XBB.1.16 Nab post-BA.5.2 infection caused HLA-B*15 individuals to be further infected by XBB.1.16 variant. Conclusions Individuals carrying the HLA-B*15 allele respond better to COVID-19 vax including the CanSino Ad5-nCoV and the Sinovac CoronaVac inactivated vaccines, but are more susceptible to Omicron variant infection, thus, a novel vaccine against this population is necessary for COVID-19 pandemic control in the future.
Collapse
Affiliation(s)
- Lingxin Meng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yue Pan
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yueping Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Rui He
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yuting Sun
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Chenhui Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunfei An
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
13
|
Díaz-Dinamarca DA, Cárdenas-Cáceres S, Muena NA, Díaz P, Barra G, Puentes R, Escobar DF, Díaz-Samirin M, Santis-Alay NT, Canales C, Díaz J, García-Escorza HE, Grifoni A, Sette A, Tischler ND, Vasquez AE. Booster Vaccination with BNT162b2 Improves Cellular and Humoral Immune Response in the Pediatric Population Immunized with CoronaVac. Vaccines (Basel) 2024; 12:919. [PMID: 39204043 PMCID: PMC11359105 DOI: 10.3390/vaccines12080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 09/03/2024] Open
Abstract
The SARS-CoV-2 Omicron variant and its sublineages continue to cause COVID-19-associated pediatric hospitalizations, severe disease, and death globally. BNT162b2 and CoronaVac are the main vaccines used in Chile. Much less is known about the Wuhan-Hu-1 strain-based vaccines in the pediatric population compared to adults. Given the worldwide need for booster vaccinations to stimulate the immune response against new Omicron variants of SARS-CoV-2, we characterized the humoral and cellular immune response against Omicron variant BA.1 in a pediatric cohort aged 10 to 16 years who received heterologous vaccination based on two doses of CoronaVac, two doses of CoronaVac (2x) plus one booster dose of BNT162b2 [CoronaVac(2x) + BNT162b2 (1x)], two doses of CoronaVac plus two booster doses of BNT162b2 [CoronaVac(2x) + BNT162b2 (2x)], and three doses of BNT162b2. We observed that the [CoronaVac(2x) + BNT162b2 (2x)] vaccination showed higher anti-S1 and neutralizing antibody titers and CD4 and CD8 T cell immunity specific to the Omicron variant compared to immunization with two doses of CoronaVac alone. Furthermore, from all groups tested, immunity against Omicron was highest in individuals who received three doses of BNT162b2. We conclude that booster vaccination with BNT162b2, compared to two doses of CoronaVac alone, induces a greater protective immunity.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| | - Simone Cárdenas-Cáceres
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8581151, Chile; (S.C.-C.); (N.A.M.)
| | - Nicolás A. Muena
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8581151, Chile; (S.C.-C.); (N.A.M.)
| | - Pablo Díaz
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| | - Gisselle Barra
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| | - Rodrigo Puentes
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (R.P.); (N.T.S.-A.); (C.C.); (J.D.)
| | - Daniel F. Escobar
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| | - Michal Díaz-Samirin
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| | - Natalia T. Santis-Alay
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (R.P.); (N.T.S.-A.); (C.C.); (J.D.)
| | - Cecilia Canales
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (R.P.); (N.T.S.-A.); (C.C.); (J.D.)
| | - Janepsy Díaz
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (R.P.); (N.T.S.-A.); (C.C.); (J.D.)
| | | | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (A.G.); (A.S.)
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (A.G.); (A.S.)
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicole D. Tischler
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8581151, Chile; (S.C.-C.); (N.A.M.)
- Escuela de Bioquímica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Abel E. Vasquez
- Subdepartamento Innovación y Desarrollo, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (P.D.); (G.B.); (D.F.E.)
| |
Collapse
|
14
|
Xin Q, Wang K, Toh TH, Yuan Y, Meng X, Jiang Z, Zhang H, Yang J, Yang H, Zeng G. Efficacy, immunogenicity and safety of CoronaVac® in children and adolescents aged 6 months to 17 years: a multicenter, randomized, double-blind, placebo-controlled phase III clinical trial. Nat Commun 2024; 15:6660. [PMID: 39107270 PMCID: PMC11303790 DOI: 10.1038/s41467-024-50802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Safe and effective vaccines against COVID-19 for children and adolescents are needed. This international multicenter, randomized, double-blind, placebo-controlled, phase III clinical trial assessed the efficacy, immunogenicity, and safety of CoronaVac® in children and adolescents (NCT04992260). The study was carried out in Chile, South Africa, Malaysia, and the Philippines. The enrollment ran from September 10, 2021 to March 25, 2022. For efficacy assessment, the median follow-up duration from 14 days after the second dose was 169 days. A total of 11,349 subjects were enrolled. Two 3-μg injections of CoronaVac® or placebo were given 28 days apart. The primary endpoint was the efficacy of the CoronaVac®. The secondary endpoints were the immunogenicity and safety. The vaccine efficacy was 21.02% (95% CI: 1.65, 36.67). The level of neutralizing antibody in the vaccine group was significantly higher than that in the placebo group (GMT: 390.80 vs. 62.20, P <0.0001). Most adverse reactions were mild or moderate. All the severe adverse events were determined to be unrelated to the investigational products. In conclusion, in the Omicron-dominate period, a two-dose schedule of 3 μg CoronaVac® was found to be safe and immunogenic, and showed potential against symptomatic COVID-19 in healthy children and adolescents.
Collapse
Affiliation(s)
- Qianqian Xin
- Sinovac Life Sciences Co., Ltd., Beijing, P.R. China
| | - Kaiqin Wang
- Division of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, P.R. China
| | - Teck-Hock Toh
- Department of Paediatrics & Clinical Research Centre, Sibu Hospital, Ministry of Health Malaysia, Sibu, Sarawak, Malaysia
| | - Yue Yuan
- Sinovac Life Sciences Co., Ltd., Beijing, P.R. China
| | - Xing Meng
- Sinovac Biotech Co., Ltd., Beijing, P.R. China
| | - Zhiwei Jiang
- Beijing KEY TECH Statistical Technology Co., Ltd., Beijing, P.R. China
| | | | - Jinye Yang
- Sinovac Life Sciences Co., Ltd., Beijing, P.R. China
| | - Huijie Yang
- Division of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, P.R. China.
| | - Gang Zeng
- Sinovac Biotech Co., Ltd., Beijing, P.R. China.
| |
Collapse
|
15
|
Zhang M, Wu S, Wang D. Obstetric outcomes of women vaccinated with the COVID-19 vaccine (≥1 dose): A single-center retrospective cohort study of pregnant Chinese women. Medicine (Baltimore) 2024; 103:e39053. [PMID: 39058825 PMCID: PMC11272228 DOI: 10.1097/md.0000000000039053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic, the quickly developed COVID-19 vaccine may cause various adverse reactions, especially in special groups, such as pregnant women. However, many pregnant women have concerns regarding vaccination in terms of safety for themselves and their neonates. Therefore, we studied the obstetric outcomes of pregnant women in Zunyi, China. In this retrospective study, we examined differences between pregnant women who were vaccinated and pregnant women who were not vaccinated/vaccinated at the end of pregnancy. In addition, we collected and retrieved the literature related to the COVID-19 vaccine and pregnancy outcomes from PubMed. Among concluded women, 369 were included in the study group and 231 were included in the control group. There were no differences in the baseline characteristics, labor rate, or rates of poor pregnancy outcomes between the 2 groups. Based on the adverse reaction and obstetric outcome data of pregnant women who received the COVID-19 vaccine in China, the vaccine does not raise any safety concerns. This result is the same as that of other countries we summarized. The COVID-19 vaccine has no effect on pregnancy outcomes.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Reproduction Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Shuyu Wu
- Department of Reproduction Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Dejing Wang
- Department of Reproduction Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
16
|
Tobias J, Steinberger P, Wilkinson J, Klais G, Kundi M, Wiedermann U. SARS-CoV-2 Vaccines: The Advantage of Mucosal Vaccine Delivery and Local Immunity. Vaccines (Basel) 2024; 12:795. [PMID: 39066432 PMCID: PMC11281395 DOI: 10.3390/vaccines12070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Immunity against respiratory pathogens is often short-term, and, consequently, there is an unmet need for the effective prevention of such infections. One such infectious disease is coronavirus disease 19 (COVID-19), which is caused by the novel Beta coronavirus SARS-CoV-2 that emerged around the end of 2019. The World Health Organization declared the illness a pandemic on 11 March 2020, and since then it has killed or sickened millions of people globally. The development of COVID-19 systemic vaccines, which impressively led to a significant reduction in disease severity, hospitalization, and mortality, contained the pandemic's expansion. However, these vaccines have not been able to stop the virus from spreading because of the restricted development of mucosal immunity. As a result, breakthrough infections have frequently occurred, and new strains of the virus have been emerging. Furthermore, SARS-CoV-2 will likely continue to circulate and, like the influenza virus, co-exist with humans. The upper respiratory tract and nasal cavity are the primary sites of SARS-CoV-2 infection and, thus, a mucosal/nasal vaccination to induce a mucosal response and stop the virus' transmission is warranted. In this review, we present the status of the systemic vaccines, both the approved mucosal vaccines and those under evaluation in clinical trials. Furthermore, we present our approach of a B-cell peptide-based vaccination applied by a prime-boost schedule to elicit both systemic and mucosal immunity.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joy Wilkinson
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gloria Klais
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Kundi
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Yang J, Fan H, Yang A, Wang W, Wan X, Lin F, Yang D, Wu J, Wang K, Li W, Cai Q, You L, Pang D, Lu J, Guo C, Shi J, Sun Y, Li X, Duan K, Shen S, Meng S, Guo J, Wang Z. The Protective Efficacy of a SARS-CoV-2 Vaccine Candidate B.1.351V against Several Variant Challenges in K18-hACE2 Mice. Vaccines (Basel) 2024; 12:742. [PMID: 39066379 PMCID: PMC11281458 DOI: 10.3390/vaccines12070742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOCs) with increased transmissibility and partial resistance to neutralization by antibodies has been observed globally. There is an urgent need for an effective vaccine to combat these variants. Our study demonstrated that the B.1.351 variant inactivated vaccine candidate (B.1.351V) generated strong binding and neutralizing antibody responses in BALB/c mice against the B.1.351 virus and other SARS-CoV-2 variants after two doses within 28 days. Immunized K18-hACE2 mice also exhibited elevated levels of live virus-neutralizing antibodies against various SARS-CoV-2 viruses. Following infection with these viruses, K18-hACE2 mice displayed a stable body weight, a high survival rate, minimal virus copies in lung tissue, and no lung damage compared to the control group. These findings indicate that B.1.351V offered protection against infection with multiple SARS-CoV-2 variants in mice, providing insights for the development of a vaccine targeting SARS-CoV-2 VOCs for human use.
Collapse
Affiliation(s)
- Jie Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Huifen Fan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Anna Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Wenhui Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Xin Wan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Fengjie Lin
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Dongsheng Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jie Wu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Kaiwen Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Wei Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Qian Cai
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Lei You
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Deqin Pang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jia Lu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Changfu Guo
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jinrong Shi
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China;
| | - Xinguo Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Kai Duan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Shengli Meng
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jing Guo
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (J.Y.); (H.F.); (A.Y.); (W.W.); (X.W.); (F.L.); (D.Y.); (J.W.); (K.W.); (W.L.); (Q.C.); (L.Y.); (D.P.); (J.L.); (C.G.); (J.S.); (X.L.); (K.D.); (S.S.); (S.M.)
