1
|
Fayssel N, Bensghir R, Ouladlahsen A, Abdelghaffar H, Sodqi M, Lahlou K, Benjelloun S, Marhoum El Filali K, Ezzikouri S, Wakrim L. Association of CD209L tandem repeats polymorphism with susceptibility to human immunodeficiency virus-1 infection, disease progression, and treatment outcomes: a Moroccan cohort study. Clin Microbiol Infect 2014; 21:513.e1-5. [PMID: 25656622 DOI: 10.1016/j.cmi.2014.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/07/2023]
Abstract
In order to investigate the association between length variation of the CD209L neck region and human immunodeficiency virus (HIV)-1 susceptibility, disease progression, and treatment response outcomes, we genotyped 139 HIV-1-seropositive and 109 seronegative individuals. The heterozygous genotype 6/5 showed a significant increased risk of HIV-1 infection (OR 3.03, 95% CI 0.99-9.33, p 0.046). Moreover, after highly active antiretroviral therapy (HAART), HIV-1-seropositive individuals carrying the 6/5, 7/5 and 7/7 genotypes and alleles 5, 6 and 7 showed good CD4(+) T-cell recovery. In addition, individuals with the 7/5, 6/6 and 7/7 genotypes showed a significant decrease in viral load during the treatment period as compared with baseline (p < 0.05). Interestingly, we found that alleles 4 and 6 were associated with protection against AIDS progression. D209L variation may influence susceptibility to HIV-1, response to treatment, and disease progression.
Collapse
Affiliation(s)
- N Fayssel
- Virology Unit, Immunovirology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - R Bensghir
- Laboratoire de Biochimie, Environnement & Agroalimentaire, Université Hassan II, Facultédes Sciences et Techniques, Mohammedia-Casablanca, Morocco
| | - A Ouladlahsen
- Laboratoire de Biochimie, Environnement & Agroalimentaire, Université Hassan II, Facultédes Sciences et Techniques, Mohammedia-Casablanca, Morocco
| | - H Abdelghaffar
- Service des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - M Sodqi
- Laboratoire de Biochimie, Environnement & Agroalimentaire, Université Hassan II, Facultédes Sciences et Techniques, Mohammedia-Casablanca, Morocco
| | - K Lahlou
- Virology Unit, Immunovirology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - S Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - K Marhoum El Filali
- Laboratoire de Biochimie, Environnement & Agroalimentaire, Université Hassan II, Facultédes Sciences et Techniques, Mohammedia-Casablanca, Morocco
| | - S Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco.
| | - L Wakrim
- Virology Unit, Immunovirology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco.
| |
Collapse
|
2
|
Ezzikouri S, Rebbani K, Fakhir FZ, Alaoui R, Nadir S, Diepolder H, Thursz M, Khakoo SI, Benjelloun S. The allele 4 of neck region liver-lymph node-specific ICAM-3-grabbing integrin variant is associated with spontaneous clearance of hepatitis C virus and decrease of viral loads. Clin Microbiol Infect 2013; 20:O325-32. [PMID: 24283933 PMCID: PMC7129123 DOI: 10.1111/1469-0691.12403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/29/2013] [Accepted: 09/15/2013] [Indexed: 12/12/2022]
Abstract
L‐SIGN is a C‐type lectin expressed on liver sinusoidal endothelial cells involved in the capture of hepatitis C virus and trans‐infection of adjacent hepatocyte cells. The neck region of L‐SIGN is highly polymorphic, with three to nine tandem repeats of 23 residues. This polymorphism is associated with a number of infectious diseases, but has not been explored in HCV. We therefore investigated the impact of L‐SIGN neck region length variation on the outcome of HCV infection. We studied 322 subjects, 150 patients with persistent HCV infection, 63 individuals with spontaneous clearance and 109 healthy controls. In healthy subjects, we found a total of nine genotypes, with the 7/7 genotype being the most frequent (33%) followed by the 7/6 (22.9%) and the 7/5 (18.3%). The frequencies of the alleles were as follows: 7‐LSIGN (56.4%), 6‐LSIGN (20.2%), 5‐L‐SIGN (18.3%) and 4‐L‐SIGN (5%). The frequency of the 7/4 genotype was higher in spontaneous resolvers (14.3%) as compared with the persistent group (4%) (OR = 0.25, 95% CI = 0.07–0.82, p 0.022). In addition, we found that 4‐L‐SIGN was associated with spontaneous resolution of HCV infection (OR = 0.30, 95%CI, 0.12–0.74, p 0.005). Interestingly, patients with 4‐L‐SIGN had lower viral loads when compared with carriers of the 5 (p 0.001), 6 (p 0.021) and 7‐alleles (p 0.048). The results indicate that neck region polymorphism of L‐SIGN can influence the outcome of HCV infection and the four‐tandem repeat is associated with clearance of HCV infection.
