1
|
Fulcher JM, Ives AN, Tasaki S, Kelly SS, Williams SM, Fillmore TL, Zhou M, Moore RJ, Qian WJ, Paša-Tolić L, Yu L, Oveisgharan S, Bennett DA, De Jager PL, Petyuk VA. Discovery of Proteoforms Associated with Alzheimer's Disease Through Quantitative Top-Down Proteomics. Mol Cell Proteomics 2025:100983. [PMID: 40334744 DOI: 10.1016/j.mcpro.2025.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
The complex nature of Alzheimer's disease (AD) and its heterogenous clinical presentation has prompted numerous large-scale -omic analyses aimed at providing a global understanding of the pathophysiological processes involved. AD involves isoforms, proteolytic products, and post-translationally modified proteins such as amyloid beta (Aβ) and microtuble-associated protein tau. Top-down proteomics (TDP) directly measures these species, and thus, offers a comprehensive view of pathologically relevant proteoforms that are difficult to analyze using traditional proteomic techniques. Here, we broadly explored associations between proteoforms and clinicopathological traits of AD by deploying a quantitative TDP approach across frontal cortex of 103 subjects selected from the ROS and MAP cohorts. The approach identified 1,213 proteins and 11,782 proteoforms, of which 154 proteoforms had at least one significant association with a clinicopathological phenotype. One important finding included identifying Aβ C-terminal truncation state as the key property for differential association between amyloid plaques and cerebral amyloid angiopathy (CAA). Furthermore, various N-terminally truncated forms of Aβ had noticeably stronger association with amyloid plaques and global cognitive function. Additionally, we discovered six VGF neuropeptides that were positively associated with cognitive function independent of pathological burden. The database of brain cortex proteoforms provides a valuable context for functional characterization of the proteins involved in Alzheimer's disease and other late-onset brain pathologies.
Collapse
Affiliation(s)
- James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ashley N Ives
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Shane S Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mowei Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology & Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center; New York, NY, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
2
|
Bonnar O, Eyre B, van Veluw SJ. Perivascular brain clearance as a therapeutic target in cerebral amyloid angiopathy and Alzheimer's disease. Neurotherapeutics 2025; 22:e00535. [PMID: 39890534 PMCID: PMC12047398 DOI: 10.1016/j.neurot.2025.e00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Although distinct diseases, both cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) are characterized by the aggregation and accumulation of amyloid-β (Aβ). This is thought to be due, in part, to impaired perivascular Aβ clearance from the brain. This shared failure in both diseases presents a common opportunity for therapeutic intervention. In this review we discuss the idea that promoting perivascular brain clearance could be an effective strategy for safely reducing Aβ levels in CAA and AD thereby improving clinical outcomes, most notably hemorrhagic stroke and cognitive decline. We will explore the evidence for the different forces that are thought to drive perivascular brain clearance, review the literature on potential strategies for potentiating these driving forces, and finally we will discuss the substantial translational challenges and considerations that would accompany such an intervention.
Collapse
Affiliation(s)
- Orla Bonnar
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Beth Eyre
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Susanne J van Veluw
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Hindsholm MF, Gaist D, Ulhøi BP, Simonsen CZ. Clinical Reasoning: A 32-Year-Old Woman With Recurrent Intracerebral Hemorrhages. Neurology 2025; 104:e213422. [PMID: 39889264 DOI: 10.1212/wnl.0000000000213422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 02/02/2025] Open
Abstract
Evaluating patients with intracerebral hemorrhage is common practice in the field of stroke neurology but can be complicated and may require extensive evaluation in younger patients with no history of hypertension. In this case, a healthy 32-year-old woman presented with an acute spontaneous lobar intracerebral hemorrhage. Neurologic workup required extensive imaging evaluation, genetic testing, and a thorough evaluation of patient and family medical history to identify the final diagnosis. This case highlights the diagnostic approach and importance of thorough clinical evaluation of young patients with intracerebral hemorrhages. Readers will walk through the stepwise diagnostic approach to arrive at the leading diagnosis with a review of the possible differential diagnoses and a discussion of this rare condition.
