1
|
Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J Control Release 2022; 342:345-361. [PMID: 35026352 DOI: 10.1016/j.jconrel.2022.01.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technology opened the door to provide a versatile approach for treating multiple diseases. Promising results have been shown in numerous pre-clinical studies and clinical trials. However, a safe and effective method to deliver genome-editing components is still a key challenge for in vivo genome editing therapy. Adeno-associated virus (AAV) is one of the most commonly used vector systems to date, but immunogenicity against capsid, liver toxicity at high dose, and potential genotoxicity caused by off-target mutagenesis and genomic integration remain unsolved. Recently developed transient delivery systems, such as virus-like particle (VLP) and lipid nanoparticle (LNP), may solve some of the issues. This review summarizes existing in vivo delivery systems and possible solutions to overcome their limitations. Also, we highlight the ongoing clinical trials for in vivo genome editing therapy and recently developed genome editing tools for their potential applications.
Collapse
Affiliation(s)
- Eman A Taha
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt
| | - Joseph Lee
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
2
|
Absence of Replication-Competent Lentivirus in the Clinic: Analysis of Infused T Cell Products. Mol Ther 2017; 26:280-288. [PMID: 28970045 DOI: 10.1016/j.ymthe.2017.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Exposure to replication-competent lentivirus (RCL) is a theoretical safety concern for individuals treated with lentiviral gene therapy. For certain ex vivo gene therapy applications, including cancer immunotherapy trials, RCL detection assays are used to screen the vector product as well as the vector-transduced cells. In this study, we reviewed T cell products screened for RCL using methodology developed in the National Gene Vector Biorepository. All trials utilized third-generation lentiviral vectors produced by transient transfection. Samples from 26 clinical trials totaling 460 transduced cell products from 375 subjects were evaluated. All cell products were negative for RCL. A total of 296 of the clinical trial participants were screened for RCL at least 1 month after infusion of the cell product. No research subject has shown evidence of RCL infection. These findings provide further evidence attesting to the safety of third-generation lentiviral vectors and that testing T cell products for RCL does not provide added value to screening the lentiviral vector product.
Collapse
|
3
|
Crannell ZA, Rohrman B, Richards-Kortum R. Development of a quantitative recombinase polymerase amplification assay with an internal positive control. J Vis Exp 2015:52620. [PMID: 25867513 PMCID: PMC4401391 DOI: 10.3791/52620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.
Collapse
|
4
|
Hu Y, O'Boyle K, Palmer D, Ng P, Sutton RE. High-level production of replication-defective human immunodeficiency type 1 virus vector particles using helper-dependent adenovirus vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15004. [PMID: 26029715 PMCID: PMC4444993 DOI: 10.1038/mtm.2015.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/09/2022]
Abstract
Gene transfer vectors based upon human immunodeficiency virus type 1 (HIV) are widely used in bench research applications and increasingly in clinical investigations, both to introduce novel genes but also to reduce expression of unwanted genes of the host and pathogen. At present, the vast majority of HIV-based vector supernatants are produced in 293T cells by cotransfection of up to five DNA plasmids, which is subject to variability and difficult to scale. Here we report the development of a HIV-based vector production system that utilizes helper-dependent adenovirus (HDAd). All necessary HIV vector components were inserted into one or more HDAds, which were then amplified to very high titers of ~1013 vp/ml. These were then used to transduce 293-based cells to produce HIV-based vector supernatants, and resultant VSV G-pseudotyped lentiviral vector (LV) titers and total IU were 10- to 30-fold higher, compared to plasmid transfection. Optimization of HIV-based vector production depended upon maximizing expression of all HIV vector components from HDAd. Supernatants contained trace amounts of HDAd but were free of replication-competent lentivirus. This production method should be applicable to other retroviral vector systems. Scalable production of HIV-based vectors using this two-step procedure should facilitate their clinical advancement.