Collapse
Affiliation(s)
- S Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Li H, Fu WP, Hong ZH. The VNTR polymorphism of the CLEC4M gene and susceptibility to HIV-1 infection in Han Chinese population. INFECTION GENETICS AND EVOLUTION 2013; 17:137-41. [DOI: 10.1016/j.meegid.2013.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 11/30/2022]
|
4
|
The VNTR polymorphism of the DC-SIGNR gene and susceptibility to HIV-1 infection: a meta-analysis. PLoS One 2012; 7:e42972. [PMID: 22957026 PMCID: PMC3434151 DOI: 10.1371/journal.pone.0042972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022] Open
Abstract
Background Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin related (DC-SIGNR) can bind to the human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein and is thus important for the host-pathogen interaction in HIV-1 infection. Studies of the association between the variable number tandem repeat (VNTR) polymorphism of the DC-SIGNR gene and HIV-1 susceptibility have produced controversial results. Methods and Findings We conducted a meta-analysis of the data contained in the literature to clarify these findings. In total, 10 studies consisting of 2683 HIV-1 patients and 3263 controls (2130 healthy controls and 1133 HIV-1 exposed but seronegative (HESN) controls) were included. Odds ratios (ORs) with 95% confidence intervals (95% CIs) were assessed in the main analyses. Further stratified analyses by ethnicity and sample size were performed. By dividing the controls into two groups, healthy controls and HIV-1 exposed but seronegative (HESN) controls, we explored different genetic models to detect any association between the VNTR polymorphism and predisposition to HIV-1 infection. The results showed that the 5-repeat allele carriers (OR = 0.84, 95% CI = 0.73–0.96) and the 5/5 homozygous (OR = 0.68, 95% CI = 0.50–0.93) had significantly reduced risk when using the HIV-1 exposed but seronegative (HESN) as controls. The stratified analyses by ethnicity and sample size confirmed these findings. However, a low to moderate degree of heterogeneity was also found across studies. Conclusions Our findings demonstrate that the VNTR polymorphism of the DC-SIGNR gene is associated with a moderate effect on host susceptibility to HIV-1 infection. Similar to the 32-bp deletion in the chemokine receptor-5 gene (CCR5Δ32), the DC-SIGNR VNTR 5-repeat allele might have a role in resistance to HIV infection, particularly in Asian populations.
Collapse
|
5
|
The origin and evolution of variable number tandem repeat of CLEC4M gene in the global human population. PLoS One 2012; 7:e30268. [PMID: 22279577 PMCID: PMC3261175 DOI: 10.1371/journal.pone.0030268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/12/2011] [Indexed: 11/16/2022] Open
Abstract
CLEC4M is a C-type lectin gene serving as cell adhesion receptor and pathogen recognition receptor. It recognizes several pathogens of important public health concern. In particular, a highly polymorphic variable number tandem repeat (VNTR) at the neck-region of CLEC4M had been associated with genetic predisposition to some infectious diseases. To gain insight into the origin and evolution of this VNTR in CLEC4M, we studied 21 Africans, 20 Middle Easterns, 35 Europeans, 38 Asians, 13 Oceania, and 18 Americans (a total of 290 chromosomes) from the (Human Genome Diversity Panel) HGDP-CEPH panel; these samples covered most of alleles of this VNTR locus present in human populations. We identified a limited number of haplotypes among the basic repeat subunits that is 69 base pairs in length. Only 8 haplotypes were found. Their sequence identities were determined in the 290 chromosomes. VNTR alleles of different repeat length (from 4 to 9 repeats) were analyzed for composition and orientation of these subunits. Our results showed that the subunit configuration of the same repeat number of VNTR locus from different populations were, in fact, virtually identical. It implies that most of the VNTR alleles existed before dispersion of modern humans outside Africa. Further analyses indicate that the present diversity profile of this locus in worldwide populations is generated from the effect of migration of different tribes and neutral evolution. Our findings do not support the hypothesis that the origin of the VNTR alleles were arisen by independent (separate) mutation events and caused by differential allele advantage and natural selection as suggested by previous report based on SNP data.
Collapse
|
6
|
Leckband DE, Menon S, Rosenberg K, Graham SA, Taylor ME, Drickamer K. Geometry and adhesion of extracellular domains of DC-SIGNR neck length variants analyzed by force-distance measurements. Biochemistry 2011; 50:6125-32. [PMID: 21650186 PMCID: PMC3140775 DOI: 10.1021/bi2003444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
![]()
Force–distance measurements have been used to examine differences in the interaction of the dendritic cell glycan-binding receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR (L-SIGN) with membranes bearing glycan ligands. The results demonstrate that upon binding to membrane-anchored ligand, DC-SIGNR undergoes a conformational change similar to that previously observed for DC-SIGN. The results also validate a model for the extracellular domain of DC-SIGNR derived from crystallographic studies. Force measurements were performed with DC-SIGNR variants that differ in the length of the neck that result from genetic polymorphisms, which encode different numbers of the 23-amino acid repeat sequences that constitute the neck. The findings are consistent with an elongated, relatively rigid structure of the neck repeat observed in crystals. In addition, differences in the lengths of DC-SIGN and DC-SIGNR extracellular domains with equivalent numbers of neck repeats support a model in which the different dispositions of the carbohydrate-recognition domains in DC-SIGN and DC-SIGNR result from variations in the sequences of the necks.