Collapse
Affiliation(s)
- Mette Foldager Hindsholm
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachussetts General Hospital and Harvard Medical School, Boston
- Department of Clinical Medicine, Aarhus University, Department of Neurology, Aarhus University Hospital, Denmark
| | - David Gaist
- Research Unit for Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and
| | | | - Claus Ziegler Simonsen
- Department of Clinical Medicine, Aarhus University, Department of Neurology, Aarhus University Hospital, Denmark
| |
Collapse
|
4
|
van Veluw SJ, Benveniste H, Bakker ENTP, Carare RO, Greenberg SM, Iliff JJ, Lorthois S, Van Nostrand WE, Petzold GC, Shih AY, van Osch MJP. Is CAA a perivascular brain clearance disease? A discussion of the evidence to date and outlook for future studies. Cell Mol Life Sci 2024; 81:239. [PMID: 38801464 PMCID: PMC11130115 DOI: 10.1007/s00018-024-05277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The brain's network of perivascular channels for clearance of excess fluids and waste plays a critical role in the pathogenesis of several neurodegenerative diseases including cerebral amyloid angiopathy (CAA). CAA is the main cause of hemorrhagic stroke in the elderly, the most common vascular comorbidity in Alzheimer's disease and also implicated in adverse events related to anti-amyloid immunotherapy. Remarkably, the mechanisms governing perivascular clearance of soluble amyloid β-a key culprit in CAA-from the brain to draining lymphatics and systemic circulation remains poorly understood. This knowledge gap is critically important to bridge for understanding the pathophysiology of CAA and accelerate development of targeted therapeutics. The authors of this review recently converged their diverse expertise in the field of perivascular physiology to specifically address this problem within the framework of a Leducq Foundation Transatlantic Network of Excellence on Brain Clearance. This review discusses the overarching goal of the consortium and explores the evidence supporting or refuting the role of impaired perivascular clearance in the pathophysiology of CAA with a focus on translating observations from rodents to humans. We also discuss the anatomical features of perivascular channels as well as the biophysical characteristics of fluid and solute transport.
Collapse
Affiliation(s)
- Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Erik N T P Bakker
- Department of Biomedical Engineering, Amsterdam University Medical Center, Location AMC, Amsterdam Neuroscience Research Institute, Amsterdam, The Netherlands
| | - Roxana O Carare
- Clinical Neurosciences, University of Southampton, Southampton, UK
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Iliff
- VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Sylvie Lorthois
- Institut de Mécanique Des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS, Toulouse, France
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Science, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Gabor C Petzold
- German Center for Neurodegenerative Disease, Bonn, Germany
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
5
|
Bilodeau PA, Dickson JR, Kozberg MG. The Impact of Anti-Amyloid Immunotherapies on Stroke Care. J Clin Med 2024; 13:1245. [PMID: 38592119 PMCID: PMC10931618 DOI: 10.3390/jcm13051245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 04/10/2024] Open
Abstract
Anti-amyloid immunotherapies have recently emerged as treatments for Alzheimer's disease. While these therapies have demonstrated efficacy in clearing amyloid-β and slowing cognitive decline, they have also been associated with amyloid-related imaging abnormalities (ARIA) which include both edema (ARIA-E) and hemorrhage (ARIA-H). Given that ARIA have been associated with significant morbidity in cases of antithrombotic or thrombolytic therapy, an understanding of mechanisms of and risk factors for ARIA is of critical importance for stroke care. We discuss the latest data regarding mechanisms of ARIA, including the role of underlying cerebral amyloid angiopathy, and implications for ischemic stroke prevention and management.
Collapse
Affiliation(s)
- Philippe A. Bilodeau
- Division of Neuroimmunology and Neuroinfectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - John R. Dickson
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Boston, MA 02129, USA;
| | - Mariel G. Kozberg
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Boston, MA 02129, USA;
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
6
|
Muir RT, Ismail Z, Black SE, Smith EE. Comparative methods for quantifying plasma biomarkers in Alzheimer's disease: Implications for the next frontier in cerebral amyloid angiopathy diagnostics. Alzheimers Dement 2024; 20:1436-1458. [PMID: 37908054 PMCID: PMC10916950 DOI: 10.1002/alz.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 11/02/2023]
Abstract
Plasma amyloid beta (Aβ) and tau are emerging as accessible biomarkers for Alzheimer's disease (AD). However, many assays exist with variable test performances, highlighting the need for a comparative assessment to identify the most valid assays for future use in AD and to apply to other settings in which the same biomarkers may be useful, namely, cerebral amyloid angiopathy (CAA). CAA is a progressive cerebrovascular disease characterized by deposition of Aβ40 and Aβ42 in cortical and leptomeningeal vessels. Novel immunotherapies for AD can induce amyloid-related imaging abnormalities resembling CAA-related inflammation. Few studies have evaluated plasma biomarkers in CAA. Identifying a CAA signature could facilitate diagnosis, prognosis, and a safer selection of patients with AD for emerging immunotherapies. This review evaluates studies that compare the diagnostic test performance of plasma biomarker techniques in AD and cerebrovascular and plasma biomarker profiles of CAA; it also discusses novel hypotheses and future avenues for plasma biomarker research in CAA.