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Province Vaccine Technology Innovation Center, Wuhan 430207, China
| |
Collapse
|
18
|
Zhao Y, Wan Y, Hu X, Tong X, Xu B, Jiang X, Bai S, Cao C. SARS-CoV-2 Vaccination Improves Semen Quality in Men Recovered From COVID-19: A Retrospective Cohort Study. Am J Mens Health 2024; 18:15579883241264120. [PMID: 39054777 PMCID: PMC11282512 DOI: 10.1177/15579883241264120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been reported to decrease semen quality in reproductive-age men. Semen quality in vaccinated men after SARS-CoV-2 infection remains unclear. We recruited reproductive-age Chinese men scheduled for COVID-19 vaccination from December 2022 to March 2023. Among 1,639 vaccinated participants, an upward trend was found in sperm concentration (p < .001), progressive motility (p < .001), total motility (p < .001), total motile sperm count (TMSC) (p < .001), and normal morphology (p = .01) over time following COVID-19 recovery. Among men with an SARS-CoV-2 infection that lasted less than 30 days, men who received an inactivated vaccine booster had higher sperm progressive (p = .006) and total motility (p = .005) as well as TMSC (p = .008) than those without a booster vaccine, whereas no difference was found in semen parameters among men who received a recombinant protein vaccine. Similarly, an upward trend in semen quality was found among 122 men who provided semen samples before and after COVID-19. Higher risks of asthenozoospermia (odds ratio [OR] = 2.23, p < .001) and teratozoospermia (OR = 2.09, p = .03) were found among men who had an SARS-CoV-2 infection that lasted less than 30 days than among those without COVID-19. Collectively, after receiving SARS-CoV-2 vaccination, adverse but reversible semen parameters were observed in men recovering from COVID-19 over time. Recombinant protein vaccines and inactivated vaccine boosters should be recommended to all reproductive-age men.
Collapse
Affiliation(s)
- Yuanqi Zhao
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
- Wannan Medical College, Wuhu, P.R. China
| | - Yangyang Wan
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xianhong Tong
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Bo Xu
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Shun Bai
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Cheng Cao
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
19
|
Li Y, Gong Y, Xu G. New insights into kidney disease after COVID-19 infection and vaccination: histopathological and clinical findings. QJM 2024; 117:317-337. [PMID: 37402613 DOI: 10.1093/qjmed/hcad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
In addition to its pulmonary effects, coronavirus disease 2019 (COVID-19) has also been found to cause acute kidney injury (AKI), which has been linked to high mortality rates. In this review, we collected data from 20 clinical studies on post-COVID-19-related AKI and 97 cases of AKI associated with COVID-19 vaccination. Acute tubular injury was by far the most common finding in the kidneys of patients with COVID-19-related AKI. Among patients hospitalized for COVID-19, 34.0% developed AKI, of which 59.0%, 19.1% and 21.9% were Stages 1, 2 and 3, respectively. Though kidney disease and other adverse effects after COVID-19 vaccination overall appear rare, case reports have accumulated suggesting that COVID-19 vaccination may be associated with a risk of subsequent kidney disease. Among the patients with post-vaccination AKI, the most common pathologic findings include crescentic glomerulonephritis (29.9%), acute tubular injury (23.7%), IgA nephropathy (18.6%), antineutrophil cytoplasmic autoantibody-associated vasculitis (17.5%), minimal change disease (17.5%) and thrombotic microangiopathy (10.3%). It is important to note that crescentic glomerulonephritis appears to be more prevalent in patients who have newly diagnosed renal involvement. The proportions of patients with AKI Stages 1, 2 and 3 after COVID-19 vaccination in case reports were 30.9%, 22.7% and 46.4%, respectively. In general, clinical cases of new-onset and recurrent nephropathy with AKI after COVID-19 vaccination have a positive prognosis. In this article, we also explore the underlying pathophysiological mechanisms of AKI associated with COVID-19 infection and its vaccination by describing key renal morphological and clinical features and prognostic findings.
Collapse
Affiliation(s)
- Yebei Li
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, P.R. China
| | - Yan Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, P.R. China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, P.R. China
| |
Collapse
|
20
|
Yalçın S, Coşgun Y, Dedeoğlu E, Kopp K, Bayrakdar F, Ünal G, Musul B, Sağtaş E, Korukluoğlu G, Raftery P, Kaygusuz S. Genomic surveillance during the first two years of the COVID-19 pandemic - country experience and lessons learned from Türkiye. Front Public Health 2024; 12:1332109. [PMID: 38855447 PMCID: PMC11160438 DOI: 10.3389/fpubh.2024.1332109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/24/2024] [Indexed: 06/11/2024] Open
Abstract
Background Türkiye confirmed its first case of SARS-CoV-2 on March 11, 2020, coinciding with the declaration of the global COVID-19 pandemic. Subsequently, Türkiye swiftly increased testing capacity and implemented genomic sequencing in 2020. This paper describes Türkiye's journey of establishing genomic surveillance as a middle-income country with limited prior sequencing capacity and analyses sequencing data from the first two years of the pandemic. We highlight the achievements and challenges experienced and distill globally relevant lessons. Methods We tracked the evolution of the COVID-19 pandemic in Türkiye from December 2020 to February 2022 through a timeline and analysed epidemiological, vaccination, and testing data. To investigate the phylodynamic and phylogeographic aspects of SARS-CoV-2, we used Nextstrain to analyze 31,629 high-quality genomes sampled from seven regions nationwide. Results Türkiye's epidemiological curve, mirroring global trends, featured four distinct waves, each coinciding with the emergence and spread of variants of concern (VOCs). Utilizing locally manufactured kits to expand testing capacity and introducing variant-specific quantitative reverse transcription polymerase chain reaction (RT-qPCR) tests developed in partnership with a private company was a strategic advantage in Türkiye, given the scarcity and fragmented global supply chain early in the pandemic. Türkiye contributed more than 86,000 genomic sequences to global databases by February 2022, ensuring that Turkish data was reflected globally. The synergy of variant-specific RT-qPCR kits and genomic sequencing enabled cost-effective monitoring of VOCs. However, data analysis was constrained by a weak sequencing sampling strategy and fragmented data management systems, limiting the application of sequencing data to guide the public health response. Phylodynamic analysis indicated that Türkiye's geographical position as an international travel hub influenced both national and global transmission of each VOC despite travel restrictions. Conclusion This paper provides valuable insights into the testing and genomic surveillance systems adopted by Türkiye during the COVID-19 pandemic, proposing important lessons for countries developing national systems. The findings underscore the need for robust testing and sampling strategies, streamlined sample referral, and integrated data management with metadata linkage and data quality crucial for impactful epidemiological analysis. We recommend developing national genomic surveillance strategies to guide sustainable and integrated expansion of capacities built for COVID-19 and to optimize the effective utilization of sequencing data for public health action.
Collapse
Affiliation(s)
- Süleyman Yalçın
- National Molecular Microbiology Reference Laboratory, Public Health General Directorate, Ministry of Health, Ankara, Türkiye
- Department of National Reference Laboratories and Biological Products, Public Health General Directorate, Ministry of Health, Ankara, Türkiye
| | - Yasemin Coşgun
- Department of National Reference Laboratories and Biological Products, Public Health General Directorate, Ministry of Health, Ankara, Türkiye
- National Virology Reference Laboratory, Public Health General Directorate, Ministry of Health, Ankara, Türkiye
| | - Ege Dedeoğlu
- World Health Organization Country Office, Ankara, Türkiye
| | - Katharina Kopp
- World Health Organization Country Office, Ankara, Türkiye
| | - Fatma Bayrakdar
- National Molecular Microbiology Reference Laboratory, Public Health General Directorate, Ministry of Health, Ankara, Türkiye
- Department of National Reference Laboratories and Biological Products, Public Health General Directorate, Ministry of Health, Ankara, Türkiye
| | - Gültekin Ünal
- World Health Organization Country Office, Ankara, Türkiye
| | - Biran Musul
- World Health Organization Country Office, Ankara, Türkiye
| | - Ekrem Sağtaş
- Department of National Reference Laboratories and Biological Products, Public Health General Directorate, Ministry of Health, Ankara, Türkiye
| | - Gülay Korukluoğlu
- Department of Medical Microbiology, University Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye
| | | | - Sedat Kaygusuz
- Public Health General Directorate, Ministry of Health, Ankara, Türkiye
| |
Collapse
|
21
|
Peng X, Zhu X, Liu X, Huang Y, Zhu B. Increase in HIV reservoir and T cell immune response after CoronaVac vaccination in people living with HIV. Heliyon 2024; 10:e30394. [PMID: 38720759 PMCID: PMC11076980 DOI: 10.1016/j.heliyon.2024.e30394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction CoronaVac, an inactivated vaccine developed by Sinovac Life Sciences, has been widely used for protection against Coronavirus Disease 2019 (COVID-19). This study investigates its effect on the HIV reservoir and T cell repertoires in people living with HIV (PLWHs). Methods Blood samples were collected from fifteen PLWHs who were administered at least two doses of CoronaVac between April 2021 and February 2022. The levels of cell-associated HIV RNA (CA HIV RNA) and HIV DNA, as well as the T cell receptor (TCR) repertoire profiles, TCR clustering and TCRβ annotation, were studied. Results A significant increase was observed in CA HIV RNA at 2 weeks (431.5 ± 164.2 copies/106 cells, P = 0.039) and 12 weeks (330.2 ± 105.9 copies/106 cells, P = 0.019) after the second dose, when compared to the baseline (0 weeks) (73.6 ± 23.7 copies/106 cells). Various diversity indices of the TCRβ repertoire, including Shannon index, Pielou's evenness index, and Hvj Index, revealed a slight increase (P < 0.05) following CoronaVac vaccination. The proportion of overlapping TCRβ clonotypes increased from baseline (31.9 %) to 2 weeks (32.5 %) and 12 weeks (40.4 %) after the second dose. We also found that the breadth and depth of COVID-19-specific T cells increased from baseline (0.003 and 0.0035) to 12 weeks (0.0066 and 0.0058) post the second dose. Conclusions Our study demonstrated an initial increase in HIV reservoir and TCR repertoire diversity, as well as an expansion in the depth and breadth of COVID-19-specific T-cell clones among CoronaVac-vaccinated PLWHs. These findings provide important insights into the effects of COVID-19 vaccination in PLWHs.
Collapse
Affiliation(s)
- Xiaorong Peng
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xueling Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiang Liu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Ying Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| |
Collapse
|
22
|
Rivera-Pérez D, Méndez C, Diethelm-Varela B, Melo-González F, Vázquez Y, Meng X, Xin Q, Fasce RA, Fernández J, Mora J, Ramirez E, Acevedo ML, Valiente-Echeverría F, Soto-Rifo R, Grifoni A, Weiskopf D, Sette A, Astudillo P, Le Corre N, Abarca K, Perret C, González PA, Soto JA, Bueno SM, Kalergis AM. Immune responses during COVID-19 breakthrough cases in vaccinated children and adolescents. Front Immunol 2024; 15:1372193. [PMID: 38812507 PMCID: PMC11133585 DOI: 10.3389/fimmu.2024.1372193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 05/31/2024] Open
Abstract
Background Vaccine effectiveness against SARS-CoV-2 infection has been somewhat limited due to the widespread dissemination of the Omicron variant, its subvariants, and the immune response dynamics of the naturally infected with the virus. Methods Twelve subjects between 3-17 years old (yo), vaccinated with two doses of CoronaVac®, were followed and diagnosed as breakthrough cases starting 14 days after receiving the second dose. Total IgGs against different SARS-CoV-2 proteins and the neutralizing capacity of these antibodies after infection were measured in plasma. The activation of CD4+ and CD8+ T cells was evaluated in peripheral blood mononuclear cells stimulated with peptides derived from the proteins from the wild-type (WT) virus and Omicron subvariants by flow cytometry, as well as different cytokines secretion by a Multiplex assay. Results 2 to 8 weeks post-infection, compared to 4 weeks after 2nd dose of vaccine, there was a 146.5-fold increase in neutralizing antibody titers against Omicron and a 38.7-fold increase against WT SARS-CoV-2. Subjects showed an increase in total IgG levels against the S1, N, M, and NSP8 proteins of the WT virus. Activated CD4+ T cells showed a significant increase in response to the BA.2 subvariant (p<0.001). Finally, the secretion of IL-2 and IFN-γ cytokines showed a discreet decrease trend after infection in some subjects. Conclusion SARS-CoV-2 infection in the pediatric population vaccinated with an inactivated SARS-CoV-2 vaccine produced an increase in neutralizing antibodies against Omicron and increased specific IgG antibodies for different SARS-CoV-2 proteins. CD4+ T cell activation was also increased, suggesting a conserved cellular response against the Omicron subvariants, whereas Th1-type cytokine secretion tended to decrease. Clinical Trial Registration clinicaltrials.gov #NCT04992260.