Collapse
Affiliation(s)
- Deborah E Leckband
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
7
|
The Nine-Repeat DC-SIGNR Isoform is Associated with Increased HIV-RNA Loads and HIV Sexual Transmission. J Clin Immunol 2010; 30:402-7. [DOI: 10.1007/s10875-010-9376-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|
8
|
Zhu D, Kawana-Tachikawa A, Iwamoto A, Kitamura Y. Influence of polymorphism in dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-related (DC-SIGNR) gene on HIV-1 trans-infection. Biochem Biophys Res Commun 2010; 393:598-602. [PMID: 20152818 DOI: 10.1016/j.bbrc.2010.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 02/05/2010] [Indexed: 11/26/2022]
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and DC-SIGN-related (DC-SIGNR) molecules on the cell surface are known to enhance human immunodeficiency virus type 1 (HIV-1) infection by capturing the virions and transmitting them to CD4+ T-cell, a process termed trans-infection. The neck region and carbohydrate recognition domain of the two proteins are important for efficient binding to the HIV-1 envelope protein. DC-SIGNR is polymorphic in Exons 4 and 5 that encode the neck region and carbohydrate recognition domain, respectively; the former contains a variable number of tandem repeats, and the latter the SNP (rs2277998). Since it remains unclear whether the DC-SIGNR polymorphism is related to the risk of HIV-1 infection, we tested possible effects of the polymorphism on HIV-1 trans-infection efficiency, by constructing six kinds of cDNAs encoding DC-SIGNR variants with various numbers of repeat units and various SNP. We were able to express the variants on the surface of Raji cells, a human B cell line. Flow cytometry showed that all the tested DC-SIGNR molecules were efficiently expressed on the cell surface at various levels; the assay for HIV trans-infection efficacy showed that all the tested variants had that activity with different efficacy levels. We found a correlation between the HIV trans-infection efficiency and the mean fluorescent intensity of DC-SIGNR expression (R(2)=0.95). Thus, our results suggest that the variation of the tested DC-SIGNR genotypes affects the efficacy of trans-infection by affecting the amounts of the protein expressed on the cell surface.
Collapse
Affiliation(s)
- Dayong Zhu
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | |
Collapse
|
9
|
Li H, Wang CY, Wang JX, Tang NLS, Xie L, Gong YY, Yang Z, Xu LY, Kong QP, Zhang YP. The neck-region polymorphism of DC-SIGNR in peri-centenarian from Han Chinese population. BMC MEDICAL GENETICS 2009; 10:134. [PMID: 20003397 PMCID: PMC2797785 DOI: 10.1186/1471-2350-10-134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 12/14/2009] [Indexed: 11/10/2022]
Abstract
Background DC-SIGNR (also called CD209L) has been extensively studied on its role in host genetic predisposition to viral infection. In particular, variable number tandem repeat (VNTR) of the neck-region of DC-SIGNR is highly polymorphic and the polymorphism has been investigated for genetic predisposition to various infectious diseases, though conflicting results had been reported. As infection is a major cause of human death and a mechanism of natural selection, we hypothesized that VNTR polymorphism of DC-SIGNR might have an effect on human life span. Methods Here we collected 361 peri-centenarian individuals (age ≥94 for female and age ≥90 for male) and 342 geographically matched controls (age 22-53, mean 35.0 ± 12.0) from Han Chinese. The VNTR polymorphism of the neck region was determined by PCR and genotype was called by separating the PCR products in agarose gel. Results A total of 11 genotypes and 5 alleles were found in our population. The genotype distribution, allele frequencies and homozygote proportion did not show a significant difference between peri-centenarian and control group. As gender differences in lifespan are ubiquitously observed throughout the animal kingdom, we then stratified the samples by gender. There was more 6/7 genotypes in female peri-centenarian group than that in female control group, at a marginal level of significance (5.56 vs. 1.28%, p = 0.041). The difference was not significant after correction by Bonferroni method. It suggests a possible differential effect of DC-SIGNR VNTR genotypes between sexes. Further studies are warranted to confirm our preliminary findings and investigate the mechanisms of the underlying functions. Conclusions Our study indicated that there was absence of association between the neck region polymorphism of DC-SIGNR and longevity in Han Chinese population. But the question of whether the DC-SIGNR could affect longevity in a gender-specific pattern remains open.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yu QD, Oldring AP, Powlesland AS, Tso CKW, Yang C, Drickamer K, Taylor ME. Autonomous tetramerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR. J Mol Biol 2009; 387:1075-80. [PMID: 19249311 PMCID: PMC2680971 DOI: 10.1016/j.jmb.2009.02.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 10/25/2022]
Abstract
Multivalent binding of glycans on pathogens and on mammalian cells by the receptors DC-SIGN (CD209) and DC-SIGNR (L-SIGN, CD299) is dependent on correct disposition of the C-type carbohydrate-recognition domains projected at the C-terminal ends of necks at the cell surface. In the work reported here, neck domains of DC-SIGN and DC-SIGNR expressed in isolation are shown to form tetramers in the absence of the CRDs. Stability analysis indicates that interactions between the neck domains account fully for the stability of the tetrameric extracellular portions of the receptors. The neck domains are approximately 40% alpha-helical based on circular dichroism analysis. However, in contrast to other glycan-binding receptors in which fully helical neck regions are intimately associated with C-terminal C-type CRDs, the neck domains in DC-SIGN and DC-SIGNR act as autonomous tetramerization domains and the neck domains and CRDs are organized independently. Neck domains from polymorphic forms of DC-SIGNR that lack some of the repeat sequences show modestly reduced stability, but differences near the C-terminal end of the neck domains lead to significantly enhanced stability of DC-SIGNR tetramers compared to DC-SIGN.