Collapse
Affiliation(s)
- Ryan T. Muir
- Calgary Stroke ProgramDepartment of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Zahinoor Ismail
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryUniversity of CalgaryCalgaryAlbertaCanada
| | - Sandra E. Black
- Division of NeurologyDepartment of MedicineSunnybrook Health Sciences CentreTorontoOntarioCanada
- LC Campbell Cognitive Neurology Research UnitDr Sandra Black Centre for Brain Resilience and Recovery, and Hurvitz Brain Sciences ProgramSunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | - Eric E. Smith
- Calgary Stroke ProgramDepartment of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
7
|
Banerjee G, Schott JM, Ryan NS. Familial cerebral amyloid disorders with prominent white matter involvement. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:289-315. [PMID: 39322385 DOI: 10.1016/b978-0-323-99209-1.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Familial cerebral amyloid disorders are characterized by the accumulation of fibrillar protein aggregates, which deposit in the parenchyma as plaques and in the vasculature as cerebral amyloid angiopathy (CAA). Amyloid β (Aβ) is the most common of these amyloid proteins, accumulating in familial and sporadic forms of Alzheimer's disease and CAA. However, there are also a number of rare, hereditary, non-Aβ cerebral amyloidosis. The clinical manifestations of these familial cerebral amyloid disorders are diverse, including cognitive or neuropsychiatric presentations, intracerebral hemorrhage, seizures, myoclonus, headache, ataxia, and spasticity. Some mutations are associated with extensive white matter hyperintensities on imaging, which may or may not be accompanied by hemorrhagic imaging markers of CAA; others are associated with occipital calcification. We describe the clinical, imaging, and pathologic features of these disorders and discuss putative disease mechanisms. Familial disorders of cerebral amyloid accumulation offer unique insights into the contributions of vascular and parenchymal amyloid to pathogenesis and the pathways underlying white matter involvement in neurodegeneration. With Aβ immunotherapies now entering the clinical realm, gaining a deeper understanding of these processes and the relationships between genotype and phenotype has never been more relevant.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom.
| |
Collapse
|
8
|
Saito S, Suzuki K, Ohtani R, Maki T, Kowa H, Tachibana H, Washida K, Kawabata N, Mizuno T, Kanki R, Sudoh S, Kitaguchi H, Shindo K, Shindo A, Oka N, Yamamoto K, Yasuno F, Kakuta C, Kakuta R, Yamamoto Y, Hattori Y, Takahashi Y, Nakaoku Y, Tonomura S, Oishi N, Aso T, Taguchi A, Kagimura T, Kojima S, Taketsuna M, Tomimoto H, Takahashi R, Fukuyama H, Nagatsuka K, Yamamoto H, Fukushima M, Ihara M. Efficacy and Safety of Cilostazol in Mild Cognitive Impairment: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2344938. [PMID: 38048134 PMCID: PMC10696485 DOI: 10.1001/jamanetworkopen.2023.44938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/15/2023] [Indexed: 12/05/2023] Open
Abstract
Importance Recent evidence indicates the efficacy of β-amyloid immunotherapy for the treatment of Alzheimer disease, highlighting the need to promote β-amyloid removal from the brain. Cilostazol, a selective type 3 phosphodiesterase inhibitor, promotes such clearance by facilitating intramural periarterial drainage. Objective To determine the safety and efficacy of cilostazol in mild cognitive impairment. Design, Setting, and Participants The COMCID trial (A Trial of Cilostazol for Prevention of Conversion from Mild Cognitive Impairment to Dementia) was an investigator-initiated, double-blind, phase 2 randomized clinical trial. Adult participants were registered between May 25, 2015, and March 31, 2018, and received placebo or cilostazol for up to 96 weeks. Participants were treated in the National Cerebral and Cardiovascular Center and 14 other regional core hospitals in Japan. Patients with mild cognitive impairment with Mini-Mental State Examination (MMSE) scores of 22 to 28 points (on a scale of 0 to 30, with lower scores indicating greater cognitive impairment) and Clinical Dementia Rating scores of 0.5 points (on a scale of 0, 0.5, 1, 2, and 3, with higher scores indicating more severe dementia) were enrolled. The data were analyzed from May 1, 2020, to December 1, 2020. Interventions The participants were treated with placebo, 1 tablet twice daily, or cilostazol, 50 mg twice daily, for up to 96 weeks. Main Outcomes and Measures The primary end point was the change in the