1
|
Ressler HW, Humphrey J, Vialle RA, Babrowicz B, Kandoi S, Raj T, Dickson DW, Ertekin-Taner N, Crary JF, Farrell K. MAPT haplotype-associated transcriptomic changes in progressive supranuclear palsy. Acta Neuropathol Commun 2024; 12:135. [PMID: 39154163 PMCID: PMC11330133 DOI: 10.1186/s40478-024-01839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative movement and cognitive disorder characterized by abnormal accumulation of the microtubule-associated protein tau in the brain. Biochemically, inclusions in PSP are enriched for tau proteoforms with four microtubule-binding domain repeats (4R), an isoform that arises from alternative tau pre-mRNA splicing. While preferential aggregation and reduced degradation of 4R tau protein is thought to play a role in inclusion formation and toxicity, an alternative hypothesis is that altered expression of tau mRNA isoforms plays a causal role. This stems from the observation that PSP is associated with common variation in the tau gene (MAPT) at the 17q21.31 locus which contains low copy number repeats flanking a large recurrent genomic inversion. The complex genomic structural changes at the locus give rise to two dominant haplotypes, termed H1 and H2, that have the potential to markedly influence gene expression. Here, we explored haplotype-dependent differences in gene expression using a bulk RNA-seq dataset derived from human post-mortem brain tissue from PSP (n = 84) and controls (n = 77) using a rigorous computational pipeline, including alternative pre-mRNA splicing. We found 3579 differentially expressed genes in the temporal cortex and 10,011 in the cerebellum. We also found 7214 differential splicing events in the temporal cortex and 18,802 in the cerebellum. In the cerebellum, total tau mRNA levels and the proportion of transcripts encoding 4R tau were significantly increased in PSP compared to controls. In the temporal cortex, the proportion of reads that expressed 4R tau was increased in cases compared to controls. 4R tau mRNA levels were significantly associated with the H1 haplotype in the temporal cortex. Further, we observed a marked haplotype-dependent difference in KANSL1 expression that was strongly associated with H1 in both brain regions. These findings support the hypothesis that sporadic PSP is associated with haplotype-dependent increases in 4R tau mRNA that might play a causal role in this disorder.
Collapse
Affiliation(s)
- Hadley W Ressler
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo A Vialle
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bergan Babrowicz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shrishtee Kandoi
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Bhattacharjee S, Scotton W, Djoukhadar I, Davidson YS, Minshull J, Robinson AC, Roncaroli F, Kobylecki C. Pick's Disease Presenting as Tremulous Parkinsonism with Limited Levodopa Response-A Rare Cause of Corticobasal Syndrome. Mov Disord Clin Pract 2024; 11:1025-1029. [PMID: 38826096 PMCID: PMC11329554 DOI: 10.1002/mdc3.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Corticobasal syndrome is a clinical diagnosis and common pathological causes are corticobasal degeneration, progressive supranuclear palsy and Alzheimer's disease. OBJECTIVES We would like to highlight a rare but important differential of corticobasal syndrome. METHODS A 78-year-old female had a 4-year history of predominantly right-hand rest tremor, worsening of handwriting but no change in cognition. The clinical examination showed right upper limb postural and kinetic tremor, mild wrist rigidity and reduced amplitude of right-sided finger tapping. She was initially diagnosed as idiopathic Parkinson's disease. Five years after onset of symptoms, she demonstrated bilateral myoclonic jerks and right upper limb dystonic posturing. She could not copy movements with the right hand. The magnetic resonance imaging (MRI) revealed disproportionate atrophy in the parietal lobes bilaterally. The clinical diagnosis was changed to probable corticobasal syndrome. She passed away 11 years from onset of symptoms at the age of 85 years. She underwent a post-mortem. RESULTS The anterior and posterior frontal cortex, anterior cingulate, temporal neocortex, hippocampus and amygdaloid complex demonstrated considerable tau-related pathology consisting of a dense background of neuropil threads, and rounded, paranuclear neuronal inclusions consistent with Pick bodies. The immunostaining for three microtubule binding domain repeats (3R) tau performed on sections from the frontal and temporal lobes, basal ganglia and midbrain highlighted several inclusions whilst no 4R tau was observed. She was finally diagnosed with Pick's disease. CONCLUSIONS Pick's disease can rarely present with clinical features of corticobasal syndrome.
Collapse
Affiliation(s)
- Shakya Bhattacharjee
- Department of NeurologyManchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust (Salford Royal Hospital)SalfordUK
| | - William Scotton
- Department of NeurologyQueen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Ibrahim Djoukhadar
- Department of NeuroradiologyManchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust (Salford Royal Hospital)SalfordUK
| | - Yvonne S. Davidson
- Division of Neuroscience, Faculty of Biology, Medicine and HealthSchool of Biological Sciences, The University of Manchester, Salford Royal HospitalSalfordUK
| | - James Minshull
- Division of Neuroscience, Faculty of Biology, Medicine and HealthSchool of Biological Sciences, The University of Manchester, Salford Royal HospitalSalfordUK
| | - Andrew C. Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreThe University of ManchesterManchesterUK
| | - Federico Roncaroli
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreThe University of ManchesterManchesterUK
| | - Christopher Kobylecki
- Department of NeurologyManchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust (Salford Royal Hospital)SalfordUK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological SciencesThe University of ManchesterManchesterUK
| |
Collapse
|