1
|
Liang W, Luo Y, Xu A, Chu J, Ji W, Wang L, Gu Y, Lu X, Hou A, Liu Y, Gao J, Yin Y. Advances in carrier-delivered small interfering RNA based therapeutics for treatment of neurodegenerative diseases. Biomater Sci 2024; 12:4927-4945. [PMID: 39206575 DOI: 10.1039/d4bm00878b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are devastating diseases that severely affect the health of people all over the world. RNA therapies have become one of the most promising critical drug treatments for neurodegenerative diseases due to their excellent gene and protein editing effects. However, the successful transport of RNA via the systemic route to the central nervous system remains one of the major obstacles in treating neurodegenerative diseases. This review will focus on therapeutic RNA that can successfully overcome the blood-brain barrier (BBB), with particular attention to small interfering RNAs (siRNAs), focusing on different types of neurodegenerative disease treatment strategies and accelerating their translation into clinical practice.
Collapse
Affiliation(s)
- Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yi Luo
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, China
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Ajing Xu
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, China
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Li Wang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Xinyu Lu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Along Hou
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Yan Liu
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, China
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Lee YH, Park HI, Choi JS. Novel glycol chitosan-based polymeric gene carrier synthesized by a Michael addition reaction with low molecular weight polyethylenimine. Carbohydr Polym 2016; 137:669-677. [DOI: 10.1016/j.carbpol.2015.10.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/25/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022]
|
3
|
Duan X, Wang P, Men K, Gao X, Huang M, Gou M, Chen L, Qian Z, Wei Y. Treating colon cancer with a suicide gene delivered by self-assembled cationic MPEG-PCL micelles. NANOSCALE 2012; 4:2400-7. [PMID: 22388488 DOI: 10.1039/c2nr30079f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biodegradable cationic micelles show promise for applications in gene delivery. In this article, we used DOTAP to modify monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL, MP) micelles in one step, creating novel cationic self-assembled DOTAP and MPEG-PCL hybrid micelles (DMP). These micelles had a mean particle size of 46 ± 5.6 nm and a zeta potential of 41.8 ± 0.5 mV, and had the capacity to bind DNA. Compared with PEI25K (the gold standard), DMP micelles had higher transfection efficiency and lower cytotoxicity. Moreover, we used DMP to deliver the Survivin-T34A gene (S-T34A, a suicide gene) to treat colon cancer. DMP delivered the Survivin-T34A gene (DMP/S-T34A) and could induce apoptosis in cancer cells, resulting in inhibition of the growth of C-26 colon cancer cells in vitro. An in vivo study indicated that intraperitoneal administration of DMP micelles delivered the Survivin-T34A gene and efficiently inhibited the growth of abdominal metastatic C-26 colon cancer and the malignant ascites. These data suggest that DMP may be a novel gene carrier, and its delivery of the S-T34A gene may have promising applications in the treatment of colon cancer.
Collapse
Affiliation(s)
- XingMei Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|