Collapse
Affiliation(s)
- Quan D Yu
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Chaudhary O, Bhasin R, Luthra K. DC-SIGN and DC-SIGNR polymorphic variants in Northern Asian Indians. Int J Immunogenet 2008; 35:475-9. [PMID: 19046307 DOI: 10.1111/j.1744-313x.2008.00805.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin-related protein (DC-SIGNR), along with DC-SIGN, is suggested to facilitate HIV infection of T cells in trans through binding with HIV gp120. We studied the repeat region polymorphisms in DC-SIGN and DC-SIGNR in 100 healthy HIV-1 seronegative individuals among Northern Asian Indians. Each variant polymorphism obtained by polymerase chain reaction (PCR) was confirmed by cloning and sequencing. Fifty-four per cent of the healthy seronegative individuals were homozygous for the DC-SIGNR 7/7 repeat. The heterozygous 7/5 variant was found in 25%, while the 5/5 homozygous genotype was found in 17% of the subjects. Allele 8 was rare and accounted for 4% of the heterozygous genotype (8/7) in the sample population. DC-SIGN polymorphism was rare, and the genotype 7/7 was most frequent in this study population. Further studies are warranted in a large sample size including high-risk and seropositive HIV patients to confirm the association of DC-SIGNR polymorphisms with HIV-1 susceptibility.
Collapse
Affiliation(s)
- O Chaudhary
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | |
Collapse
|
12
|
Chaudhary O, Rajsekar K, Ahmed I, Verma R, Bala M, Bhasin R, Luthra K. Polymorphic variants in DC-SIGN, DC-SIGNR and SDF-1 in high risk seronegative and HIV-1 patients in Northern Asian Indians. J Clin Virol 2008; 43:196-201. [PMID: 18775666 DOI: 10.1016/j.jcv.2008.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 11/16/2022]
Abstract
A single nucleotide polymorphism (SNP) in SDF-1, the natural ligand for the HIV-1 coreceptor CXCR4, is implicated to have protective effects against HIV-1 infection. Dendritic cells are the first to encounter HIV-1 at mucosal sites and virus binding occurs via receptors known as DC-SIGN. Variations in the number of repeats in the neck region of DC-SIGN and DC-SIGNR are reported to possibly influence host susceptibility to HIV-1 infection. We examined the SNP of SDF1-3'A by PCR-restriction fragment length polymorphism (RFLP) and repeat region polymorphisms in DC-SIGN and DC SIGNR by PCR in healthy HIV seronegative individuals, high risk STD patients seronegative for HIV, and HIV-1 seropositive patients from northern India. The detected polymorphisms were confirmed by cloning and sequencing. The genotypic frequency of SDF1-3'A/SDF1-3'A in the 100 HIV-seronegative healthy individuals, 150 HIV seronegative STD patients, and 100 HIV-1 seropositive patients were 4%, 18% and 7%, respectively. A significantly higher frequency of SDF1-3'A/SDF1-3'A was observed in high risk STD patients as compared to HIV seropositive (p=0.014) and healthy HIV-1 seronegative tested individuals (p=0.001), suggesting a protective role of SDF1-3'A in HIV-1 infection. DC-SIGN polymorphism was rare and genotype 7/7 was predominant in all groups studied. DC-SIGNR was highly polymorphic and 11 genotypes were observed among the different study groups. The precise role of the polymorphic variants of DC-SIGNR needs to be elucidated in the population.