total MMSE score from baseline to the final observation. Safety analyses included all adverse events. Results The full analysis set included 159 patients (66 [41.5%] male; mean [SD] age, 75.6 [5.2] years) who received placebo or cilostazol at least once. There was no statistically significant difference between the placebo and cilostazol groups for the primary outcome. The least-squares mean (SE) changes in the MMSE scores among patients receiving placebo were -0.1 (0.3) at the 24-week visit, -0.8 (0.3) at 48 weeks, -1.2 (0.4) at 72 weeks, and -1.3 (0.4) at 96 weeks. Among those receiving cilostazol, the least-squares mean (SE) changes in MMSE scores were -0.6 (0.3) at 24 weeks, -1.0 (0.3) at 48 weeks, -1.1 (0.4) at 72 weeks, and -1.8 (0.4) at 96 weeks. Two patients (2.5%) in the placebo group and 3 patients (3.8%) in the cilostazol group withdrew owing to adverse effects. There was 1 case of subdural hematoma in the cilostazol group, which may have been related to the cilostazol treatment; the patient was successfully treated surgically. Conclusions and Relevance In this randomized clinical trial, cilostazol was well tolerated, although it did not prevent cognitive decline. The efficacy of cilostazol should be tested in future trials. Trial Registration ClinicalTrials.gov Identifier: NCT02491268.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Keisuke Suzuki
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ryo Ohtani
- Department of Neurology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisatomo Kowa
- Division of Neurology, Kobe University Hospital, Kobe, Japan
| | | | - Kazuo Washida
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rie Kanki
- Department of Neurology, Osaka City General Hospital, Osaka, Japan
| | - Shinji Sudoh
- Department of Neurology, National Hospital Organization, Utano National Hospital, Kyoto, Japan
| | - Hiroshi Kitaguchi
- Department of Neurology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Katsuro Shindo
- Department of Neurology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Akihiro Shindo
- Department of Neurology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Nobuyuki Oka
- Department of Neurology, National Hospital Organization Minami Kyoto Hospital, Joyo, Japan
| | - Keiichi Yamamoto
- Internal Medicine and Neurology, Nara Midori Clinic, Nara, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Chikage Kakuta
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ryosuke Kakuta
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yumi Yamamoto
- Department of Molecular Innovation in Lipidemiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukako Takahashi
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yuriko Nakaoku
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Tonomura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshihiko Aso
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Tatsuo Kagimura
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Shinsuke Kojima
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Masanori Taketsuna
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidenao Fukuyama
- Research and Educational Unit of Leaders for Integrated Medical System, Kyoto University, Kyoto, Japan
| | - Kazuyuki Nagatsuka
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Haruko Yamamoto
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
9
|
Poonja S, Costello F. Neuro-ophthalmic manifestations of autoimmune disorders: diagnostic pearls & pitfalls. Curr Opin Ophthalmol 2023; 34:500-513. [PMID: 37729661 DOI: 10.1097/icu.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight a clinical-anatomical approach to localizing neuro-ophthalmic manifestations of associated autoimmune disorders. RECENT FINDINGS Our understanding of autoimmune conditions has changed considerably over recent years, particularly with the emergence of novel autoantibodies. Cardinal neuro-ophthalmic signs and symptoms of antibody-mediated autoimmune disorders have been well characterized; knowledge thereof may be the first step towards an accurate diagnosis. SUMMARY A thorough history, further refined by a comprehensive examination are cornerstones to disease localization in clinical medicine. Taken together, these essential steps both guide investigations and facilitate early recognition of autoimmune disorders. From a neuro-ophthalmic perspective, it is important to understand heralding signs and symptoms of autoimmune syndromes, avoid cognitive errors, and remain mindful of common diagnostic pitfalls to optimize care. VIDEO ABSTRACT http://links.lww.com/COOP/A61.