Collapse
Affiliation(s)
- Yani Hu
- Division of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut, USA
| | - Kaitlin O'Boyle
- Division of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut, USA
| | - Donna Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, Texas, USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, Texas, USA
| | - Richard E Sutton
- Division of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut, USA
| |
Collapse
|
5
|
Rohrman B, Richards-Kortum R. Inhibition of recombinase polymerase amplification by background DNA: a lateral flow-based method for enriching target DNA. Anal Chem 2015; 87:1963-7. [PMID: 25560368 DOI: 10.1021/ac504365v] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recombinase polymerase amplification (RPA) may be used to detect a variety of pathogens, often after minimal sample preparation. However, previous work has shown that whole blood inhibits RPA. In this paper, we show that the concentrations of background DNA found in whole blood prevent the amplification of target DNA by RPA. First, using an HIV-1 RPA assay with known concentrations of nonspecific background DNA, we show that RPA tolerates more background DNA when higher HIV-1 target concentrations are present. Then, using three additional assays, we demonstrate that the maximum amount of background DNA that may be tolerated in RPA reactions depends on the DNA sequences used in the assay. We also show that changing the RPA reaction conditions, such as incubation time and primer concentration, has little effect on the ability of RPA to function when high concentrations of background DNA are present. Finally, we develop and characterize a lateral flow-based method for enriching the target DNA concentration relative to the background DNA concentration. This sample processing method enables RPA of 10(4) copies of HIV-1 DNA in a background of 0-14 μg of background DNA. Without lateral flow sample enrichment, the maximum amount of background DNA tolerated is 2 μg when 10(6) copies of HIV-1 DNA are present. This method requires no heating or other external equipment, may be integrated with upstream DNA extraction and purification processes, is compatible with the components of lysed blood, and has the potential to detect HIV-1 DNA in infant whole blood with high proviral loads.
Collapse
Affiliation(s)
- Brittany Rohrman
- Department of Bioengineering, Rice University , 6100 Main St MS-142, Houston, Texas 77005, United States
| | | |
Collapse
|
6
|
Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis. Sci Rep 2014; 4:7403. [PMID: 25492703 PMCID: PMC4261183 DOI: 10.1038/srep07403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/19/2014] [Indexed: 12/29/2022] Open
Abstract
Transgene insertion plays an important role in gene therapy and in biological studies. Transposon-based systems that integrate transgenes by transposase-catalyzed “cut-and-paste” mechanism have emerged as an attractive system for transgenesis. Hyperactive piggyBac transposon is particularly promising due to its ability to integrate large transgenes with high efficiency. However, prolonged expression of transposase can become a potential source of genotoxic effects due to uncontrolled transposition of the integrated transgene from one chromosomal locus to another. In this study we propose a vector design to decrease post-transposition expression of transposase and to eliminate the cells that have residual transposase expression. We design a single plasmid construct that combines the transposase and the transpositioning transgene element to share a single polyA sequence for termination. Consequently, the separation of the transposase element from the polyA sequence after transposition leads to its deactivation. We also co-express Herpes Simplex Virus thymidine kinase (HSV-tk) with the transposase. Therefore, cells having residual transposase expression can be eliminated by the administration of ganciclovir. We demonstrate the utility of this combination transposon system by integrating and expressing a model therapeutic gene, human coagulation Factor IX, in HEK293T cells.
Collapse
|
7
|
Crannell ZA, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 2014; 9:e112146. [PMID: 25372030 PMCID: PMC4221156 DOI: 10.1371/journal.pone.0112146] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022] Open
Abstract
The development of isothermal amplification platforms for nucleic acid detection has the potential to increase access to molecular diagnostics in low resource settings; however, simple, low-cost methods for heating samples are required to perform reactions. In this study, we demonstrated that human body heat may be harnessed to incubate recombinase polymerase amplification (RPA) reactions for isothermal amplification of HIV-1 DNA. After measuring the temperature of mock reactions at 4 body locations, the axilla was chosen as the ideal site for comfortable, convenient incubation. Using commonly available materials, 3 methods for securing RPA reactions to the body were characterized. Finally, RPA reactions were incubated using body heat while control RPA reactions were incubated in a heat block. At room temperature, all reactions with 10 copies of HIV-1 DNA and 90% of reactions with 100 copies of HIV-1 DNA tested positive when incubated with body heat. In a cold room with an ambient temperature of 10 degrees Celsius, all reactions containing 10 copies or 100 copies of HIV-1 DNA tested positive when incubated with body heat. These results suggest that human body heat may provide an extremely low-cost solution for incubating RPA reactions in low resource settings.
Collapse
Affiliation(s)
| | - Brittany Rohrman
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| | | |
Collapse
|
8
|
Crannell ZA, Rohrman B, Richards-Kortum R. Quantification of HIV-1 DNA using real-time recombinase polymerase amplification. Anal Chem 2014; 86:5615-9. [PMID: 24873435 DOI: 10.1021/ac5011298] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although recombinase polymerase amplification (RPA) has many advantages for the detection of pathogenic nucleic acids in point-of-care applications, RPA has not yet been implemented to quantify sample concentration using a standard curve. Here, we describe a real-time RPA assay with an internal positive control and an algorithm that analyzes real-time fluorescence data to quantify HIV-1 DNA. We show that DNA concentration and the onset of detectable amplification are correlated by an exponential standard curve. In a set of experiments in which the standard curve and algorithm were used to analyze and quantify additional DNA samples, the algorithm predicted an average concentration within 1 order of magnitude of the correct concentration for all HIV-1 DNA concentrations tested. These results suggest that quantitative RPA (qRPA) may serve as a powerful tool for quantifying nucleic acids and may be adapted for use in single-sample point-of-care diagnostic systems.