Collapse
Affiliation(s)
- Omkar Chaudhary
- Department of Biochemistry, Room No. 3002, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | | | | | | | | | | | | |
Collapse
|
13
|
Khoo US, Chan KYK, Chan VSF, Lin CLS. DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med (Berl) 2008; 86:861-74. [PMID: 18458800 PMCID: PMC7079906 DOI: 10.1007/s00109-008-0350-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/01/2008] [Accepted: 03/05/2008] [Indexed: 12/16/2022]
Abstract
Two closely related trans-membrane C-type lectins dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN or CD209) and liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN also known as DC-SIGNR, CD209L or CLEC4M) directly recognize a wide range of micro-organisms of major impact on public health. Both genes have long been considered to share similar overall structure and ligand-binding characteristics. This review presents more recent biochemical and structural studies, which show that they have distinct ligand-binding properties and different physiological functions. Of importance in both these genes is the presence of an extra-cellular domain consisting of an extended neck region encoded by tandem repeats that support the carbohydrate-recognition domain, which plays a crucial role in influencing the pathogen-binding properties of these receptors. The notable difference between these two genes is in this extra-cellular domain. Whilst the tandem-neck-repeat region remains relatively constant size for DC-SIGN, there is considerable polymorphism for L-SIGN. Homo-oligomerization of the neck region of L-SIGN has been shown to be important for high-affinity ligand binding, and heterozygous expression of the polymorphic variants of L-SIGN in which neck lengths differ could thus affect ligand-binding affinity. Functional studies on the effect of this tandem-neck-repeat region on pathogen-binding, as well as genetic association studies for various infectious diseases and among different populations, are discussed. Worldwide demographic data of the tandem-neck-repeat region showing distinct differences in the neck-region allele and genotype distribution among different ethnic groups are presented. These findings support the neck region as an excellent candidate acting as a functional target for selective pressures exerted by pathogens.
Collapse
Affiliation(s)
- Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, University Pathology Building, Hong Kong, SAR, China.
| | | | | | | |
Collapse
|
14
|
Gramberg T, Soilleux E, Fisch T, Lalor PF, Hofmann H, Wheeldon S, Cotterill A, Wegele A, Winkler T, Adams DH, Pöhlmann S. Interactions of LSECtin and DC-SIGN/DC-SIGNR with viral ligands: Differential pH dependence, internalization and virion binding. Virology 2008; 373:189-201. [PMID: 18083206 PMCID: PMC7103327 DOI: 10.1016/j.virol.2007.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 10/15/2007] [Accepted: 11/02/2007] [Indexed: 01/20/2023]
Abstract
The calcium-dependent lectins DC-SIGN and DC-SIGNR (collectively termed DC-SIGN/R) bind to high-mannose carbohydrates on a variety of viruses. In contrast, the related lectin LSECtin does not recognize mannose-rich glycans and interacts with a more restricted spectrum of viruses. Here, we analyzed whether these lectins differ in their mode of ligand engagement. LSECtin and DC-SIGNR, which we found to be co-expressed by liver, lymph node and bone marrow sinusoidal endothelial cells, bound to soluble Ebola virus glycoprotein (EBOV-GP) with comparable affinities. Similarly, LSECtin, DC-SIGN and the Langerhans cell-specific lectin Langerin readily bound to soluble human immunodeficiency virus type-1 (HIV-1) GP. However, only DC-SIGN captured HIV-1 particles, indicating that binding to soluble GP is not necessarily predictive of binding to virion-associated GP. Capture of EBOV-GP by LSECtin triggered ligand internalization, suggesting that LSECtin like DC-SIGN might function as an antigen uptake receptor. However, the intracellular fate of lectin-ligand complexes might differ. Thus, exposure to low-pH medium, which mimics the acidic luminal environment in endosomes/lysosomes, released ligand bound to DC-SIGN/R but had no effect on LSECtin interactions with ligand. Our results reveal important differences between pathogen capture by DC-SIGN/R and LSECtin and hint towards different biological functions of these lectins.
Collapse
Affiliation(s)
- Thomas Gramberg
- Institute of Virology, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Variations of dendritic cell-specific intercellualar adhesion molecule-3-grabing nonintegrin neck region in HIV infected individuals. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200802010-00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Rathore A, Chatterjee A, Sivarama P, Yamamoto N, Dhole TN. Role of homozygous DC-SIGNR 5/5 tandem repeat polymorphism in HIV-1 exposed seronegative North Indian individuals. J Clin Immunol 2007; 28:50-7. [PMID: 17876530 PMCID: PMC7086598 DOI: 10.1007/s10875-007-9131-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 08/21/2007] [Indexed: 12/05/2022]
Abstract
Despite multiple sexual exposures to HIV-1 virus, some individuals remain HIV-1 seronegative. Although several genetic factors have been related to HIV-1 resistance, the homozygosity for a mutation in CCR5 gene (the 32-bp deletion, i.e., CCR5-Delta32 allele) is presently considered the most relevant one. The C-type lectins, DC-SIGN (present on dendritic cells and macrophages) and DC-SIGNR (present on endothelial cells in liver and lymph nodes) efficiently bind and transmit HIV-1 to susceptible cell in trans, thereby augmenting the infection. A potential association of the DC-SIGN and DC-SIGNR neck domain repeat polymorphism and risk of HIV-1 infection is currently under debate. To determine the influence of host genetic factors on HIV-1 resistance, we conducted genetic risk association study in HIV-1-exposed seronegative (n = 47) individuals, HIV-1 seronegative (n = 262) healthy control, and HIV-1-infected seropositive patients (n = 168) for polymorphism in neck domain of DC-SIGN and DC-SIGNR genes. The DC-SIGN and DC-SIGNR genotypes were identified by polymerase chain reaction method in DNA extracted from peripheral blood and confirmed by sequencing. Fisher exact or χ2 test was used for static analysis. DC-SIGN genotype and allele distribution was fairly similar in HIV-1-exposed seronegative, HIV-1 seropositive, and HIV-1 seronegative control. There was no statistical significance in the differences in the distribution of DC-SIGN genotypes. A total of 13 genotypes were found in DC-SIGNR neck repeat region polymorphism. Among all the genotypes, only 5/5 homozygous showed significant reduced risk of HIV-1 infection in HIV-1-exposed seronegative individuals (p = 0.009). A unique genotype 8/5 heterozygous was also found in HIV-1 seropositive individual, which is not reported elsewhere.
