1
|
Jacobs B, Leroux-Roels I, Bruhwyler J, Groth N, Waerlop G, Janssens Y, Tourneur J, De Boever F, Alhatemi A, Moris P, Le Vert A, Leroux-Roels G, Nicolas F. Evaluation of Safety, Immunogenicity and Cross-Reactive Immunity of OVX836, a Nucleoprotein-Based Universal Influenza Vaccine, in Older Adults. Vaccines (Basel) 2024; 12:1391. [PMID: 39772052 PMCID: PMC11728545 DOI: 10.3390/vaccines12121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: In a Phase 2a, double-blind, placebo-controlled study including healthy participants aged 18-55 years, OVX836, a nucleoprotein (NP)-based candidate vaccine, previously showed a good safety profile, a robust immune response (both humoral and cellular) and a preliminary signal of protection (VE = 84%) against PCR-confirmed symptomatic influenza after a single intramuscular dose of 180 µg, 300 µg or 480 µg. Methods: Using the same methodology, we confirmed the good safety and strong immunogenicity of OVX836 at the same doses in older adults (≥65 years), a key target population for influenza vaccination. Results: Significant humoral (anti-NP IgG) and cellular (interferon gamma (IFNγ) spot-forming cells per million peripheral blood mononuclear cells and specific CD4+ IFNγ+ T-cells) immune responses were observed at the three dose levels, without clear dose-response relationship. T-cell responses were shown to be highly cross-reactive against various influenza A strains, both seasonal and highly pathogenic avian strains. We also evaluated the effect of sex (stronger immune response in females) and age (stronger immune response in young adults) on the immune response to OVX836 after adjustment based on the pre-vaccination immune status. Conclusions: The results obtained with OVX836 lay the groundwork for a future placebo-controlled, field proof of concept efficacy Phase 2b trial.
Collapse
Affiliation(s)
- Bart Jacobs
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Jacques Bruhwyler
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Nicola Groth
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Yorick Janssens
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Jessika Tourneur
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Fien De Boever
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Azhar Alhatemi
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Philippe Moris
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Alexandre Le Vert
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Florence Nicolas
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| |
Collapse
|
2
|
Taaffe J, Ostrowsky JT, Mott J, Goldin S, Friede M, Gsell P, Chadwick C. Advancing influenza vaccines: A review of next-generation candidates and their potential for global health impact. Vaccine 2024; 42:126408. [PMID: 39369576 DOI: 10.1016/j.vaccine.2024.126408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Influenza vaccines are an essential tool for influenza prevention, control and preparedness. However, demand for them and their programmatic suitability globally is significantly influenced by their variable effectiveness against influenza illness annually, limited duration of protection and need for yearly updating and vaccination. As such, the World Health Organization and major funders, such as the United States National Institute of Allergy and Infectious Diseases and Bill and Melinda Gates Foundation, have strongly encouraged developing influenza vaccines with increased efficacy, breadth and duration of protection. Here, we review the next-generation influenza vaccine pipeline, focusing on products in clinical development, and compare their characteristics to currently approved seasonal influenza vaccines. METHODS To identify and characterize next-generation influenza vaccine candidates, we conducted a comprehensive literature review, using the CIDRAP Universal Influenza Vaccine Technology Landscape as a primary reference source and extracting additional information from peer-reviewed manuscripts, clinical trial records and other media in the public domain. RESULTS Our analysis reveals a robust clinical development pipeline for next-generation influenza vaccines, featuring a diversity of approaches to address existing vaccine challenges and several candidates in advanced stages of development. mRNA vaccines emerged as a predominant platform, as evidenced by the number of candidates focused on improved seasonal protection as well as combination vaccine candidates targeting additional respiratory viruses. CONCLUSION While still early in development, results from universal or broadly protective products are promising and warrant continued investment from funders. As most Phase 3 candidates are mRNA-based and include combination vaccines, it is critical to begin considering how these new products may become integrated into the current global influenza vaccine strain selection and manufacturing ecosystems, and existing immunization programmes.