Collapse
|
9
|
Kuate S, Marino MP, Reiser J. Analysis of partial recombinants in lentiviral vector preparations. Hum Gene Ther Methods 2014; 25:126-35. [PMID: 24367910 DOI: 10.1089/hgtb.2013.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The presence of replication-competent lentivirus (RCL) in lentiviral vector preparations is a major safety concern for clinical applications of such vectors. RCL are believed to emerge from rare recombinant vector genomes that are referred to as partial recombinants or Psi-Gag recombinants. To quantitatively determine the fraction of partial recombinants in lentiviral vector preparations and to analyze them at the DNA sequence level, we established a drug selection assay involving a lentiviral packaging construct containing a drug-resistance gene encoding blasticidin (BSD) resistance. Upon transduction of target cells, the BSD resistance gene confers BSD resistance to the transduced cells. The results obtained indicate that there were up to 156 BSD-resistant colonies in a total of 10(6) transducing vector particles. The predicted recombination events were verified by polymerase chain reaction using genomic DNA obtained from BSD-resistant cell clones and by DNA sequence analysis. In an attempt to reduce the emergence of partial recombinants, sequence overlaps between the packaging and the vector constructs were reduced by substituting the Rev response element (RRE) present in the vector construct using a heterologous RRE element derived from simian immunodeficiency virus (SIVmac239). The results obtained showed that a reduction of sequence overlaps resulted in an up to sevenfold reduction of the frequency of BSD-resistant colonies, indicating that the capacity to form partial recombinants was diminished.
Collapse
Affiliation(s)
- Seraphin Kuate
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , U.S. Food and Drug Administration, Bethesda, MD 20892
| | | | | |
Collapse
|
10
|
Farley DC, Bannister R, Leroux-Carlucci MA, Evans NE, Miskin JE, Mitrophanous KA. Development of an equine-tropic replication-competent lentivirus assay for equine infectious anemia virus-based lentiviral vectors. Hum Gene Ther Methods 2012; 23:309-23. [PMID: 23121195 DOI: 10.1089/hgtb.2012.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The release of lentiviral vectors for clinical use requires the testing of vector material, production cells, and, if applicable, ex vivo-transduced cells for the presence of replication-competent lentivirus (RCL). Vectors derived from the nonprimate lentivirus equine infectious anemia virus (EIAV) have been directly administered to patients in several clinical trials, with no toxicity observed to date. Because EIAV does not replicate in human cells, and because putative RCLs derived from vector components within human vector production cells would most likely be human cell-tropic, we previously developed an RCL assay using amphotropic murine leukemia virus (MLV) as a surrogate positive control and human cells as RCL amplification/indicator cells. Here we report an additional RCL assay that tests for the presence of theoretical "equine-tropic" RCLs. This approach provides further assurance of safety by detecting putative RCLs with an equine cell-specific tropism that might not be efficiently amplified by the human cell-based RCL assay. We tested the ability of accessory gene-deficient EIAV mutant viruses to replicate in a highly permissive equine cell line to direct our choice of a suitable EIAV-derived positive control. In addition, we report for the first time the mathematical rationale for use of the Poisson distribution to calculate minimal infectious dose of positive control virus and for use in monitoring assay positive/spike control failures in accumulating data sets. No RCLs have been detected in Good Manufacturing Practice (GMP)-compliant RCL assays to date, further demonstrating that RCL formation is highly unlikely in contemporary minimal lentiviral vector systems.
Collapse
|
11
|
Elinav H, Wu Y, Coskun A, Hryckiewicz K, Kemler I, Hu Y, Rogers H, Hao B, Ben Mamoun C, Poeschla E, Sutton R. Human CRM1 augments production of infectious human and feline immunodeficiency viruses from murine cells. J Virol 2012; 86:12053-68. [PMID: 22933280 PMCID: PMC3486471 DOI: 10.1128/jvi.01970-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/18/2012] [Indexed: 11/20/2022] Open
Abstract
Productive replication of human immunodeficiency virus type 1 (HIV-1) occurs efficiently only in humans. The posttranscriptional stages of the HIV-1 life cycle proceed poorly in mouse cells, with a resulting defect in viral assembly and release. Previous work has shown that the presence of human chromosome 2 increases HIV-1 production in mouse cells. Recent studies have shown that human chromosome region maintenance 1 (hCRM1) stimulates Gag release from rodent cells. Here we report that expressions of hCRM1 in murine cells resulted in marked increases in the production of infectious HIV-1 and feline immunodeficiency virus (FIV). HIV-1 production was also increased by hSRp40, and a combination of hCRM1 and hSRp40 resulted in a more-than-additive effect on HIV-1 release. In contrast, the overexpression of mouse CRM1 (mCRM1) minimally affected HIV-1 and FIV production and did not antagonize hCRM1. In the presence of hCRM1 there were large increases in the amounts of released capsid, which paralleled the increases in the infectious titers. Consistent with this finding, the ratios of unspliced to spliced HIV-1 mRNAs in mouse cells expressing hCRM1 and SRp40 became similar to those of human cells. Furthermore, imaging of intron-containing FIV RNA showed that hCRM1 increased RNA export to the cytoplasm.By testing chimeras between mCRM1 and hCRM1 and comparing those sequences to feline CRM1, we mapped the functional domain to HEAT (Huntingtin, elongation factor 3, protein phosphatase 2A, and the yeast kinase TOR1) repeats 4A to 9A and a triple point mutant in repeat 9A, which showed a loss of function. Structural analysis suggested that this region of hCRM1 may serve as a binding site for viral or cellular factors to facilitate lentiviral RNA nuclear export.