Collapse
Affiliation(s)
- Daniela Rivera-Pérez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Méndez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Rodrigo A. Fasce
- Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jorge Fernández
- Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Judith Mora
- Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Eugenio Ramirez
- Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Mónica L. Acevedo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Laboratorio de Virología Molecular y Celular, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Laboratorio de Virología Molecular y Celular, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Laboratorio de Virología Molecular y Celular, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Patricio Astudillo
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Le Corre
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Abarca
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cecilia Perret
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Damour A, Faure M, Landrein N, Ragues J, Ardah N, Dhaidel H, Lafon ME, Wodrich H, Basha W. The Equal Neutralizing Effectiveness of BNT162b2, ChAdOx1 nCoV-19, and Sputnik V Vaccines in the Palestinian Population. Vaccines (Basel) 2024; 12:493. [PMID: 38793744 PMCID: PMC11125902 DOI: 10.3390/vaccines12050493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, different viral vector-based and mRNA vaccines directed against the SARS-CoV-2 "S" spike glycoprotein have been developed and have shown a good profile in terms of safety and efficacy. Nevertheless, an unbiased comparison of vaccination efficiency, including post-vaccination neutralizing activity, between the different vaccines remains largely unavailable. This study aimed to compare the efficacy of one mRNA (BNT162b2) and two non-replicating adenoviral vector vaccines (ChAdOx1 nCoV-19 and Sputnik V) in a cohort of 1120 vaccinated Palestinian individuals who received vaccines on an availability basis and which displayed a unique diversity of genetic characteristics. We assessed the level of anti-S antibodies and further determined the antibody neutralizing activity in 261 of those individuals vaccinated with BNT162b2a (121), ChAdOx1 (72) or Sputnik V (68). Our results showed no significant difference in the distribution of serum-neutralizing activity or S-antibody serum levels for the three groups of vaccines, proving equivalence in efficacy for the three vaccines under real-life conditions. In addition, none of the eight demographic parameters tested had an influence on vaccination efficacy. Regardless of the vaccine type, the vaccination campaign ultimately played a pivotal role in significantly reducing the morbidity and mortality associated with COVID-19 in Palestine.
Collapse
Affiliation(s)
- Alexia Damour
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University Bordeaux, 33076 Bordeaux, France; (A.D.); (M.F.); (N.L.); (J.R.); (M.-E.L.)
| | - Muriel Faure
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University Bordeaux, 33076 Bordeaux, France; (A.D.); (M.F.); (N.L.); (J.R.); (M.-E.L.)
| | - Nicolas Landrein
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University Bordeaux, 33076 Bordeaux, France; (A.D.); (M.F.); (N.L.); (J.R.); (M.-E.L.)
| | - Jessica Ragues
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University Bordeaux, 33076 Bordeaux, France; (A.D.); (M.F.); (N.L.); (J.R.); (M.-E.L.)
| | - Narda Ardah
- IBGC, UMR 5095, CNRS UMR 5095, Institute of Cellular Biochemistry and Genetics, Université of Bordeaux, 33077 Bordeaux, France;
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P400, Palestine
| | - Haneen Dhaidel
- Department of Applied and Allied Medical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P400, Palestine;
| | - Marie-Edith Lafon
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University Bordeaux, 33076 Bordeaux, France; (A.D.); (M.F.); (N.L.); (J.R.); (M.-E.L.)
- Virology Laboratory, Pellegrin Hospital, Bordeaux University Hospitals, 33076 Bordeaux, France
| | - Harald Wodrich
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University Bordeaux, 33076 Bordeaux, France; (A.D.); (M.F.); (N.L.); (J.R.); (M.-E.L.)
| | - Walid Basha
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P400, Palestine
| |
Collapse
|
24
|
Samdaengpan C, Sungkasubun P, Chaiwiriyawong W, Supavavej A, Siripaibun J, Phanthunane C, Tantiyavarong W, Lamlertthon W, Ungtrakul T, Tawinprai K, Soonklang K, Thongchai T, Limpawittayakul P. Effect of Corticosteroid on Immunogenicity of SARS-CoV-2 Vaccines in Patients With Solid Cancer. JCO Glob Oncol 2024; 10:e2300458. [PMID: 38781552 DOI: 10.1200/go.23.00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE Corticosteroids are known to diminish immune response ability, which is generally used in routine premedication for chemotherapy. The intersecting of timeframe between the corticosteroid's duration of action and peak COVID-19 vaccine efficacy could impair vaccine immunogenicity. Thus, inquiring about corticosteroids affecting the efficacy of vaccines to promote effective immunity in this population is needed. METHODS This was a prospective longitudinal observational cohort study that enrolled patients with solid cancer classified into dexamethasone- and nondexamethasone-receiving groups. All participants were immunized with two doses of ChAdOx1 nCoV-19 or CoronaVac vaccines. This study's purpose was to compare corticosteroid's effect on immunogenicity responses to the SARS-CoV-2 S protein in patients with cancer after two doses of COVID-19 vaccine in the dexamethasone and nondexamethasone group. Secondary outcomes included the postimmunization anti-spike (S) immunoglobin G (IgG) seroconversion rate, the association of corticosteroid dosage, time duration, and immunogenicity level. RESULTS Among the 161 enrolled patients with solid cancer, 71 and 90 were in the dexamethasone and nondexamethasone groups, respectively. The median anti-S IgG titer after COVID-19 vaccination in the dexamethasone group was lower than that in the nondexamethasone group with a statistically significant difference (47.22 v 141.09 U/mL, P = .035). The anti-S IgG seroconversion rate was also significantly lower in the dexamethasone group than in the nondexamethasone group (93.83% v 80.95%, P = .023). The lowest median anti-SARS-CoV-2 IgG titer level at 7.89 AU/mL was observed in patients with the highest dose of steroid group (≥37 mg of dexamethasone cumulative dose throughout the course of chemotherapy [per course]) and patients who were injected with COVID-19 vaccines on the same day of receiving dexamethasone, 25.41 AU/mL. CONCLUSION Patients with solid cancer vaccinated against COVID-19 disease while receiving dexamethasone had lower immunogenicity responses than those who got vaccines without dexamethasone. The direct association between the immunogenicity level and steroid dosage, as well as length of duration from vaccination to dexamethasone, was observed.
Collapse
Affiliation(s)
- Chayanee Samdaengpan
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Prakongboon Sungkasubun
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Worawit Chaiwiriyawong
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Archara Supavavej
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Jomtana Siripaibun
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chumut Phanthunane
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Walaipan Tantiyavarong
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Wisut Lamlertthon
- Faculty of Medicine and Public Health, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Teerapat Ungtrakul
- Faculty of Medicine and Public Health, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kriangkrai Tawinprai
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kamonwan Soonklang
- Chulabhorn Learning and Research Center, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Thitapha Thongchai
- Chulabhorn Learning and Research Center, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Piyarat Limpawittayakul
- Division of Medical Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
25
|
Kılıç G, Demirkan E, Yücel F. Development of Anti-idiotypic Monoclonal Antibody Mimicking SARS-CoV-2 Receptor Binding Domain. Mol Biotechnol 2024:10.1007/s12033-024-01138-1. [PMID: 38662257 DOI: 10.1007/s12033-024-01138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Using the hybridoma technique, we developed a panel of anti-idiotypic monoclonal antibodies (aId-mAb) that mimic The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Receptor-Binding Domain (RBD) molecule against Fragment antigen-binding (Fab) of anti-SARS-CoV-2 (S1, RBD) antibodies. Investigated the in vivo and in vitro effects of these aId-mAbs we developed and examined their antigenic mimicry abilities. Among these 12 antibodies, 6 aId-mAbs (designated FY1B4, FY2A6, H9F3, E6G7, FY7E11, and FY8H3) were selected for further characterization in a series of experiments. First, competitive receptor binding assay results confirmed that six aId-mAbs could specifically bind to the ACE2 receptor in target cells and block the interaction between the RBD molecule and the ACE receptor. Moreover, we examined the immunological activities of these aId-mAbs in female BALB/c and showed that E6G7, H7E11, and H8H3 aId-mAbs induce an antibody response by mimicking RBD and stimulating the immune system. It is considered that these three aId-mAbs will be evaluated as SARS-CoV-2 vaccine candidate molecules in future studies.
Collapse
Affiliation(s)
- Gamze Kılıç
- Bursa Uludag University, Faculty of Arts and Sciences, Biology Department, Görükle Campus, Bursa, Turkey
- TUBITAK, Marmara Research Center, Life Sciences, Genetic Engineering and Biotechnology, Kocaeli, Turkey
| | - Elif Demirkan
- Bursa Uludag University, Faculty of Arts and Sciences, Biology Department, Görükle Campus, Bursa, Turkey
| | - Fatıma Yücel
- TUBITAK, Marmara Research Center, Life Sciences, Genetic Engineering and Biotechnology, Kocaeli, Turkey.
| |
Collapse
|
26
|
Campos GRF, Almeida NBF, Filgueiras PS, Corsini CA, Gomes SVC, de Miranda DAP, de Assis JV, Silva TBDS, Alves PA, Fernandes GDR, de Oliveira JG, Rahal P, Grenfell RFQ, Nogueira ML. Second booster dose improves antibody neutralization against BA.1, BA.5 and BQ.1.1 in individuals previously immunized with CoronaVac plus BNT162B2 booster protocol. Front Cell Infect Microbiol 2024; 14:1371695. [PMID: 38638823 PMCID: PMC11024236 DOI: 10.3389/fcimb.2024.1371695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction SARS-CoV-2 vaccines production and distribution enabled the return to normalcy worldwide, but it was not fast enough to avoid the emergence of variants capable of evading immune response induced by prior infections and vaccination. This study evaluated, against Omicron sublineages BA.1, BA.5 and BQ.1.1, the antibody response of a cohort vaccinated with a two doses CoronaVac protocol and followed by two heterologous booster doses. Methods To assess vaccination effectiveness, serum samples were collected from 160 individuals, in 3 different time points (9, 12 and 18 months after CoronaVac protocol). For each time point, individuals were divided into 3 subgroups, based on the number of additional doses received (No booster, 1 booster and 2 boosters), and a viral microneutralization assay was performed to evaluate neutralization titers and seroconvertion rate. Results The findings presented here show that, despite the first booster, at 9m time point, improved neutralization level against omicron ancestor BA.1 (133.1 to 663.3), this trend was significantly lower for BQ.1.1 and BA.5 (132.4 to 199.1, 63.2 to 100.2, respectively). However, at 18m time point, the administration of a second booster dose considerably improved the antibody neutralization, and this was observed not only against BA.1 (2361.5), but also against subvariants BQ.1.1 (726.1) and BA.5 (659.1). Additionally, our data showed that, after first booster, seroconvertion rate for BA.5 decayed over time (93.3% at 12m to 68.4% at 18m), but after the second booster, seroconvertion was completely recovered (95% at 18m). Discussion Our study reinforces the concerns about immunity evasion of the SARS-CoV-2 omicron subvariants, where BA.5 and BQ.1.1 were less neutralized by vaccine induced antibodies than BA.1. On the other hand, the administration of a second booster significantly enhanced antibody neutralization capacity against these subvariants. It is likely that, as new SARS-CoV-2 subvariants continue to emerge, additional immunizations will be needed over time.