Collapse
Affiliation(s)
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, USA
| | - Joshua Mott
- World Health Organization, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
3
|
Zhang W, Sloan A, Prévost J, Tamming L, Raman S, Pfeifle A, Gravel C, Chen W, Hashem AM, Wu J, Cao J, Johnston MJW, Wang L, Sauve S, Rosu-Myles M, Kobasa D, Safronetz D, Li X. Dissecting immunological mechanisms underlying influenza viral nucleoprotein-induced mucosal immunity against diverse viral strains. Emerg Microbes Infect 2024; 13:2427792. [PMID: 39508450 PMCID: PMC11583363 DOI: 10.1080/22221751.2024.2427792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
The nucleoprotein (NP) of type A influenza virus (IAV) is highly conserved across all virus strains, making it an attractive candidate antigen for universal vaccines. While various studies have explored NP-induced mucosal immunity, here we interrogated the mechanistic differences between intramuscular (IM) and intranasal (IN) delivery of a recombinant adenovirus carrying NP fused with a bifunctional CD40 ligand. Despite being less effective than IM delivery in inducing systemic cellular immune responses and antibody-dependent cellular cytotoxicity (ADCC), IN immunization elicited superior antigen-specific recall humoral and cellular response in the nasal associated lymphoid tissue (NALT) of the upper respiratory tract, the initial site of immune recognition and elimination of inhaled pathogens. IN vaccination also induced significantly stronger pulmonary T cell responses in the lower respiratory tract than IM vaccination, in particular the CD8 T cells. Moreover, blocking lymphocyte circulation abrogated IM but not IN immunization induced protection, illustrating the critical role of local memory immune response upon viral infection. Notably, the CD40-targeted nasal delivery not only improved the magnitude but also the breadth of protection, including against lethal challenge with a newly isolated highly pathogenic avian H5N1 strain. These findings are informative for the design of universal mucosal vaccines, where the predominant mode of protection is independent of neutralizing antibodies.
Collapse
Affiliation(s)
- Wanyue Zhang
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Angela Sloan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Jérémie Prévost
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Levi Tamming
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Sathya Raman
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Annabelle Pfeifle
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jianguo Wu
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Michael J. W. Johnston
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Chemistry, Carlton University, Ottawa, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Simon Sauve
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Darwyn Kobasa
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
4
|
Ko KH, Bae HS, Park JW, Lee JS, Park S, Heo J, Park H, Choi J, Bae E, Na W, Park SH, Seong BL, Han SH, Kim DH, Cha SB. A vaccine platform targeting lung-resident memory CD4 + T-cells provides protection against heterosubtypic influenza infections in mice and ferrets. Nat Commun 2024; 15:10368. [PMID: 39609429 PMCID: PMC11604757 DOI: 10.1038/s41467-024-54620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Lung tissue-resident memory T (TRM) cells induced by influenza vaccination are crucial for heterosubtypic immunity upon re-exposure to the influenza virus, enabling rapid and robust responses upon reactivation. To enhance the efficacy of influenza vaccines, we induce the generation of lung TRM cells following intranasal vaccination with a commercial influenza vaccine adjuvanted with NexaVant (NVT), a TLR3 agonist-based adjuvant. We demonstrate that intranasal immunization with the NVT-adjuvanted vaccine provides improved protection against influenza virus infections by inducing the generation of CD4+ TRM cells in the lungs in a type I interferon-dependent manner. These pulmonary CD4+ TRM cells provide potent mucosal immunity and cross-protection against heterosubtypic infections in both mouse and ferret models. This vaccine platform has the potential to significantly improve conventional intramuscular influenza vaccines by providing broader protection.
Collapse
Affiliation(s)
- Kwang Hyun Ko
- R&D Center, NA Vaccine Institute, Seoul, 05854, Republic of Korea
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Shik Bae
- R&D Center, NA Vaccine Institute, Seoul, 05854, Republic of Korea
| | - Jeong Woo Park
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Sun Lee
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Somin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Heo
- Vaccine R&D Team, Central Institute, Il-Yang Pharmaceutical, Yongin, 17096, Republic of Korea
| | - Hyunsoo Park
- Vaccine R&D Team, Central Institute, Il-Yang Pharmaceutical, Yongin, 17096, Republic of Korea
| | - Jaeseok Choi
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eunseo Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seong-Hyun Park
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, 08826, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 08826, Republic of Korea
| | - Seung Hyun Han
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Ho Kim
- R&D Center, NA Vaccine Institute, Seoul, 05854, Republic of Korea.
| | - Seung Bin Cha
- R&D Center, NA Vaccine Institute, Seoul, 05854, Republic of Korea.