Collapse
Affiliation(s)
- Anurag Rathore
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebarelli Road, Lucknow, 226014 India
| | - Animesh Chatterjee
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebarelli Road, Lucknow, 226014 India
| | - P. Sivarama
- AIDS Counseling and Treatment Center, Belgaum, India
| | - Naohiko Yamamoto
- Department of International Health, Nagoya University School of Medicine, Nagoya, Japan
| | - Tapan N. Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebarelli Road, Lucknow, 226014 India
| |
Collapse
|
17
|
Wichukchinda N, Kitamura Y, Rojanawiwat A, Nakayama EE, Song H, Pathipvanich P, Auwanit W, Sawanpanyalert P, Iwamoto A, Shioda T, Ariyoshi K. The polymorphisms in DC-SIGNR affect susceptibility to HIV type 1 infection. AIDS Res Hum Retroviruses 2007; 23:686-92. [PMID: 17530994 DOI: 10.1089/aid.2006.0212] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) and its homologue DC-SIGNR (DC-SIGN related) have been thought to play an important role in establishing HIV infection by enhancing trans-infection of CD4(+)T cells in the regional lymph nodes. To identify polymorphisms associated with HIV-exposed seronegative (ESN) individuals in Thais, genomic DNA from 102 HIV-seronegative individuals of HIV-seropositive spouses, 305 HIV-seropositive individuals, and 290 HIV-seronegative blood donors was genotyped for two single nucleotide polymorphisms (SNPs) in DC-SIGN promoter (-139A/G and 336A/G), a repeat number of 69 bp in Exon 4 of DC-SIGN and DC-SIGNR, and one SNP in Exon 5 of DC-SIGNR (rs2277998A/G). We found that the proportion of individuals possessing a heterozygous 7/5 and 9/5 repeat and A allele at rs2277998 of DC-SIGNR in HIV-seronegative individuals of HIV-seropositive spouses was significantly higher than HIV-seropositive individuals [p = 0.0373, OR (95% CI) = 0.57 (0.32,1.01); p = 0.0232, OR (95% CI) = 0.38 (0.15,0.98); and p = 0.0445, OR (95% CI) = 0.61 (0.37,1.02), respectively]. Analysis after stratifying by gender showed that these associations were observed only in females but not in males. Moreover, HIV-seropositive females tend to have a homozygous 7/7 repeat more frequently than HIV-seronegative females with a marginal level of significance [p = 0.0556, OR (95% CI) = 1.79 (0.94,3.40)]. Haplotype analysis showed that the proportion of individuals possessing the 5A haplotype in HIV-seronegative females was significantly higher than HIV-seropositive females [p = 0.0133, OR = 0.50 (0.27,0.90)]. These associations suggest that DC-SIGNR may affect susceptibility to HIV infection by a mechanism that is different in females and males. Further studies are warranted to investigate the mechanisms of their function.
Collapse
Affiliation(s)
- Nuanjun Wichukchinda
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Boily-Larouche G, Zijenah LS, Mbizvo M, Ward BJ, Roger M. DC-SIGN and DC-SIGNR genetic diversity among different ethnic populations: potential implications for pathogen recognition and disease susceptibility. Hum Immunol 2007; 68:523-30. [PMID: 17509452 PMCID: PMC7115417 DOI: 10.1016/j.humimm.2007.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/04/2007] [Accepted: 02/08/2007] [Indexed: 11/23/2022]
Abstract
Dendritic cell–specific intracellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN) and DC-SIGNR are C-type lectins that serve both as cell adhesion and pathogen recognition receptors. Because of the essential role of the these molecules in the immune response, the implication of their alleles in human disease states, and the possible genetic variation at these loci among ethnically diverse populations, we undertook a study to analyze the full extent of DC-SIGN and DC-SIGNR polymorphisms in Caucasian Canadian and indigenous African populations. We report several novel nucleotide variants within regulatory 5′- and 3′-untranslated regions of the genes that could affect their transcription and translation. There were significant differences in the distribution of DC-SIGN and DC-SIGNR alleles among African and non-African populations. Finally, our study clearly demonstrates that Africans show greater genetic diversity at these two closely-related immune loci than observed in other major population groups. The differences may reflect evolutionary pressures generated by environmental factors, such as prevalent pathogens in these geographically distinct regions. Further studies will be needed to determine the net impact of DC-SIGN and DC-SIGNR genetic variants on the expression, translation, and function of the proteins and to understand how these functional polymorphisms may affect immune responses or immune escape.