Collapse
Affiliation(s)
- Guilherme R. F. Campos
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | | | - Priscilla Soares Filgueiras
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Camila Amormino Corsini
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Sarah Vieira Contin Gomes
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Daniel Alvim Pena de Miranda
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Thaís Bárbara de Souza Silva
- Laboratório de Imunologia de Doenças Virais, Instituto Rene Rachou - Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Pedro Augusto Alves
- Laboratório de Imunologia de Doenças Virais, Instituto Rene Rachou - Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Gabriel da Rocha Fernandes
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | | | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - Rafaella Fortini Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
- Hospital de Base, São José do Rio Preto, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
27
|
Tang R, Wang L, Zhang J, Fei W, Zhang R, Liu J, Lv M, Wang M, Lv R, Nan H, Tao R, Chen Y, Chen Y, Jiang Y, Zhang H. Boosting the immunogenicity of the CoronaVac SARS-CoV-2 inactivated vaccine with Huoxiang Suling Shuanghua Decoction: a randomized, double-blind, placebo-controlled study. Front Immunol 2024; 15:1298471. [PMID: 38633263 PMCID: PMC11021573 DOI: 10.3389/fimmu.2024.1298471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction In light of the public health burden of the COVID-19 pandemic, boosting the safety and immunogenicity of COVID-19 vaccines is of great concern. Numerous Traditional Chinese medicine (TCM) preparations have shown to beneficially modulate immunity. Based on pilot experiments in mice that showed that supplementation with Huoxiang Suling Shuanghua Decoction (HSSD) significantly enhances serum anti-RBD IgG titers after inoculation with recombinant SARS-CoV-2 S-RBD protein, we conducted this randomized, double-blind, placebo-controlled clinical trial aimed to evaluate the potential immunogenicity boosting effect of oral HSSD after a third homologous immunization with Sinovac's CoronaVac SARS-CoV-2 (CVS) inactivated vaccine. Methods A total of 70 participants were randomly assigned (1:1 ratio) to receive a third dose of CVS vaccination and either oral placebo or oral HSSD for 7 days. Safety aspects were assessed by recording local and systemic adverse events, and by blood and urine biochemistry and liver and kidney function tests. Main outcomes evaluated included serum anti-RBD IgG titer, T lymphocyte subsets, serum IgG and IgM levels, complement components (C3 and C4), and serum cytokines (IL-6 and IFN-γ). In addition, metabolomics technology was used to analyze differential metabolite expression after supplementation with HSSD. Results Following a third CVS vaccination, significantly increased serum anti-RBD IgG titer, reduced serum IL-6 levels, increased serum IgG, IgM, and C3 and C4 levels, and improved cellular immunity, evidenced by reduce balance deviations in the distribution of lymphocyte subsets, was observed in the HSSD group compared with the placebo group. No serious adverse events were recorded in either group. Serum metabolomics results suggested that the mechanisms by which HSSD boosted the immunogenicity of the CVS vaccine are related to differential regulation of purine metabolism, vitamin B6 metabolism, folate biosynthesis, arginine and proline metabolism, and steroid hormone biosynthesis. Conclusion Oral HSSD boosts the immunogenicity of the CVS vaccine in young and adult individuals. This trial provides clinical reference for evaluation of TCM immunomodulators to improve the immune response to COVID-19 vaccines.
Collapse
Affiliation(s)
- Ruying Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinlian Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyu Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mengyao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruilin Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haipeng Nan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxin Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
Liu LH, Zhou YZ, Li TY, Kuang DB, Liang Q, Chen L, Yang DF, Zhang X, Tan SL. COVID-19 vaccination affects short-term anti-coagulation levels in warfarin treatment. J Thromb Thrombolysis 2024; 57:730-738. [PMID: 38526751 DOI: 10.1007/s11239-024-02959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/27/2024]
Abstract
Vaccines against SARS-CoV-2 have been recommended across the world, yet no study has investigated whether COVID-19 vaccination influences short-term warfarin anti-coagulation levels. Patients on stable warfarin treatment who received anti-SARS-CoV-2 vaccination were prospectively enrolled and followed up for three months. INR values less than 10 days before vaccination (baseline), 3-5 days (short-term) and 6-14 days (medium-term) after vaccination were recorded as INR0, INR1, and INR2, respectively. The variations of INR values within individuals were compared, and the linear mixed effect model was used to evaluate the variations of INR values at different time points. Logistic regression analysis was performed to determine covariates related to INR variations after COVID-19 vaccination. Vaccination safety was also monitored. There was a significant difference in INR values between INR0 and INR1 (2.15 vs. 2.26, p = 0.003), yet no marked difference was found between INR0 and INR2. The linear mixed effect model also demonstrated that INR variation was significant in short-term but not in medium-term or long-term period after vaccination. Logistic regression analysis showed that no investigated covariates, including age, vaccine dose, genetic polymorphisms of VKORC1 and CYP2C9 etc., were associated with short-term INR variations. Two patients (2.11%) reported gingival hemorrhage in the short-term due to increased INR values. The overall safety of COVID-19 vaccines for patients on warfarin was satisfying. COVID-19 vaccines may significantly influence warfarin anticoagulation levels 3-5 days after vaccination. We recommend patients on warfarin to perform at least one INR monitoring within the first week after COVID-19 vaccination.
Collapse
Affiliation(s)
- Li-Hua Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Yang-Zhao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tian-Yu Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Da-Bin Kuang
- Department of Pharmacy, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, China
| | - Qun Liang
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Da-Feng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xia Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sheng-Lan Tan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
29
|
Patel DR, Minns AM, Sim DG, Field CJ, Kerr AE, Heinly TA, Luley EH, Rossi RM, Bator CM, Moustafa IM, Norton EB, Hafenstein SL, Lindner SE, Sutton TC. Intranasal SARS-CoV-2 RBD decorated nanoparticle vaccine enhances viral clearance in the Syrian hamster model. Microbiol Spectr 2024; 12:e0499822. [PMID: 38334387 PMCID: PMC10923206 DOI: 10.1128/spectrum.04998-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Multiple vaccines have been developed and licensed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). While these vaccines reduce disease severity, they do not prevent infection. To prevent infection and limit transmission, vaccines must be developed that induce immunity in the respiratory tract. Therefore, we performed proof-of-principle studies with an intranasal nanoparticle vaccine against SARS-CoV-2. The vaccine candidate consisted of the self-assembling 60-subunit I3-01 protein scaffold covalently decorated with the SARS-CoV-2 receptor-binding domain (RBD) using the SpyCatcher-SpyTag system. We verified the intended antigen display features by reconstructing the I3-01 scaffold to 3.4 A using cryogenicelectron microscopy. Using this RBD-grafted SpyCage scaffold (RBD + SpyCage), we performed two intranasal vaccination studies in the "gold-standard" pre-clinical Syrian hamster model. The initial study focused on assessing the immunogenicity of RBD + SpyCage combined with the LTA1 intranasal adjuvant. These studies showed RBD + SpyCage vaccination induced an antibody response that promoted viral clearance but did not prevent infection. Inclusion of the LTA1 adjuvant enhanced the magnitude of the antibody response but did not enhance protection. Thus, in an expanded study, in the absence of an intranasal adjuvant, we evaluated if covalent bonding of RBD to the scaffold was required to induce an antibody response. Covalent grafting of RBD was required for the vaccine to be immunogenic, and animals vaccinated with RBD + SpyCage more rapidly cleared SARS-CoV-2 from both the upper and lower respiratory tract. These findings demonstrate the intranasal SpyCage vaccine platform can induce protection against SARS-CoV-2 and, with additional modifications to improve immunogenicity, is a versatile platform for the development of intranasal vaccines targeting respiratory pathogens.IMPORTANCEDespite the availability of efficacious COVID vaccines that reduce disease severity, SARS-CoV-2 continues to spread. To limit SARS-CoV-2 transmission, the next generation of vaccines must induce immunity in the mucosa of the upper respiratory tract. Therefore, we performed proof-of-principle, intranasal vaccination studies with a recombinant protein nanoparticle scaffold, SpyCage, decorated with the RBD of the S protein (SpyCage + RBD). We show that SpyCage + RBD was immunogenic and enhanced SARS-CoV-2 clearance from the nose and lungs of Syrian hamsters. Moreover, covalent grafting of the RBD to the scaffold was required to induce an immune response when given via the intranasal route. These proof-of-concept findings indicate that with further enhancements to immunogenicity (e.g., adjuvant incorporation and antigen optimization), the SpyCage scaffold has potential as a versatile, intranasal vaccine platform for respiratory pathogens.
Collapse
Affiliation(s)
- Devanshi R. Patel
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Allen M. Minns
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Center for Malaria Research, University Park, Pennsylvania, USA
| | - Derek G. Sim
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Cassandra J. Field
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Abigail E. Kerr
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Talia A. Heinly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erin H. Luley
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Randall M. Rossi
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Carol M. Bator
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Elizabeth B. Norton
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, USA
| | - Susan L. Hafenstein
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Medicine, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E. Lindner
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Center for Malaria Research, University Park, Pennsylvania, USA
| | - Troy C. Sutton
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
30
|
Hromić-Jahjefendić A, Lundstrom K, Adilović M, Aljabali AAA, Tambuwala MM, Serrano-Aroca Á, Uversky VN. Autoimmune response after SARS-CoV-2 infection and SARS-CoV-2 vaccines. Autoimmun Rev 2024; 23:103508. [PMID: 38160960 DOI: 10.1016/j.autrev.2023.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The complicated relationships between autoimmunity, COVID-19, and COVID-19 vaccinations are described, giving insight into their intricacies. Antinuclear antibodies (ANA), anti-Ro/SSA, rheumatoid factor, lupus anticoagulant, and antibodies against interferon (IFN)-I have all been consistently found in COVID-19 patients, indicating a high prevalence of autoimmune reactions following viral exposure. Furthermore, the discovery of human proteins with structural similarities to SARS-CoV-2 peptides as possible autoantigens highlights the complex interplay between the virus and the immune system in initiating autoimmunity. An updated summary of the current status of COVID-19 vaccines is presented. We present probable pathways underpinning the genesis of COVID-19 autoimmunity, such as bystander activation caused by hyperinflammatory conditions, viral persistence, and the creation of neutrophil extracellular traps. These pathways provide important insights into the development of autoimmune-related symptoms ranging from organ-specific to systemic autoimmune and inflammatory illnesses, demonstrating the wide influence of COVID-19 on the immune system.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | | | - Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
31
|
Bohmwald K, Diethelm-Varela B, Rodríguez-Guilarte L, Rivera T, Riedel CA, González PA, Kalergis AM. Pathophysiological, immunological, and inflammatory features of long COVID. Front Immunol 2024; 15:1341600. [PMID: 38482000 PMCID: PMC10932978 DOI: 10.3389/fimmu.2024.1341600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas Rivera
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
32
|
Luo W, Gan J, Luo Z, Li S, Wang Z, Wu J, Zhang H, Xian J, Cheng R, Tang X, Liu Y, Yang L, Mou Q, Zhang X, Chen Y, Wang W, Wang Y, Bai L, Wei X, Zhang R, Yang L, Chen Y, Yang L, Li Y, Liu D, Li W, Chen L. Safety, immunogenicity and protective effectiveness of heterologous boost with a recombinant COVID-19 vaccine (Sf9 cells) in adult recipients of inactivated vaccines. Signal Transduct Target Ther 2024; 9:41. [PMID: 38355676 PMCID: PMC10866951 DOI: 10.1038/s41392-024-01751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/16/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Vaccines have proven effective in protecting populations against COVID-19, including the recombinant COVID-19 vaccine (Sf9 cells), the first approved recombinant protein vaccine in China. In this positive-controlled trial with 85 adult participants (Sf9 cells group: n = 44; CoronaVac group: n = 41), we evaluated the safety, immunogenicity, and protective effectiveness of a heterologous boost with the Sf9 cells vaccine in adults who had been vaccinated with the inactivated vaccine, and found a post-booster adverse events rate of 20.45% in the Sf9 cells group and 31.71% in the CoronaVac group (p = 0.279), within 28 days after booster injection. Neither group reported any severe adverse events. Following the Sf9 cells vaccine booster, the geometric mean titer (GMT) of binding antibodies to the receptor-binding domain of prototype SARS-CoV-2 on day 28 post-booster was significantly higher than that induced by the CoronaVac vaccine booster (100,683.37 vs. 9,451.69, p < 0.001). In the Sf9 cells group, GMTs of neutralizing antibodies against pseudo SARS-CoV-2 viruses (prototype and diverse variants of concern [VOCs]) increased by 22.23-75.93 folds from baseline to day 28 post-booster, while the CoronaVac group showed increases of only 3.29-10.70 folds. Similarly, neutralizing antibodies against live SARS-CoV-2 viruses (prototype and diverse VOCs) increased by 68.18-192.67 folds on day 14 post-booster compared with the baseline level, significantly greater than the CoronaVac group (19.67-37.67 folds). A more robust Th1 cellular response was observed with the Sf9 cells booster on day 14 post-booster (mean IFN-γ+ spot-forming cells per 2 × 105 peripheral blood mononuclear cells: 26.66 vs. 13.59). Protective effectiveness against symptomatic COVID-19 was approximately twice as high in the Sf9 cells group compared to the CoronaVac group (68.18% vs. 36.59%, p = 0.004). Our study findings support the high protective effectiveness of heterologous boosting with the recombinant COVID-19 vaccine (Sf9 cells) against symptomatic COVID-19 of diverse SARS-CoV-2 variants of concern, while causing no apparent safety concerns.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China
- Institute of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Jiadi Gan
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- Fangcao Community Health Service Center of Chengdu High-tech Zone, Chengdu, China
| | - Zhoufeng Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China
| | - Jiaxuan Wu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huohuo Zhang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, China
| | - Ruixin Cheng
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiumei Tang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Yang
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Mou
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Xue Zhang
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yi Chen
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Weiwen Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yantong Wang
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Bai
- Fangcao Community Health Service Center of Chengdu High-tech Zone, Chengdu, China
| | - Xuan Wei
- Fangcao Community Health Service Center of Chengdu High-tech Zone, Chengdu, China
| | - Rui Zhang
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Yang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China
| | - Yaxin Chen
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China.