Collapse
Affiliation(s)
- Sabrina Poonja
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton
| | - Fiona Costello
- Departments of Clinical Neurosciences
- Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
11
|
Sembill JA, Lusse C, Linnerbauer M, Sprügel MI, Mrochen A, Knott M, Engelhorn T, Schmidt MA, Doerfler A, Oberstein TJ, Maler JM, Kornhuber J, Lewczuk P, Rothhammer V, Schwab S, Kuramatsu JB. Cerebrospinal fluid biomarkers for cerebral amyloid angiopathy. Brain Commun 2023; 5:fcad159. [PMID: 37389304 PMCID: PMC10300526 DOI: 10.1093/braincomms/fcad159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/10/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
Integrating cerebrospinal fluid-biomarkers into diagnostic workup of patients with sporadic cerebral amyloid angiopathy may support early and correct identification. We aimed to identify and validate clinical- and cerebrospinal fluid-biomarkers for in vivo diagnosis of cerebral amyloid angiopathy. This observational cohort study screened 2795 consecutive patients admitted for cognitive complaints to the academic departments of neurology and psychiatry over a 10-year period (2009-2018). We included 372 patients with available hemosiderin-sensitive MR imaging and cerebrospinal fluid-based neurochemical dementia diagnostics, i.e. Aβ40, Aβ42, t-tau, p-tau. We investigated the association of clinical- and cerebrospinal fluid-biomarkers with the MRI-based diagnosis of cerebral amyloid angiopathy, applying confounder-adjusted modelling, receiver operating characteristic and unsupervised cluster analyses. We identified 67 patients with cerebral amyloid angiopathy, 76 patients with Alzheimer's disease, 75 patients with mild cognitive impairment due to Alzheimer's disease, 76 patients with mild cognitive impairment with unlikely Alzheimer's disease and 78 healthy controls. Patients with cerebral amyloid angiopathy showed a specific cerebrospinal fluid pattern: average concentration of Aß40 [13 792 pg/ml (10 081-18 063)] was decreased compared to all controls (P < 0.05); Aß42 [634 pg/ml (492-834)] was comparable to Alzheimer's disease and mild cognitive impairment due to Alzheimer's disease (P = 0.10, P = 0.93) but decreased compared to mild cognitive impairment and healthy controls (both P < 0.001); p-tau [67.3 pg/ml (42.9-91.9)] and t-tau [468 pg/ml (275-698)] were decreased compared to Alzheimer's disease (P < 0.001, P = 0.001) and mild cognitive impairment due to Alzheimer's disease (P = 0.001, P = 0.07), but elevated compared to mild cognitive impairment and healthy controls (both P < 0.001). Multivariate modelling validated independent clinical association of cerebral amyloid angiopathy with older age [odds-ratio: 1.06, 95% confidence interval (1.02-1.10), P < 0.01], prior lobar intracerebral haemorrhage [14.00 (2.64-74.19), P < 0.01], prior ischaemic stroke [3.36 (1.58-7.11), P < 0.01], transient focal neurologic episodes (TFNEs) [4.19 (1.06-16.64), P = 0.04] and gait disturbance [2.82 (1.11-7.15), P = 0.03]. For cerebrospinal fluid-biomarkers per 1 pg/ml, both lower Aß40 [0.9999 (0.9998-1.0000), P < 0.01] and lower Aß42 levels [0.9989 (0.9980-0.9998), P = 0.01] provided an independent association with cerebral amyloid angiopathy controlled for all aforementioned clinical confounders. Both amyloid biomarkers showed good discrimination for diagnosis of cerebral amyloid angiopathy among adjusted receiver operating characteristic analyses (area under the receiver operating characteristic curves, Aß40: 0.80 (0.73-0.86), P < 0.001; Aß42: 0.81 (0.75-0.88), P < 0.001). Unsupervised Euclidian clustering of all cerebrospinal fluid-biomarker-profiles resulted in distinct segregation of cerebral amyloid angiopathy patients from all controls. Together, we demonstrate that a distinctive set of cerebrospinal fluid-biomarkers effectively differentiate cerebral amyloid angiopathy patients from patients with Alzheimer's disease, mild cognitive impairment with or without underlying Alzheimer's disease, and healthy controls. Integrating our findings into a multiparametric approach may facilitate diagnosing cerebral amyloid angiopathy, and may aid clinical decision-making, but warrants future prospective validation.