Collapse
Affiliation(s)
- Geneviève Boily-Larouche
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Lynn S. Zijenah
- Department of Immunology, University of Zimbabwe, Harare, Zimbabwe
| | - Mike Mbizvo
- World Health Organization, Geneva, Switzerland
| | - Brian J. Ward
- Research Institute of the McGill University Health Center, Montréal, Québec, Canada
| | - Michel Roger
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
- Corresponding author. Fax: (514) 412-7512.
| |
Collapse
|
19
|
Barreiro LB, Neyrolles O, Babb CL, van Helden PD, Gicquel B, Hoal EG, Quintana-Murci L. Length variation of DC-SIGN and L-SIGN neck-region has no impact on tuberculosis susceptibility. Hum Immunol 2007; 68:106-12. [PMID: 17321900 PMCID: PMC7132702 DOI: 10.1016/j.humimm.2006.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/12/2006] [Accepted: 10/31/2006] [Indexed: 11/01/2022]
Abstract
The C-type lectins DC-SIGN and L-SIGN are important pathogen-recognition receptors of the human innate immune system. Both lectins have been shown to interact with a vast range of infectious agents, including Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. In addition, DC-SIGN and L-SIGN possess a neck region, made up of a variable number of 23 amino acid tandem repeats, which plays a crucial role in the tetramerization of these proteins and support of the carbohydrate recognition domain. The length of the neck region, which shows variable levels of polymorphism, can critically influence the pathogen binding properties of these two receptors. We therefore investigated the impact of the DC-SIGN and L-SIGN neck-region length variation on the outcome of tuberculosis by screening this polymorphism in a large cohort of Coloured South African origin. The analyses of 711 individuals, including 351 tuberculosis patients and 360 healthy controls, revealed that none of the DC-SIGN and L-SIGN neck-region variants or genotypes seems to influence the individual susceptibility to develop tuberculosis.
Collapse
Affiliation(s)
- Luis B Barreiro
- CNRS FRE2849, Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Pöhlmann S, Tremblay MJ. Attachment of human immunodeficiency virus to cells and its inhibition. ENTRY INHIBITORS IN HIV THERAPY 2007. [PMCID: PMC7123856 DOI: 10.1007/978-3-7643-7783-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The entry of enveloped viruses involves virus adsorption followed by close apposition of the viral and plasma membranes. This multistep process is initiated by specific binding interactions between glycoproteins in the viral envelope and appropriate receptors on the cell surface. In the case of HIV-1, attachment of virions to the cell surface is attributed to a high affinity interaction between envelope spike glycoproteins (Env, composed of the surface protein gp120 and the transmembrane protein gp41) and a complex made of the primary CD4 receptor and a seven-transmembrane co-receptor (e.g., CXCR4 or CCR5) (reviewed in [1]). Then a chain of dynamic events take place that enable the viral nucleocapsid to penetrate within the target cell following the destabilization of membrane microenvironment and the formation of a fusion pore.
Collapse
|
21
|
Guo Y, Atkinson CE, Taylor ME, Drickamer K. All but the Shortest Polymorphic Forms of the Viral Receptor DC-SIGNR Assemble into Stable Homo- and Heterotetramers. J Biol Chem 2006; 281:16794-8. [PMID: 16621794 DOI: 10.1074/jbc.m602430200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymorphisms that affect the length of the extracellular neck region of the endothelial receptor DC-SIGNR (dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-related protein) have been linked to differences in susceptibility to infection by enveloped viruses. We have characterized the effects of these polymorphisms on the ability of DC-SIGNR to form tetramers containing the clusters of sugar-binding sites needed for binding to viral envelope glycoproteins. Chemical cross-linking and analytical ultracentrifugation experiments have been used to show that only the smallest form of DC-SIGNR is defective in homotetramer assembly. A novel affinity-tagging approach has been employed to demonstrate that, contrary to previous speculation, heterotetramers can be assembled efficiently from DC-SIGNR polypeptides of different lengths. The heterotetramers are stable and can be detected in fibroblasts transfected with multiple forms of DC-SIGNR. These results provide a molecular basis for interpreting the way polymorphisms affect interactions with viruses.
Collapse
Affiliation(s)
- Yuan Guo
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
22
|
Gramberg T, Zhu T, Chaipan C, Marzi A, Liu H, Wegele A, Andrus T, Hofmann H, Pöhlmann S. Impact of polymorphisms in the DC-SIGNR neck domain on the interaction with pathogens. Virology 2006; 347:354-63. [PMID: 16413044 PMCID: PMC7111803 DOI: 10.1016/j.virol.2005.11.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/19/2005] [Accepted: 11/23/2005] [Indexed: 11/28/2022]
Abstract
The lectins DC-SIGN and DC-SIGNR augment infection by human immunodeficiency virus (HIV), Ebolavirus (EBOV) and other pathogens. The neck domain of these proteins drives multimerization, which is believed to be required for efficient recognition of multivalent ligands. The neck domain of DC-SIGN consists of seven sequence repeats with rare variations. In contrast, the DC-SIGNR neck domain is polymorphic and, in addition to the wild type (wt) allele with seven repeat units, allelic forms with five and six sequence repeats are frequently found. A potential association of the DC-SIGNR genotype and risk of HIV-1 infection is currently under debate. Therefore, we investigated if DC-SIGNR alleles with five and six repeat units exhibit defects in pathogen capture. Here, we show that wt DC-SIGNR and patient derived alleles with five and six repeats bind viral glycoproteins, augment viral infection and tetramerize with comparable efficiency. Moreover, coexpression of wt DC-SIGNR and alleles with five repeats did not decrease the interaction with pathogens compared to expression of each allele alone, suggesting that potential formation of hetero-oligomers does not appreciably reduce pathogen binding, at least under conditions of high expression. Thus, our results do not provide evidence for diminished pathogen capture by DC-SIGNR alleles with five and six repeat units. Albeit, we cannot exclude that subtle, but in vivo relevant differences remained undetected, our analysis suggests that indirect mechanisms could account for the association of polymorphisms in the DC-SIGNR neck region with reduced risk of HIV-1 infection.