- Institute of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, China.
- Institute of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China.
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, China.
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Yang T, Tang D, Zhan Y, Seyler BC, Li F, Zhou B. SARS-CoV-2 vaccination and semen quality: a study based on sperm donor candidate data in southwest China. Transl Androl Urol 2024; 13:80-90. [PMID: 38404555 PMCID: PMC10891393 DOI: 10.21037/tau-23-395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/20/2023] [Indexed: 02/27/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic has been a global health crisis and continues to pose risk to population health at the present. Vaccination against this disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a public health priority worldwide. Yet, limited information is available on the potential impact of such vaccines on human fertility. Methods To examine the relationship between COVID-19 vaccination and male fertility, we conducted an observational study on sperm donor candidates in China who received Chinese COVID-19 vaccines between January 1, 2020 to December 31, 2021. Results A total of 2,955 semen samples from 564 individuals were assessed along with vaccination information. Statistical analyses were conducted on both the entire study population and the subgroup of individuals who provided repeated semen samples before and after vaccination. While motility related parameters [progressive rate, curvilinear velocity (VCL), average path velocity (VAP), straight-line velocity (VSL), wobble (WOB), straightness (STR), linearity (LIN), amplitude of lateral head displacement (ALH), beat-cross frequency (BCF)] exhibited statistically significant difference before and after vaccination based on Welch two-sample test, mixed effects regression results based on repeated measures from the same individuals indicated that vaccination was not statistically associated with sperm quality parameters except for VCL, VAP, and VSL. Individual variability was the key determinant of sperm quality variance, with contribution ranging from 19% to 82%. Conclusions Findings from our study could help to enhance current understanding of male reproductive health in the context of the global pandemic.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Die Tang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Barnabas C. Seyler
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Fuping Li
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Lundstrom K. COVID-19 Vaccines: Where Did We Stand at the End of 2023? Viruses 2024; 16:203. [PMID: 38399979 PMCID: PMC10893040 DOI: 10.3390/v16020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccine development against SARS-CoV-2 has been highly successful in slowing down the COVID-19 pandemic. A wide spectrum of approaches including vaccines based on whole viruses, protein subunits and peptides, viral vectors, and nucleic acids has been developed in parallel. For all types of COVID-19 vaccines, good safety and efficacy have been obtained in both preclinical animal studies and in clinical trials in humans. Moreover, emergency use authorization has been granted for the major types of COVID-19 vaccines. Although high safety has been demonstrated, rare cases of severe adverse events have been detected after global mass vaccinations. Emerging SARS-CoV-2 variants possessing enhanced infectivity have affected vaccine protection efficacy requiring re-design and re-engineering of novel COVID-19 vaccine candidates. Furthermore, insight is given into preparedness against emerging SARS-CoV-2 variants.
Collapse
|
35
|
Zhang X, Zhan H, Wang L, Liu Y, Guo X, Li C, Li X, Li B, Li H, Li Y, Chen Q, Gao H, Feng F, Li Y, Dai E. COVID-19 vaccination willingness among people living with HIV in Shijiazhuang, China: a cross-sectional survey. Front Med (Lausanne) 2024; 11:1322440. [PMID: 38314204 PMCID: PMC10835989 DOI: 10.3389/fmed.2024.1322440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Objectives The COVID-19 pandemic imposed an enormous disease and economic burden worldwide. SARS-CoV-2 vaccination is essential to containing the pandemic. People living with HIV (PLWH) may be more vulnerable to severe COVID-19 outcomes; thus, understanding their vaccination willingness and influencing factors is helpful in developing targeted vaccination strategies. Methods A cross-sectional study was conducted between 15 June and 30 August 2022 in Shijiazhuang, China. Variables included socio-demographic characteristics, health status characteristics, HIV-related characteristics, knowledge, and attitudes toward COVID-19 vaccination and COVID-19 vaccination status. Multivariable logistic regression was used to confirm factors associated with COVID-19 vaccination willingness among PLWH. Results A total of 1,428 PLWH were included, with a 90.48% willingness to receive the COVID-19 vaccination. PLWH were more unwilling to receive COVID-19 vaccination for those who were female or had a fair/poor health status, had an allergic history and comorbidities, were unconvinced and unsure about the effectiveness of vaccines, were unconvinced and unsure about the safety of vaccines, were convinced and unsure about whether COVID-19 vaccination would affect ART efficacy, or did not know at least a type of domestic COVID-19 vaccine. Approximately 93.00% of PLWH have received at least one dose of the COVID-19 vaccine among PLWH, and 213 PLWH (14.92%) reported at least one adverse reaction within 7 days. Conclusion In conclusion, our study reported a relatively high willingness to receive the COVID-19 vaccination among PLWH in Shijiazhuang. However, a small number of PLWH still held hesitancy; thus, more tailored policies or guidelines from the government should be performed to enhance the COVID-19 vaccination rate among PLWH.
Collapse
Affiliation(s)
- Xihong Zhang
- Center for Disease Control and Prevention of Yunyan District in Guiyang, Guiyang, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lijing Wang
- Department of AIDS, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xinru Guo
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Chen Li
- Department of AIDS, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Beilei Li
- Department of AIDS, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yingxia Li
- Department of AIDS, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Qian Chen
- Department of AIDS, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Huixia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, China
| | - Erhei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
36
|
Deng H, Jin Y, Sheng M, Liu M, Shen J, Qian W, Zou G, Liao Y, Liu T, Ling Y, Fan X. Safety and efficacy of COVID-19 vaccine immunization during pregnancy in 1024 pregnant women infected with the SARS-CoV-2 Omicron virus in Shanghai, China. Front Immunol 2024; 14:1303058. [PMID: 38292486 PMCID: PMC10826606 DOI: 10.3389/fimmu.2023.1303058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Background Large sample of pregnant women vaccinated with COVID-19 vaccine has not been carried out in China. The objective of this study was to evaluate the safety and effectiveness of COVID-19 inactivated vaccine in pregnant women infected with the SARS-CoV-2 Omicron variant. Methods A total of 1,024 pregnant women and 120 newborns were enrolled in this study. 707 pregnant women received one to three doses of the inactivated COVID-19 vaccine, and 317 unvaccinated patients served as the control group. A comparison was made between their clinical and laboratory data at different stages of pregnancy. Results The incidence rate of patients infected with Omicron variant in the first, the second, and the third trimesters of pregnancy was 27.5%, 27.0%, and 45.5% in patients during, respectively. The corresponding length of hospital stay was 8.7 ± 3.3 days, 9.5 ± 3.3 days, and 11 ± 4.3 days, respectively. The hospitalization time of pregnant women who received 3 doses of vaccine was (8.8 ± 3.3) days, which was significantly shorter than that of non-vaccinated women (11.0 ± 3.9) days. (P<0.0001). The positive rate of SARS-CoV-2 IgG in patients in the early stage of pregnancy was 28.8%, while that in patients in the late stage of pregnancy was 10.3%. However, three-doses of vaccination significantly increased the SARS-CoV-2 IgG positive rate to 49.5%. The hospitalization time of SARS-CoV-2 IgG-positive patients was shorter than that of negative patients (9.9 ± 3.5 days), which was 7.4 ± 2.0 days. 12.2% of vaccinated women experienced mild adverse reactions, manifested as fatigue (10.6%) and loss of appetite (1.6%). The vaccination of mother did not affect her choice of future delivery mode and the Apgar score of their newborn. All newborns tested negative for SARS-CoV-2 nucleic acid, as well as for IgG and IgM antibodies. Conclusions Women in the third trimester of pregnancy are highly susceptible to infection with the Omicron strain. The vaccination of pregnant women with COVID-19 vaccine can accelerate the process of eliminating SARS-CoV-2 virus, and is considered safe for newborns. The recommended vaccination includes three doses.
Collapse
Affiliation(s)
- Hongmei Deng
- Department of Gynecology and Obstetrics, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinpeng Jin
- Liver Disease Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Minmin Sheng
- Department of Gynecology and Obstetrics, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Liu
- Department of Gynecology and Obstetrics, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jie Shen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wei Qian
- International Peace Maternity & Child Health Hospital Affiliated to Jiaotong University, Shanghai, China
| | - Gang Zou
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yixin Liao
- Scientific Research Center, Shanghai Public Health Clinical Center, Shanghai, China
| | - Tiefu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaohong Fan
- Department of Respiratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Hu W, Liu X, Lu X, Zhang D, Liu S, Gu X, Liu D, Sun J, Zhou T, Li X, Gao Y, Zhao Y, Cui G, Zhang S. Immunogenicity, safety and consistency of seven lots of an inactivated COVID-19 vaccine in healthy children and adolescents: a randomized, double-blind, controlled, phase IV clinical trial. Front Immunol 2024; 14:1320352. [PMID: 38250072 PMCID: PMC10796506 DOI: 10.3389/fimmu.2023.1320352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Background CoronaVac has been authorized worldwide for preventing coronavirus disease 2019. Information on the safety, immunogenicity and consistency of different lots and workshops of CoronaVac is presented here. Methods In this randomized, double-blind, phase IV clinical trial in healthy children and adolescents aged 3-17 years, we aimed to assess the lot-to-lot and workshop-to-workshop consistency, as well as immunogenicity and safety of seven lots of commercial-scale CoronaVac from three workshops. Eligible participants were enrolled into three age cohorts (3-5, 6-11 and 12-17 years). Within each cohort, participants were randomly assigned to seven groups to receive two doses of CoronaVac, with four weeks apart. Serum samples were collected before the first dose and 28 days after the second dose for neutralizing antibody testing. The primary objective was to evaluate the consistency of immune response among different lots within workshop 2 or 3, as well as among different workshops. The primary endpoint was geometric mean titer (GMT) of neutralizing antibody at 28 days after full-course vaccination. Results Between July 27th and November 19th, 2021, a total of 2,520 eligible participants were enrolled. Results showed that 95% confidence intervals (CIs) of GMT ratios for all comparative groups among different lots or workshops were within the equivalence criteria of [0.67, 1.5]. The GMT and seroconversion rate for all participants were 126.42 (95%CI: 121.82, 131.19) and 99.86% (95%CI: 99.59%, 99.97%) at 28 days after two-dose vaccination. The incidences of adverse reactions were similar among seven lots, and most adverse reactions were mild in Grade 1, with no serious adverse event. Conclusion CoronaVac is well-tolerated and can elicit a good immune response among children and adolescents. Lot-to-lot consistency results indicate stable manufacturing of commercial-scale CoronaVac.