Collapse
Affiliation(s)
- Jochen A Sembill
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Christoph Lusse
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Mathias Linnerbauer
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Maximilian I Sprügel
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Anne Mrochen
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Michael Knott
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Manuel Alexander Schmidt
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, and Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-090 Bialystok, Poland
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stefan Schwab
- Department of Neurology, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Joji B Kuramatsu
- Correspondence to: Joji B. Kuramatsu, MD Department of Neurology, University Hospital Erlangen Schwabachanlage 6, 91054 Erlangen, Germany E-mail:
| |
Collapse
|
12
|
Smith EE, Greenberg SM, Black SE. The impending era of beta-amyloid therapy: Clinical and research considerations for treating vascular contributions to neurodegeneration. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 6:100159. [PMID: 39071744 PMCID: PMC11273061 DOI: 10.1016/j.cccb.2023.100159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 07/30/2024]
Affiliation(s)
- Eric E. Smith
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Radiology, and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sandra E. Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Villain N, Planche V, Levy R. High-clearance anti-amyloid immunotherapies in Alzheimer's disease. Part 2: putative scenarios and timeline in case of approval, recommendations for use, implementation, and ethical considerations in France. Rev Neurol (Paris) 2022; 178:999-1010. [PMID: 36336488 DOI: 10.1016/j.neurol.2022.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/20/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Abstract
In 2021, aducanumab, an immunotherapy targeting amyloid-β, was approved for Alzheimer's disease (AD) by the US Food and Drug Administration thanks to positive results on a putative biological surrogate marker. This approval has raised an unprecedented controversy. It was followed by a refusal of the European Medicine Agency, which does not allow the marketing of drugs solely on biological arguments and raised safety issues, and important US coverage limitations by the Centers for Medicare & Medicaid Services. Two other anti-amyloid immunotherapies showed significant results regarding a clinical outcome in phase II trials, and five drugs are being studied in phase III trials. Lecanemab is currently under examination for an 'Accelerated Approval' in the US, with an expected decision in January 2023. The common feature and novelty of these anti-amyloid immunotherapies, compared to those tested in previous trials of the 2010s, is their ability to induce a high clearance of amyloid load, as measured with positron emission tomography, in the brain of early-stage biomarker-proven AD patients. In the first part of this review, we underlined through a meta-analysis that the pooled data from high-clearance anti-amyloid immunotherapies trials demonstrated a significant but slight clinical effect after 18 months. Still, safety remains an issue with serious and symptomatic amyloid-related imaging abnormalities, which are seldom (∼1 per 200 treated patients) but occur beyond chance. In the second part of this review, we hypothesized that there is a high probability that some phase III trials of high-clearance anti-amyloid immunotherapies in early AD will finally be unarguably positive on clinical outcomes in the next five years with acceptable safety data. This may, in turn, lead to approval by the European Medicine Agency if the risk-benefit profile is deemed favorable. Such approval would be a game-changer in managing AD patients and for the organization of memory clinics in France. We review the possible timeline and scenarios for putative approval in France and make propositions regarding putative use in clinical practice, putative implementation in a real-life setting, and ethical considerations.
Collapse
Affiliation(s)
- N Villain
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France; Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau - ICM, Paris, France.
| | - V Planche
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; Centre Mémoire Ressources Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, 33000 Bordeaux, France
| | - R Levy
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France; Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau - ICM, Paris, France
| |
Collapse
|
14
|
McCorkindale AN, Mundell HD, Guennewig B, Sutherland GT. Vascular Dysfunction Is Central to Alzheimer's Disease Pathogenesis in APOE e4 Carriers. Int J Mol Sci 2022; 23:7106. [PMID: 35806110 PMCID: PMC9266739 DOI: 10.3390/ijms23137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and the leading risk factor, after age, is possession of the apolipoprotein E epsilon 4 allele (APOE4). Approximately 50% of AD patients carry one or two copies of APOE4 but the mechanisms by which it confers risk are still unknown. APOE4 carriers are reported to demonstrate changes in brain structure, cognition, and neuropathology, but findings have been inconsistent across studies. In the present study, we used multi-modal data to characterise the effects of APOE4 on the brain, to investigate whether AD pathology manifests differently in APOE4 carriers, and to determine if AD pathomechanisms are different between carriers and non-carriers. Brain structural differences in APOE4 carriers were characterised by applying machine learning to over 2000 brain MRI measurements from 33,384 non-demented UK biobank study participants. APOE4 carriers showed brain changes consistent with vascular dysfunction, such as reduced white matter integrity in posterior brain regions. The relationship between APOE4 and AD pathology was explored among the 1260 individuals from the Religious Orders Study and Memory and Aging Project (ROSMAP). APOE4 status had a greater effect on amyloid than tau load, particularly amyloid in the posterior cortical regions. APOE status was also highly correlated with cerebral amyloid angiopathy (CAA). Bulk tissue brain transcriptomic data from ROSMAP and a similar dataset from the Mount Sinai Brain Bank showed that differentially expressed genes between the dementia and non-dementia groups were enriched for vascular-related processes (e.g., "angiogenesis") in APOE4 carriers only. Immune-related transcripts were more strongly correlated with AD pathology in APOE4 carriers with some transcripts such as TREM2 and positively correlated with pathology severity in APOE4 carriers, but negatively in non-carriers. Overall, cumulative evidence from the largest neuroimaging, pathology, and transcriptomic studies available suggests that vascular dysfunction is key to the development of AD in APOE4 carriers. However, further studies are required to tease out non-APOE4-specific mechanisms.