Collapse
MESH Headings
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/physiology
- Cell Culture Techniques
- HIV Infections/metabolism
- HIV-1/metabolism
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Polymorphism, Genetic
- Protein Structure, Tertiary/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Thomas Gramberg
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tuofu Zhu
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA
- Microbiology, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Chawaree Chaipan
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andrea Marzi
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Huanliang Liu
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Anja Wegele
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Andrus
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Heike Hofmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Medical Microbiology and Virology, University of Kiel, 24105 Kiel, Germany
| | - Stefan Pöhlmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
23
|
Chan VSF, Chan KYK, Chen Y, Poon LLM, Cheung ANY, Zheng B, Chan KH, Mak W, Ngan HYS, Xu X, Screaton G, Tam PKH, Austyn JM, Chan LC, Yip SP, Peiris M, Khoo US, Lin CLS. Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nat Genet 2006; 38:38-46. [PMID: 16369534 PMCID: PMC7097088 DOI: 10.1038/ng1698] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 10/03/2005] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome (SARS) is caused by infection of a previously undescribed coronavirus (CoV). L-SIGN, encoded by CLEC4M (also known as CD209L), is a SARS-CoV binding receptor that has polymorphism in its extracellular neck region encoded by the tandem repeat domain in exon 4. Our genetic risk association study shows that individuals homozygous for CLEC4M tandem repeats are less susceptible to SARS infection. L-SIGN is expressed in both non-SARS and SARS-CoV-infected lung. Compared with cells heterozygous for L-SIGN, cells homozygous for L-SIGN show higher binding capacity for SARS-CoV, higher proteasome-dependent viral degradation and a lower capacity for trans infection. Thus, homozygosity for L-SIGN plays a protective role during SARS infection.
Collapse
Affiliation(s)
- Vera S F Chan
- Department of Surgery, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Kelvin Y K Chan
- Department of Pathology, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
- Department of Obsterics and Gynecology, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Yongxiong Chen
- Department of Surgery, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Leo L M Poon
- Department of Microbiology, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Annie N Y Cheung
- Department of Pathology, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Bojian Zheng
- Department of Microbiology, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Kwok-Hung Chan
- Department of Microbiology, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - William Mak
- Department of Genome Research Centre, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Hextan Y S Ngan
- Department of Obsterics and Gynecology, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Xiaoning Xu
- Human Immunology Unit, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Paul K H Tam
- Department of Surgery, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
- Department of Genome Research Centre, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | | | - Li-Chong Chan
- Department of Pathology, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Shea-Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR China
| | - Malik Peiris
- Department of Microbiology, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Ui-Soon Khoo
- Department of Pathology, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| | - Chen-Lung S Lin
- Department of Surgery, Hong Kong Jockey Club Clinical Research Center, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, SAR China
| |
Collapse
|
24
|
Nattermann J, Ahlenstiel G, Berg T, Feldmann G, Nischalke HD, Müller T, Rockstroh J, Woitas R, Sauerbruch T, Spengler U. The tandem-repeat polymorphism of the DC-SIGNR gene in HCV infection. J Viral Hepat 2006; 13:42-6. [PMID: 16364081 DOI: 10.1111/j.1365-2893.2005.00652.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The C-type lectin DC-SIGNR has been shown to bind hepatitis C virus (HCV). Here, we analysed the tandem-repeat polymorphism of the DC-SIGNR gene with respect to intraindividual HCV replication. In a cross-sectional comparison HCV-infected patients (n = 430) and healthy subjects (n = 100) were genotyped for the DC-SIGNR polymorphism using PCR. The distribution of DC-SIGNR alleles did not differ significantly between the two groups. However, HCV-infected patients with 5-, 6-, and 7-repeat alleles had higher HCV-RNA levels when compared with carriers of 4- and 9-repeat alleles (P < 0.05). Thus, the DC-SIGNR polymorphism might affect HCV loads supporting the concept that DC-SIGNR contributes to HCV replication efficacy.
Collapse
Affiliation(s)
- J Nattermann
- Department of Internal Medicine I, Rheinische Friedrich Wilhelms Universität Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|