Collapse
Affiliation(s)
- Weijun Hu
- Institute of Immunization Program, Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, China
| | - Xiaoyu Liu
- Institute of Immunization Program, Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, China
| | - Xi Lu
- Medical Affairs Department, Sinovac Biotech Co., Ltd., Beijing, China
| | - Dan Zhang
- Institute of Immunization Program, Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, China
| | - Shuo Liu
- Clinical Research and Development Center, Sinovac Biotech Co., Ltd., Beijing, China
| | - Xianjin Gu
- Department of Immunization Program, Yanliang District Center for Disease Control and Prevention, Xi’an, China
| | - Dan Liu
- Department of Immunization Program, Yanliang District Center for Disease Control and Prevention, Xi’an, China
| | - Jianwen Sun
- Medical Affairs Department, Sinovac Life Sciences Co., Ltd., Beijing, China
| | - Tiantian Zhou
- Institute of Immunization Program, Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, China
| | - Xinge Li
- Clinical Research and Development Center, Sinovac Biotech Co., Ltd., Beijing, China
| | - Yongjun Gao
- Medical Affairs Department, Sinovac Biotech Co., Ltd., Beijing, China
| | - Yanwei Zhao
- Medical Affairs Department, Sinovac Life Sciences Co., Ltd., Beijing, China
| | - Guoliang Cui
- Quality Assurance Department, Sinovac Life Sciences Co., Ltd., Beijing, China
| | - Shaobai Zhang
- Institute of Immunization Program, Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, China
| |
Collapse
|
38
|
Cheung YYH, Lau EHY, Yin G, Lin Y, Cowling BJ, Lam KF. Effectiveness of Vaccines and Antiviral Drugs in Preventing Severe and Fatal COVID-19, Hong Kong. Emerg Infect Dis 2024; 30:70-78. [PMID: 38040664 PMCID: PMC10756371 DOI: 10.3201/eid3001.230414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
Abstract
We compared the effectiveness and interactions of molnupiravir and nirmatrelvir/ritonavir and 2 vaccines, CoronaVac and Comirnaty, in a large population of inpatients with COVID-19 in Hong Kong. Both the oral antiviral drugs and vaccines were associated with lower risks for all-cause mortality and progression to serious/critical/fatal conditions (study outcomes). No significant interaction effects were observed between the antiviral drugs and vaccinations; their joint effects were additive. If antiviral drugs were prescribed within 5 days of confirmed COVID-19 diagnosis, usage was associated with lower risks for the target outcomes for patients >60, but not <60, years of age; no significant clinical benefit was found if prescribed beyond 5 days. Among patients >80 years of age, 3-4 doses of Comirnaty vaccine were associated with significantly lower risks for target outcomes. Policies should encourage COVID-19 vaccination, and oral antivirals should be made accessible to infected persons within 5 days of confirmed diagnosis.
Collapse
|
39
|
Liu J, Wen R, Wang N, Li G, Xu P, Li X, Zeng X, Liu C. A Retrospective Study on COVID-19 Infections Caused by Omicron Variant with Clinical, Epidemiological, and Viral Load Evaluations in Breakthrough Infections. Int J Med Sci 2024; 21:454-463. [PMID: 38250611 PMCID: PMC10797678 DOI: 10.7150/ijms.87167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/09/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose: To explore the clinical, epidemiological, and viral load characteristics of COVID-19 caused by the omicron variant. Methods: Based on the COVID-19 epidemic caused by SARS-CoV-2 Omicron BA.2 broke out in Shanghai, China. To analyze whether there is any association between clinical symptoms and viral load of COVID-19 with age, sex, and combined disease and whether the clinical symptoms and viral load are associated with vaccine-breakthrough infections. Results: The most common symptoms were cough, expectoration, and fatigue, which were more common in women than males (p < 0.001). The average viral clearance time in the > 75 years group was the longest (6.64 days). The viral load in the 60-75 years group was significantly higher than that in the other groups (p < 0.001). The 18-45 years old group had the most clinical symptoms at admission (45.39%). The days of nucleic acid-negative conversion, average viral load, highest viral load, and clinical symptoms in comorbid chronic disease patients are longer (p < 0.001). The average and highest viral loads in the unvaccinated group were longer than those in the vaccine breakthrough infection groups (p < 0.001). However, the clinical symptoms in the vaccine breakthrough infection group were significantly more severe than those in the unvaccinated group (p < 0.001). Conclusions: We found that female patients, the elderly, and those with underlying comorbidities had longer clinical positive symptoms and viral loads. Although vaccination may not reduce clinical symptoms, it can shorten the viral load and the time required for virus clearance.
Collapse
Affiliation(s)
- Jian Liu
- Department of Medical Imaging, Guizhou Provincial People Hospital, Guiyang City, Guizhou Province, 550000, China
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ru Wen
- Department of Medical Imaging, Guizhou Provincial People Hospital, Guiyang City, Guizhou Province, 550000, China
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Medical College, Guizhou University, Guizhou,550000, China
| | - Nanzhu Wang
- Department of Medical Imaging, Guizhou Provincial People Hospital, Guiyang City, Guizhou Province, 550000, China
| | - Guizhou Li
- College of Mathematics and Statistics, Chongqing University, Chongqing, 400044, China
| | - Peng Xu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaoming Li
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xianchun Zeng
- Department of Medical Imaging, Guizhou Provincial People Hospital, Guiyang City, Guizhou Province, 550000, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
40
|
Zhou X, Lu H, Sang M, Qiu S, Yuan Y, Wu T, Chen J, Sun Z. Impaired antibody response to inactivated COVID-19 vaccines in hospitalized patients with type 2 diabetes. Hum Vaccin Immunother 2023; 19:2184754. [PMID: 36864628 PMCID: PMC10026888 DOI: 10.1080/21645515.2023.2184754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Patients with type 2 diabetes (T2D) are at an increased risk of morbidity and mortality of coronavirus disease 2019 (COVID-19). Data on the antibody response to COVID-19 vaccines in T2D patients are less studied. This study aimed to evaluate IgG antibody response to inactivated COVID-19 vaccines in hospitalized T2D patients. Hospitalized patients with no history of COVID-19 and received two doses of inactivated COVID-19 vaccines (Sinopharm or CoronaVac) were included in this study from March to October 2021. SARS-CoV-2 specific IgG antibodies were measured 14-60 days after the second vaccine dose. A total of 209 participants, 96 with T2D and 113 non-diabetes patients, were included. The positive rate and median titer of IgG antibody against receptor-binding domain (anti-RBD) of spike (S) protein of SARS-CoV-2 in T2D group were lower than in control group (67.7% vs 83.2%, p = .009; 12.93 vs 17.42 AU/ml, p = .014) respectively. Similarly, seropositivity and median titers of IgG antibody against the nucleocapsid (N) and S proteins of SARS-CoV-2 (anti-N/S) in T2D group were lower than in control group (68.8% vs 83.2%, p = .032; 18.81 vs 29.57 AU/mL, p = .012) respectively. After adjustment for age, sex, BMI, vaccine type, days after the second vaccine dose, hypertension, kidney disease, and heart disease, T2D was identified as an independent risk factor for negative anti-RBD and anti-N/S seropositivity, odd ratio 0.42 (95% confidence interval 0.19, 0.89) and 0.42 (95% CI 0.20, 0.91), respectively. T2D is associated with impaired antibody response to inactivated COVID-19 vaccine.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Huixia Lu
- Department of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Miaomiao Sang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Shanhu Qiu
- Department of General Practice, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Yang Yuan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Junhao Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
41
|
Zhang E, Wang X, Dai Z, Zhang X, Shang S, Fang Q. Is vaccine hesitancy related to mental health after the adjustment of the zero-COVID-19 strategy in the elderly? A mediation analysis in China. Hum Vaccin Immunother 2023; 19:2288726. [PMID: 38055950 PMCID: PMC10732663 DOI: 10.1080/21645515.2023.2288726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
With the global Omicron pandemic and the adjustment of the zero-coronavirus disease 2019 (zero-COVID-19) strategy in China, there is a critical need to improve vaccination rates among older adults while addressing the mental health issues associated with vaccination. This study investigated levels of COVID-19-related anxiety, depression, benefit finding, and fear in older adults and explored the relationship between vaccine hesitancy, sociodemographic factors, and mental health. Participants aged 60 and older (n = 658) were recruited from several cities in the eastern, central, and western China regions. Of these, 347 exhibited vaccine hesitancy. The effects of residence, education, health status, and COVID-19 vaccination on anxiety/depression/benefit-finding were found to be mediated/suppressed by vaccine hesitancy. Additionally, in investigating psychological antecedents, older people without vaccine hesitancy showed higher confidence, lower complacency, fewer constraints, and a greater sense of collective responsibility. This study advances our understanding of mental health differences in anxiety, depression, and benefit-finding across sociodemographic characteristics. It is essential to improve population confidence related to vaccines, accessibility to vaccination services, and responsibility to mitigate vaccine hesitancy while paying close attention to the mental health associated with vaccination in older adults.
Collapse
Affiliation(s)
- Enming Zhang
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Wang
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyue Dai
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Xian Zhang
- Nursing Department, Caohejing Community Health Service Center, Shanghai, China
| | - Shuhui Shang
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong Fang
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Liang Y, Sun Y. Awareness of and attitude toward COVID-19 vaccination among individuals with COPD and the strategies to overcome vaccine hesitation: A mini review. Hum Vaccin Immunother 2023; 19:2286686. [PMID: 38059434 PMCID: PMC10732662 DOI: 10.1080/21645515.2023.2286686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) vaccines have a protective effect on individuals with chronic obstructive pulmonary disease (COPD), preventing them from developing severe illnesses and reducing the risk of hospitalization and mortality. However, the coverage rate of COVID-19 vaccination among this population is not satisfactory, which is associated with their lack of awareness of and negative attitudes toward COVID-19 vaccination, that is, vaccine hesitancy. We reviewed recent literatures on the vaccination status of COPD patients and vaccine hesitancy, described the factors related to vaccine hesitancy among COPD patients, and proposed strategies to improve the vaccine coverage, such as providing accurate and consistent vaccine information to the public, patient health education program, improving self-management capabilities, easy access to vaccination service, etc., which can hopefully help to improve patients' ability to cope with SARS-CoV-2 infection and reduce the COVID-19 related mortality.
Collapse
Affiliation(s)
- Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| |
Collapse
|
43
|
Sachin J, Shukla R, Anil A, Saravanan A, Santhyavu S, Varthya SB, Ambwani S, Singh S. COVISHIELD vaccine-induced thyroiditis: a case report. J Med Case Rep 2023; 17:542. [PMID: 38098118 PMCID: PMC10722757 DOI: 10.1186/s13256-023-04279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The rapid development of coronavirus disease 2019 vaccines during the pandemic has left their long-term effects largely unknown. Instances of autoimmune and subacute thyroiditis showing features of autoimmune/inflammatory syndrome induced by adjuvants have been reported post-vaccination. This case report aims to highlight the autoimmune/inflammatory syndrome induced by adjuvants syndrome after coronavirus disease 2019 vaccination, drawing attention to a possible connection with thyroid dysfunction and urging for further thorough research. CASE PRESENTATION We present a case of thyroiditis induced by the COVISHIELD vaccine in a 37-year-old Indian woman. An apparently normal and healthy adult woman developed neck pain and easy fatigability 2 weeks after the second dose of COVISHIELD, which gradually increased and was associated with irritability, decreased sleep, excessive sweating, tremor, palpitation, and weight loss. She presented to the outpatient department after 1 week of symptoms and was evaluated with laboratory tests and imaging. She was diagnosed with thyroiditis due to the coronavirus disease 2019 vaccine and was treated with propranolol. CONCLUSION This case report adds to the growing evidence of coronavirus disease 2019 vaccine-related thyroid issues. The development of thyroiditis is rare and underreported post-coronavirus disease 2019 vaccination; hence, research to evaluate the association of coronavirus disease 2019 vaccines with thyroid dysfunction needs to be done in the future.