Collapse
Affiliation(s)
- Andrew N. McCorkindale
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (A.N.M.); (H.D.M.)
| | - Hamish D. Mundell
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (A.N.M.); (H.D.M.)
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Boris Guennewig
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (A.N.M.); (H.D.M.)
| |
Collapse
|
15
|
Marcolini S, Frentz I, Sanchez-Catasus CA, Mondragon JD, Feltes PK, van der Hoorn A, Borra RJ, Ikram MA, Dierckx RA, De Deyn PP. Effects of interventions on cerebral perfusion in the Alzheimer's disease spectrum: A systematic review. Ageing Res Rev 2022; 79:101661. [PMID: 35671869 DOI: 10.1016/j.arr.2022.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Cerebral perfusion dysfunctions are seen in the early stages of Alzheimer's disease (AD). We systematically reviewed the literature to investigate the effect of pharmacological and non-pharmacological interventions on cerebral hemodynamics in randomized controlled trials involving AD patients or Mild Cognitive Impairment (MCI) due to AD. Studies involving other dementia types were excluded. Data was searched in April 2021 on MEDLINE, Embase, and Web of Science. Risk of bias was assessed using Cochrane Risk of Bias Tool. A meta-synthesis was performed separating results from MCI and AD studies. 31 studies were included and involved 310 MCI and 792 CE patients. The MCI studies (n = 8) included physical, cognitive, dietary, and pharmacological interventions. The AD studies (n = 23) included pharmacological, physical interventions, and phytotherapy. Cerebral perfusion was assessed with PET, ASL, Doppler, fNIRS, DSC-MRI, Xe-CT, and SPECT. Randomization and allocation concealment methods and subject characteristics such as AD-onset, education, and ethnicity were missing in several papers. Positive effects on hemodynamics were seen in 75 % of the MCI studies, and 52 % of the AD studies. Inserting cerebral perfusion outcome measures, together with established AD biomarkers, is fundamental to target all disease mechanisms and understand the role of cerebral perfusion in AD.
Collapse
|
16
|
Wallin A, Alladi S, Black SE, Chen C, Greenberg SM, Gustafson D, Isaacs JD, Jokinen H, Kalaria R, Mok V, Pantoni L, Pasquier F, Roman GC, Rosenberg GA, Schmidt R, Smith EE, Hainsworth AH. What does aducanumab treatment of Alzheimer's disease mean for research on vascular cognitive disorders? CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100044. [PMID: 36324416 PMCID: PMC9616233 DOI: 10.1016/j.cccb.2022.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Abstract
•Controversial registration of aducanumab for Alzheimer's Disease•Aducanumab is the subject of post-licensing observational studies aiming to follow the effects of the drug•Given the high prevalence of cerebrovascular pathology it is important that these studies do not ignore vascular cognitive disorders•The studies may give detailed phenotyping data that may lead to knowledge of targets for treatments of patients with vascular cognitive disorders.