| |
Collapse
|
5
|
Norizwan JAM, Tan WS. Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100317. [PMID: 39717209 PMCID: PMC11665419 DOI: 10.1016/j.crmicr.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The threat of influenza A virus (IAV) remains an annual health concern, as almost 500,000 people die each year due to the seasonal flu. Current flu vaccines are highly dependent on embryonated chicken eggs for production, which is time consuming and costly. These vaccines only confer moderate protections in elderly people, and they lack cross-protectivity; thereby requiring annual reformulation to ensure effectiveness against contemporary circulating strains. To address current limitations, new strategies are being sought, with great emphasis given on exploiting IAV's conserved antigens for vaccine development, and by using different vaccine technologies to enhance immunogenicity and expedite vaccine production. Among these technologies, there are growing pre-clinical and clinical studies involving virus-like particles (VLPs), as they are capable to display multiple conserved IAV antigens and augment their immune responses. In this review, we outline recent findings involving broadly effective IAV antigens and strategies to display these antigens on VLPs. Current production systems for IAV VLP vaccines are comprehensively reviewed. Pain-free methods for administration of IAV VLP vaccines through intranasal and transdermal routes, as well as the mechanisms in stimulating immune responses are discussed in detail. The future perspectives of VLPs in IAV vaccine development are discussed, particularly concerning their potentials in overcoming current immunological limitations of IAV vaccines, and their inherent advantages in exploring intranasal vaccination studies. We also propose avenues to expedite VLP vaccine production, as we envision that there will be more clinical trials involving IAV VLP vaccines, leading to commercialization of these vaccines in the near future.
Collapse
Affiliation(s)
- Jaffar Ali Muhamad Norizwan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Valiveti CK, Rajput M, Thakur N, Momin T, Bhowmik M, Tummala H. A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine. Vaccines (Basel) 2024; 12:1121. [PMID: 39460287 PMCID: PMC11511251 DOI: 10.3390/vaccines12101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza virus enters the host body through the mucosal surface of the respiratory tract. An efficient immune response at the mucosal site can interfere with virus entry and prevent infection. However, formulating oral vaccines and eliciting an effective mucosal immune response including at respiratory mucosa presents numerous challenges including the potential degradation of antigens by acidic gastric fluids and the risk of antigen dilution and dispersion over a large surface area of the gut, resulting in minimal antigen uptake by the immune cells. Additionally, oral mucosal vaccines have to overcome immune tolerance in the gut. To address the above challenges, in the current study, we evaluated inulin acetate (InAc) nanoparticles (NPs) as a vaccine adjuvant and antigen delivery system for oral influenza vaccines. InAc was developed as the first polysaccharide polymer-based TLR4 agonist; when tailored as a nanoparticulate vaccine delivery system, it enhanced antigen delivery to dendritic cells and induced a strong cellular and humoral immune response. This study compared the efficacy of InAc-NPs as a delivery system for oral vaccines with Poly (lactic-co-glycolic acid) (PLGA) NPs, utilizing influenza A nucleoprotein (Inf-A) as an antigen. InAc-NPs effectively protected the encapsulated antigen in both simulated gastric (pH 1.1) and intestinal fluids (pH 6.8). Moreover, InAc-NPs facilitated enhanced antigen delivery to macrophages, compared to PLGA-NPs. Oral vaccination studies in Balb/c mice revealed that InAc-Inf-A NPs significantly boosted the levels of Influenza virus-specific IgG and IgA in serum, as well as total and virus-specific IgA in the intestines and lungs. Furthermore, mice vaccinated with InAc-Inf-A-NPs exhibited notably higher hemagglutination inhibition (HI) titers at mucosal sites compared to those receiving the antigen alone. Overall, our study underscores the efficacy of InAc-NPs in safeguarding vaccine antigens post-oral administration, enhancing antigen delivery to antigen-presenting cells, and eliciting higher virus-neutralizing antibodies at mucosal sites following vaccination.
Collapse
Affiliation(s)
- Chaitanya K. Valiveti
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| | - Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Neelu Thakur
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Tooba Momin
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Malabika Bhowmik
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| |
Collapse
|
7
|
Isakova-Sivak I, Rudenko L. A promising candidate for a universal influenza vaccine. THE LANCET. INFECTIOUS DISEASES 2023; 23:1327-1329. [PMID: 37517421 DOI: 10.1016/s1473-3099(23)00366-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Affiliation(s)
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint Petersburg 197376, Russia.
| |
Collapse
|
8
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|