Collapse
Affiliation(s)
- J Sachin
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Ravindra Shukla
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Abhishek Anil
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Aswini Saravanan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Sanjay Santhyavu
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Shoban Babu Varthya
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Sneha Ambwani
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Surjit Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
44
|
Lv L, Wu XD, Yan HJ, Zhao SY, Zhang XD, Zhu KL. The disparity in hesitancy toward COVID-19 vaccination between older individuals in nursing homes and those in the community in Taizhou, China. BMC Geriatr 2023; 23:828. [PMID: 38066433 PMCID: PMC10709861 DOI: 10.1186/s12877-023-04518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE Older individuals are priority coronavirus disease 2019 (COVID-19) vaccine recipients. Our aim was to investigate the prevalence of and factors influencing vaccine hesitancy in older individuals living in nursing homes and communities. METHODS A self-administered COVID-19 vaccine hesitancy survey was conducted from September 2021 to December 2021 among people aged ≥ 60 years in eight nursing homes (382 participants) and the community (112 participants) in Taizhou, China. The response rate was 72.1% (382/530) for older adults in nursing homes and 68.7% (112/163) for older adults in the community. RESULTS We found that 58.1% of the older individuals in nursing homes and 36.6% of those in the community were hesitant to receive the COVID-19 vaccine and that there was a statistically significant difference (P < 0.001). Multiple logistic regression results indicated that the main factors influencing hesitation among the older individuals in nursing homes were being male (Odds Ratio (OR) = 1.67, 95% Confidence Interval (CI): 1.01-2.76); their cognitive level, including having a high perceived risk of COVID-19 infection (OR = 3.06, 95% CI: 1.73-5.43) or the perception of low vaccine safety (OR = 3.08, 95% CI: 1.545- 6.145); anxiety (OR = 3.43, 95% CI: 1.96-5.99); and no previous influenza vaccination (OR = 1.82, 95% CI: 1.13-2.93); whereas those for older individuals in the community were comorbid chronic diseases (OR = 3.13, 95% CI: 1.11- 8.78) and community workers not recommending the vaccine (OR = 8.223, 95% CI: 1.77-38.27). CONCLUSION The proportion of older individuals in nursing homes who were hesitant to receive the COVID-19 vaccine was significantly higher than for older individuals in the community. Targeted measures should be implemented to reduce vaccine hesitancy and improve vaccination rates in response to the special environment of nursing homes and the characteristics of this population.
Collapse
Affiliation(s)
- Li Lv
- The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Xu-Dong Wu
- Hepatopancreatobiliary Surgery, People's Hospital Affiliated to Ningbo University, Ningbo University, 251 Baizhang East Road, Ningbo, 315040, Zhejiang Province, China
| | - Huan-Jun Yan
- Hepatopancreatobiliary Surgery, People's Hospital Affiliated to Ningbo University, Ningbo University, 251 Baizhang East Road, Ningbo, 315040, Zhejiang Province, China
| | - Shuang-Ying Zhao
- Hepatopancreatobiliary Surgery, People's Hospital Affiliated to Ningbo University, Ningbo University, 251 Baizhang East Road, Ningbo, 315040, Zhejiang Province, China
| | - Xiao-Dong Zhang
- Hepatopancreatobiliary Surgery, People's Hospital Affiliated to Ningbo University, Ningbo University, 251 Baizhang East Road, Ningbo, 315040, Zhejiang Province, China
| | - Ke-Lei Zhu
- Hepatopancreatobiliary Surgery, People's Hospital Affiliated to Ningbo University, Ningbo University, 251 Baizhang East Road, Ningbo, 315040, Zhejiang Province, China.
| |
Collapse
|
45
|
Batmunkh B, Otgonbayar D, Shaarii S, Khaidav N, Shagdarsuren OE, Boldbaatar G, Danzan NE, Dashtseren M, Unurjargal T, Dashtseren I, Dagvasumberel M, Jagdagsuren D, Bayandorj O, Biziya B, Surenjid S, Togoo K, Bat-Erdene A, Narmandakh Z, Choijilsuren G, Batmunkh U, Soodoi C, Boldbaatar EA, Byambatsogt G, Byambaa O, Deleg Z, Enebish G, Chuluunbaatar B, Zulmunkh G, Tsolmon B, Gunchin B, Chimeddorj B, Dambadarjaa D, Sandag T. RBD-specific antibody response after two doses of different SARS-CoV-2 vaccines during the mass vaccination campaign in Mongolia. PLoS One 2023; 18:e0295167. [PMID: 38064430 PMCID: PMC10707641 DOI: 10.1371/journal.pone.0295167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The SARS-CoV-2 vaccination campaign began in February 2021 and achieved a high rate of 62.7% of the total population fully vaccinated by August 16, 2021, in Mongolia. We aimed to assess the initial protective antibody production after two doses of a variety of types of SARS-CoV-2 vaccines in the Mongolian pre-vaccine antibody-naïve adult population. This prospective study was conducted from March-April to July-August of 2021. All participants received one of the four government-proposed COVID-19 vaccines including Pfizer/BioNTech (BNT162b2), AstraZeneca (ChAdOx1-S), Sinopharm (BBIBP-CorV), and Sputnik V (Gam-COVID-Vac). Before receiving the first shot, anti-SARS-CoV-2 S-RBD human IgG titers were measured in all participants (n = 1833), and titers were measured 21-28 days after the second shot in a subset of participants (n = 831). We found an overall average protective antibody response of 84.8% (705 of 831 vaccinated) in 21-28 days after two doses of the four types of COVID-19 vaccines. Seropositivity and titer of protective antibodies produced after two shots of vaccine were associated with the vaccine types, age, and residence of vaccinees. Seropositivity rate varied significantly between vaccine types, 80.0% (28 of 35) for AstraZeneca ChAdOx1-S; 97.0% (193 of 199) for Pfizer BNT162b2; 80.7% (474 of 587) for Sinopharm BBIBP-CorV, and 100.0% (10 of 10) for Sputnik V Gam-COVID-Vac, respectively. Immunocompromised vaccinees with increased risk for developing severe COVID-19 disease had received the Pfizer vaccine and demonstrated a high rate of seropositivity. A high geometric mean titer (GMT) was found in vaccinees who received BNT162b2, while vaccinees who received ChAdOx1-S, Sputnik V, and BBIBP-CorV showed a lower GMT. In summary, we observed first stages of the immunization campaign against COVID-19 in Mongolia have been completed successfully, with a high immunogenicity level achieved among the population with an increased risk for developing severe illness.
Collapse
Affiliation(s)
- Burenjargal Batmunkh
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Dashpagma Otgonbayar
- National Center for Communicable Diseases of Mongolia, Ulaanbata, Mongolia
- School of Public Health, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Shatar Shaarii
- School of Public Health, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Nansalmaa Khaidav
- School of Public Health, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Oyu-Erdene Shagdarsuren
- School of Public Health, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Gantuya Boldbaatar
- School of Medicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Nandin-Erdene Danzan
- School of Medicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | | | - Tsolmon Unurjargal
- School of Medicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Ichinnorov Dashtseren
- School of Medicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | | | | | | | - Baasanjargal Biziya
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Seesregdorj Surenjid
- International School of Mongolian Medicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Khongorzul Togoo
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Ariunzaya Bat-Erdene
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Zolmunkh Narmandakh
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Gansukh Choijilsuren
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Ulziisaikhan Batmunkh
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Chimidtseren Soodoi
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Enkh-Amar Boldbaatar
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Ganbaatar Byambatsogt
- School of Nursing, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Otgonjargal Byambaa
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Zolzaya Deleg
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Gerelmaa Enebish
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Bazardari Chuluunbaatar
- Mongolia-Japan Hospital, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Gereltsetseg Zulmunkh
- Mongolia-Japan Hospital, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | | | - Batbaatar Gunchin
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Battogtokh Chimeddorj
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Davaalkham Dambadarjaa
- School of Public Health, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| | - Tsogtsaikhan Sandag
- School of Biomedicine, Mongolian National University of Medical Sciences, Sainshand, Mongolia
| |
Collapse
|
46
|
Ansarifar A, Farahani RH, Rahjerdi AK, Ahi M, Sheidaei A, Gohari K, Rahimi Z, Gholami F, Basiri P, Moradi M, Jahangiri A, Naderi K, Ghasemi S, Khatami P, Honari M, Khodaverdloo S, Shooshtari M, Azin HM, Moradi S, Shafaghi B, Allahyari H, Monazah A, Poor AK, Bakhshande H, Taghva Z, Nia MK, Dodaran MS, Foroughizadeh M. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine (FAKHRAVAC®) in healthy adults aged 18-55 years: Randomized, double-blind, placebo-controlled, phase I clinical trial. Vaccine X 2023; 15:100401. [PMID: 37941802 PMCID: PMC10628354 DOI: 10.1016/j.jvacx.2023.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Background The FAKHRAVAC®, an inactivated SARS-CoV-2 vaccine, was assessed for safety and immunogenicity. Methods and findings In this double-blind, placebo-controlled, phase I trial, we randomly assigned 135 healthy adults between 18 and 55 to receive vaccine strengths of 5 or 10 μg/dose or placebo (adjuvant only) in 0-14 or 0-21 schedules. This trial was conducted in a single center in a community setting. The safety outcomes in this study were reactogenicity, local and systemic adverse reactions, abnormal laboratory findings, and Medically Attended Adverse Events (MAAE). Immunogenicity outcomes include serum neutralizing antibody activity and specific IgG antibody levels.The most frequent local adverse reaction was tenderness (28.9%), and the most frequent systemic adverse reaction was headache (9.6%). All adverse reactions were mild, occurred at a similar incidence in all six groups, and were resolved within a few days. In the 10-µg/dose vaccine group, the geometric mean ratio for neutralizing antibody titers at two weeks after the second injection compared to the placebo group was 9.03 (95% CI: 3.89-20.95) in the 0-14 schedule and 11.77 (95% CI: 2.77-49.94) in the 0-21 schedule. The corresponding figures for the 5-µg/dose group were 2.74 (1.2-6.28) and 5.2 (1.63-16.55). The highest seroconversion rate (four-fold increase) was related to the 10-µg/dose group (71% and 67% in the 0-14 and 0-21 schedules, respectively). Conclusions FAKHRAVAC® is safe and induces a strong humoral immune response to the SARS-CoV-2 virus at 10-µg/dose vaccine strength in adults aged 18-55. This vaccine strength was used for further assessment in the phase II trial.Trial registrationThis study is registered with https://www.irct.ir; IRCT20210206050259N1.
Collapse
Affiliation(s)
- Akram Ansarifar
- Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammadreza Ahi
- Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sheidaei
- Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Kimiya Gohari
- Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rahimi
- Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholami
- Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Pouria Basiri
- Stem Cell Technology Research Center (STRC), Tehran, Iran
| | - Milad Moradi
- Stem Cell Technology Research Center (STRC), Tehran, Iran
| | | | - Kosar Naderi
- Stem Cell Technology Research Center (STRC), Tehran, Iran
| | - Soheil Ghasemi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Tehran, Iran
| | | | - Mohsen Honari
- Milad Daro Noor Pharmaceutical (MDNP) Company, Tehran, Iran
| | | | | | | | - Sohrab Moradi
- Milad Daro Noor Pharmaceutical (MDNP) Company, Tehran, Iran
| | | | | | - Arina Monazah
- Milad Daro Noor Pharmaceutical (MDNP) Company, Tehran, Iran
| | | | - Hooman Bakhshande
- Clinical Trial Center of Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Taghva
- Stem Cell Technology Research Center (STRC), Tehran, Iran
| | | | | | | |
Collapse
|
47
|
Çalişkan E, Öztürk CE, Öksüz Ş, Ince N, Yekenkurul D, Kahraman G, Duran P, Şahin İ. Monitoring of antibody levels in healthcare workers after inactivated coronavirus disease 19 vaccination. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20220766. [PMID: 38055449 DOI: 10.1590/1806-9282.20220766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Because of the coronavirus disease 19 pandemic, studies on vaccination are being conducted in our country as well as across the world. In this study, the antibody levels in healthcare workers vaccinated with two doses of inactivated vaccine and the factors affecting these levels were investigated. METHODS Randomly selected volunteers from healthcare workers, who had been vaccinated with two doses of inactivated vaccine in January to February 2021, were included in the study. Blood samples were drawn twice, 1 month and 6 months after the second dose vaccine (CoronaVac:Sinovac Life Science Co, Ltd, Beijing, China). The antibody levels were determined by the chemiluminescence microparticle immunoassay method using kits for quantitative detection of immunoglobulin class G antibodies to severe acute respiratory syndrome coronavirus 2. RESULTS The mean antibody levels of 129 volunteers were 1232.5 (min: 103 to max: 7151) AU/mL in the first month and 403.5 (min: 23 to max: 4963) AU/mL in the sixth month. According to the survey results, 91 (71%) volunteers had not been diagnosed with coronavirus disease 19 before vaccination. The antibody levels 1 month and 6 months after the second dose of vaccination were significantly higher in those who had been diagnosed with coronavirus disease 19 before vaccination than in those who had not. It was found that age, gender, fast food, or healthy nutrition had no effect on antibody levels. CONCLUSION Vaccines are very important both to protect against coronavirus disease 19 and to experience only a mild form of the disease. Immunoglobulin class G levels formed after vaccination may be affected by many factors and may decrease over time.