Collapse
Affiliation(s)
- Anders Wallin
- Institute of Neuroscience and Physiology, University of Gothenburg; and Memory Clinic, Sahlgrenska, University Hospital, Gothenburg, Sweden
| | - Suvarna Alladi
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jeremy D Isaacs
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Hanna Jokinen
- Division of Neuropsychology, HUS Neurocenter, Helsinki University Hospital and University of Helsinki; and Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raj Kalaria
- Institute of Neuroscience Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Vincent Mok
- Lui Che Woo Institute of Innovative Medicine,Lui Che Woo Institute of Innovative Medicine, Gerald Choa Neuroscience Centre, Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Leonardo Pantoni
- Stroke and Dementia Lab, Luigi Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy
| | - Florence Pasquier
- Univ Lille, Inserm 1172, CHU Lille, Labex DistALZ, Licend 59000 Lille, France
| | | | - Gary A. Rosenberg
- Center for Memory and Aging, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Eric E Smith
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Centre, St George's University of London, Mailpoint J-0B, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
17
|
Scherlek AA, Kozberg MG, Nicoll JAR, Perosa V, Freeze WM, van der Weerd L, Bacskai BJ, Greenberg SM, Frosch MP, Boche D, van Veluw SJ. Histopathological correlates of haemorrhagic lesions on ex vivo magnetic resonance imaging in immunized Alzheimer's disease cases. Brain Commun 2022; 4:fcac021. [PMID: 35224489 PMCID: PMC8870423 DOI: 10.1093/braincomms/fcac021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/31/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Haemorrhagic amyloid-related imaging abnormalities on MRI are frequently observed adverse events in the context of amyloid β immunotherapy trials in patients with Alzheimer's disease. The underlying histopathology and pathophysiological mechanisms of haemorrhagic amyloid-related imaging abnormalities remain largely unknown, although coexisting cerebral amyloid angiopathy may play a key role. Here, we used ex vivo MRI in cases that underwent amyloid β immunotherapy during life to screen for haemorrhagic lesions and assess underlying tissue and vascular alterations. We hypothesized that these lesions would be associated with severe cerebral amyloid angiopathy. Ten cases were selected from the long-term follow-up study of patients who enrolled in the first clinical trial of active amyloid β immunization with AN1792 for Alzheimer's disease. Eleven matched non-immunized Alzheimer's disease cases from an independent brain brank were used as 'controls'. Formalin-fixed occipital brain slices were imaged at 7 T MRI to screen for haemorrhagic lesions (i.e. microbleeds and cortical superficial siderosis). Samples with and without haemorrhagic lesions were cut and stained. Artificial intelligence-assisted quantification of amyloid β plaque area, cortical and leptomeningeal cerebral amyloid angiopathy area, the density of iron and calcium positive cells and reactive astrocytes and activated microglia was performed. On ex vivo MRI, cortical superficial siderosis was observed in 5/10 immunized Alzheimer's disease cases compared with 1/11 control Alzheimer's disease cases (κ = 0.5). On histopathology, these areas revealed iron and calcium positive deposits in the cortex. Within the immunized Alzheimer's disease group, areas with siderosis on MRI revealed greater leptomeningeal cerebral amyloid angiopathy and concentric splitting of the vessel walls compared with areas without siderosis. Moreover, greater density of iron-positive cells in the cortex was associated with lower amyloid β plaque area and a trend towards increased post-vaccination antibody titres. This work highlights the use of ex vivo MRI to investigate the neuropathological correlates of haemorrhagic lesions observed in the context of amyloid β immunotherapy. These findings suggest a possible role for cerebral amyloid angiopathy in the formation of haemorrhagic amyloid-related imaging abnormalities, awaiting confirmation in future studies that include brain tissue of patients who received passive immunotherapy against amyloid β with available in vivo MRI during life.
Collapse
Affiliation(s)
- Ashley A. Scherlek
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Mariel G. Kozberg
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - James A. R. Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Valentina Perosa
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Whitney M. Freeze
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian J. Bacskai
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Matthew P. Frosch
- Neuropathology Service, C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Susanne J. van Veluw
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands,Correspondence to: Susanne J. van Veluw MassGeneral Institute for Neurodegenerative Disease Massachusetts General Hospital 114 16th Street Charlestown, 02129 MA, USA E-mail:
| |
Collapse
|
18
|
Sveikata L, Charidimou A, Viswanathan A. Vessels Sing Their ARIAs: The Role of Vascular Amyloid in the Age of Aducanumab. Stroke 2021; 53:298-302. [PMID: 34905943 DOI: 10.1161/strokeaha.121.036873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We review the implications of the recently approved aducanumab amyloid-β immunotherapy for treating Alzheimer disease with comorbid cerebral amyloid angiopathy. In clinical trials, amyloid-β immunotherapy has been associated with a high rate of amyloid-related imaging abnormalities, potentially driven by coexisting cerebral amyloid angiopathy. Therefore, immunotherapy's efficacy in patients may be modified by coexisting cerebrovascular pathology. We discuss the contributions of cerebral amyloid angiopathy on the development of amyloid-related imaging abnormalities and propose strategies to identify cerebral amyloid angiopathy in patients considered for immunotherapy.
Collapse
Affiliation(s)
- Lukas Sveikata
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (L.S., A.C., A.V.).,Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Switzerland (L.S.)
| | - Andreas Charidimou
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (L.S., A.C., A.V.)
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (L.S., A.C., A.V.)
| |
Collapse
|