Collapse
Affiliation(s)
- Emel Çalişkan
- Düzce University, Health Practice and Research Center, Department of Medical Microbiology - Düzce, Turkey
| | - Cihadiye Elif Öztürk
- Arel University, Medical Faculty, Department of Clinical Microbiology and Infection Disease - İstanbul, Turkey
| | - Şükrü Öksüz
- Düzce University, Health Practice and Research Center, Department of Medical Microbiology - Düzce, Turkey
| | - Nevin Ince
- Düzce University, Health Practice and Research Center, Department of Clinical Microbiology and Infection Disease - Düzce, Turkey
| | - Dilek Yekenkurul
- Düzce University, Health Practice and Research Center, Department of Clinical Microbiology and Infection Disease - Düzce, Turkey
| | - Gözde Kahraman
- Düzce University, Health Practice and Research Center, Department of Medical Microbiology - Düzce, Turkey
| | - Pelin Duran
- Düzce University, Health Practice and Research Center, Department of Medical Microbiology - Düzce, Turkey
| | - İdris Şahin
- Düzce University, Health Practice and Research Center, Department of Medical Microbiology - Düzce, Turkey
| |
Collapse
|
48
|
Koc I, Unalli Ozmen S, Deniz O. Vaccine effectiveness against the B.1.617.2 in the intensive care unit. Medicine (Baltimore) 2023; 102:e35588. [PMID: 37861554 PMCID: PMC10589509 DOI: 10.1097/md.0000000000035588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2 and its variants are still a concern for the World. The effectiveness of the BioNTech and Sinovac vaccines against the B.1.617.2 variant, particularly in the intensive care unit, has been unclear. This study aimed to investigate the vaccine effectiveness of BioNTech and Sinovac vaccines in reducing severe disease, intubation, and mortality rates in B.1.617.2 infected patients followed in the intensive care unit. The data of 208 unvaccinated and 234 vaccinated B.1.617.2 variants were retrospectively reviewed. Severe disease status, complaints, the percent oxygen saturation in the blood at the first admission, and other clinical information during follow-up were recorded. With the BioNTech and Sinovac vaccines being the most common in the region, mortality rate, severe disease, and intubation were more frequent in the unvaccinated group. As for survival rates, 58.5 (137) of the vaccinated and 35.1 % (73) of the unvaccinated survived. In the vaccinated group, 64.3 % (27) of vaccinated with 3 Sinovac, 80 % (16) of 2 Sinovac and 1 BioNTech, and 71.7 % of 2 BioNTech survived. Vaccination with 2 doses of BioNTech and 3 doses of Sinovac reduces mortality. Furthermore, 2 doses of Sinovac and 1 dose of BioNTech are more protective.
Collapse
Affiliation(s)
- Ibrahim Koc
- Bursa City Hospital Pulmonary Medicine, Bursa, Turkey
| | | | - Olgun Deniz
- Bursa City Hospital, Palliative Care Unit, Geriatric Medicine Clinic, Bursa, Turkey
| |
Collapse
|
49
|
Le Corre N, Abarca K, Astudillo P, Potin M, López S, Goldsack M, Valenzuela V, Schilling A, Gaete V, Rubio L, Calvo M, Twele L, González M, Fuentes D, Gutiérrez V, Reyes F, Tapia LI, Villena R, Retamal-Díaz A, Cárdenas A, Alarcón-Bustamante E, Meng X, Xin Q, González-Aramundiz JV, Álvarez-Figueroa MJ, González PA, Bueno SM, Soto JA, Perret C, Kalergis AM. Different Safety Pattern of an Inactivated SARS-CoV-2 Vaccine (CoronaVac ®) According to Age Group in a Pediatric Population from 3 to 17 Years Old, in an Open-Label Study in Chile. Vaccines (Basel) 2023; 11:1526. [PMID: 37896930 PMCID: PMC10611329 DOI: 10.3390/vaccines11101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023] Open
Abstract
During the COVID-19 pandemic, the importance of vaccinating children against SARS-CoV-2 was rapidly established. This study describes the safety of CoronaVac® in children and adolescents between 3- and 17-years-old in a multicenter study in Chile with two vaccine doses in a 4-week interval. For all participants, immediate adverse events (AEs), serious AEs (SAEs), and AEs of special interest (AESIs) were registered throughout the study. In the safety subgroup, AEs were recorded 28 days after each dose. COVID-19 surveillance was performed throughout the study. A total of 1139 individuals received the first and 1102 the second dose of CoronaVac®; 835 were in the safety subgroup. The first dose showed the highest number of AEs: up to 22.2% of participants reported any local and 17.1% systemic AE. AEs were more frequent in adolescents after the first dose, were transient, and mainly mild. Pain at the inoculation site was the most frequent AE for all ages. Fever was the most frequent systemic AE for 3-5 years old and headache in 6-17 years old. No SAEs or AESIs related to vaccination occurred. Most of the COVID-19 cases were mild and managed as outpatients. CoronaVac® was safe and well tolerated in children and adolescents, with different safety patterns according to age.
Collapse
Affiliation(s)
- Nicole Le Corre
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (N.L.C.); (K.A.)
| | - Katia Abarca
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (N.L.C.); (K.A.)
| | - Patricio Astudillo
- División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Marcela Potin
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (N.L.C.); (K.A.)
- Clínica San Carlos de Apoquindo, Red de Salud UC Christus, Santiago 7610437, Chile
| | - Sofía López
- Clínica San Carlos de Apoquindo, Red de Salud UC Christus, Santiago 7610437, Chile
| | - Macarena Goldsack
- Departamento de Pediatría, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Médico San Joaquín, Red de Salud UC Christus, Santiago 7820436, Chile
| | - Vania Valenzuela
- Departamento de Medicina Familiar, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Andrea Schilling
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
- Departamento de Pediatría, Clínica Alemana de Santiago, Santiago 7650568, Chile
| | - Victoria Gaete
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Lilian Rubio
- Departamento de Pediatría, Clínica Alemana de Santiago, Santiago 7650568, Chile
- Servicio de Neonatología, Hospital Luis Tisné, Santiago 7910000, Chile
| | - Mario Calvo
- Instituto de Pediatría, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Loreto Twele
- Hospital Puerto Montt, Puerto Montt 5507798, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt 5501842, Chile
| | - Marcela González
- Hospital Dr. Gustavo Fricke, Viña Del Mar 2340000, Chile
- Departamento de Pediatría, Universidad de Valparaíso, Valparaíso 2361845, Chile
| | - Daniela Fuentes
- Departamento de Pediatría, Universidad de Valparaíso, Valparaíso 2361845, Chile
| | - Valentina Gutiérrez
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (N.L.C.); (K.A.)
- Unidad de Infectología Pediátrica, Servicio de Pediatría, Complejo Asistencial Dr. Sótero del Río, Santiago 8150215, Chile
| | - Felipe Reyes
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (N.L.C.); (K.A.)
- Unidad de Infectología Pediátrica, Servicio de Pediatría, Complejo Asistencial Dr. Sótero del Río, Santiago 8150215, Chile
| | - Lorena I. Tapia
- Departamento de Pediatría y Cirugía Infantil Norte, Hospital Roberto del Río, Facultad de Medicina, Universidad de Chile, Santiago 8380418, Chile
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Rodolfo Villena
- Hospital Exequiel González Cortés, Facultad de Medicina, Departamento de Pediatría y Cirugía Infantil Campus Sur, Universidad de Chile, Santiago 8900085, Chile
| | - Angello Retamal-Díaz
- Departamento de Biotecnología, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta 1271155, Chile
- Hospital Clínico Universidad de Antofagasta, Universidad de Antofagasta, Antofagasta 1270001, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Antonio Cárdenas
- Hospital Clínico Universidad de Antofagasta, Universidad de Antofagasta, Antofagasta 1270001, Chile
- Departamento de Ciencias Médicas, Facultad de Medicina y Odontología, Universidad de Antofagasta, Antofagasta 1271155, Chile
- Servicio de Pediatría, Hospital Regional de Antofagasta, Antofagasta 1240835, Chile
| | - Eduardo Alarcón-Bustamante
- Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Millennium Nucleus on Intergenerational Mobility: From Modelling to Policy (MOVI) [NCS2021072], Santiago 7820436, Chile
- Interdisciplinary Laboratory of Social Statistics, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Xing Meng
- Sinovac Biotech, Beijing 100085, China
| | | | - José V. González-Aramundiz
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - María Javiera Álvarez-Figueroa
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile
| | | | - Cecilia Perret
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile; (N.L.C.); (K.A.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| |
Collapse
|
50
|
Ren Y, Shi L, Xie Y, Wang C, Zhang W, Wang F, Sun H, Huang L, Wu Y, Xing Z, Ren W, Heinrich J, Wu Q, Pei Z. Course and clinical severity of the SARS-CoV-2 Omicron variant infection in Tianjin, China. Medicine (Baltimore) 2023; 102:e34669. [PMID: 37746953 PMCID: PMC10519499 DOI: 10.1097/md.0000000000034669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 09/26/2023] Open
Abstract
There is limited information describing the course and severity of illness in subjects infected by the severe acute respiratory syndrome coronavirus 2 Omicron variant, especially in children. In this population-based cohort study, subjects with Omicron variant infection during the outbreak between January 8 and February 12, 2022 in Tianjin, China were included (n = 429). The main outcomes were the distribution of asymptomatic, mild, moderate, and severe patients, and clinical courses including the interval from positive polymerase chain reaction (PCR) test to the onset, aggravation or relief of symptoms, and the interval of reversing positive PCR-test into negative, and length of hospital stay. Of the 429 subjects (113 [26.3%] children; 239 [55.7%] female; median age, 36 years [interquartile range 15.0 to 55.0 years]), the proportion (95% CI) of symptomatic subjects on admission was 95.6% (93.2%, 97.2%), including 60.4% (55.7%, 64.9%) mild, 35.0% (30.6%, 39.6%) moderate, and 0.2% (0.0%, 1.3%) severe. Compared with adults, children had lower proportion of moderate Covid-19 (8.8% vs 44.3%). On discharge, 45.9% (41.3%, 50.7%) and 42.2% (37.6%, 46.9%) of the subjects were diagnosed as having experienced mild and moderate Covid-19. The median (interquartile range) length of hospital stay was 14.0 (12.0, 15.0) days. The median interval of reversing positive PCR-test into negative was 12.0 (10.0, 13.0) days. Symptomatic and moderate Covid-19 in Omicron infections was common in adults and children, recovery from Omicron infections took around 2 weeks of time. The severe acute respiratory syndrome coronavirus 2 Omicron infection in this study was not as mild as previously suggested.
Collapse
Affiliation(s)
- Yi Ren
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Lixia Shi
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Yi Xie
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Chao Wang
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Wenxin Zhang
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Feifei Wang
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Haibai Sun
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Lijun Huang
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Yuanrong Wu
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Zhiheng Xing
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Wenjuan Ren
- Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Qi Wu
- Tianjin Institute of Respiratory Diseases, Tianjin, China
- Medical College, Tianjin University, Tianjin, China
| | - Zhengcun Pei
- Medical College, Tianjin University, Tianjin, China
| |
Collapse
|