Collapse
Affiliation(s)
- Hila Elinav
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuanfei Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ayse Coskun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Katarzyna Hryckiewicz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Iris Kemler
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yani Hu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hilary Rogers
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bing Hao
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eric Poeschla
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Richard Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Rohrman BA, Richards-Kortum RR. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. LAB ON A CHIP 2012; 12:3082-8. [PMID: 22733333 PMCID: PMC3569001 DOI: 10.1039/c2lc40423k] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Despite the importance of early diagnosis and treatment of HIV, only a small fraction of HIV-exposed infants in low- and middle-income countries are tested for the disease. The gold standard for early infant diagnosis, DNA PCR, requires resources that are unavailable in poor settings, and no point-of-care HIV DNA test is currently available. We have developed a device constructed of layers of paper, glass fiber, and plastic that is capable of performing isothermal, enzymatic amplification of HIV DNA. The device is inexpensive, small, light-weight, and easy to assemble. The device stores lyophilized enzymes, facilitates mixing of reaction components, and supports recombinase polymerase amplification in five steps of operation. Using commercially available lateral flow strips as a detection method, we demonstrate the ability of our device to amplify 10 copies of HIV DNA to detectable levels in 15 min. Our results suggest that our device, which is designed to be used after DNA extraction from dried-blood spots, may serve in conjunction with lateral flow strips as part of a point-of-care HIV DNA test to be used in low resource settings.
Collapse
|
13
|
Abstract
Gene therapy vectors based on murine retroviruses have now been in clinical trials for over 20 years. During that time, a variety of novel vector pseudotypes were developed in an effort to improve gene transfer. Lentiviral vectors are now in clinical trials and a similar evolution of vector technology is anticipated. These modifications present challenges for those producing large-scale clinical materials. This chapter discusses approaches to process development for novel lentiviral vectors, highlight considerations, and methods to be incorporated into the development schema.
Collapse
Affiliation(s)
- Anna Leath
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
14
|
Abstract
More than two decades have passed since genetically modified HIV was used for gene delivery. Through continuous improvements these early marker gene-carrying HIVs have evolved into safer and more effective lentiviral vectors. Lentiviral vectors offer several attractive properties as gene-delivery vehicles, including: (i) sustained gene delivery through stable vector integration into host genome; (ii) the capability of infecting both dividing and non-dividing cells; (iii) broad tissue tropisms, including important gene- and cell-therapy-target cell types; (iv) no expression of viral proteins after vector transduction; (v) the ability to deliver complex genetic elements, such as polycistronic or intron-containing sequences; (vi) potentially safer integration site profile; and (vii) a relatively easy system for vector manipulation and production. Accordingly, lentivector technologies now have widespread use in basic biology and translational studies for stable transgene overexpression, persistent gene silencing, immunization, in vivo imaging, generating transgenic animals, induction of pluripotent cells, stem cell modification and lineage tracking, or site-directed gene editing. Moreover, in the present high-throughput '-omics' era, the commercial availability of premade lentiviral vectors, which are engineered to express or silence genome-wide genes, accelerates the rapid expansion of this vector technology. In the present review, we assess the advances in lentiviral vector technology, including basic lentivirology, vector designs for improved efficiency and biosafety, protocols for vector production and infection, targeted gene delivery, advanced lentiviral applications and issues associated with the vector system.
Collapse
|
15
|
Stewart HJ, Fong-Wong L, Strickland I, Chipchase D, Kelleher M, Stevenson L, Thoree V, McCarthy J, Ralph GS, Mitrophanous KA, Radcliffe PA. A stable producer cell line for the manufacture of a lentiviral vector for gene therapy of Parkinson's disease. Hum Gene Ther 2011; 22:357-69. [PMID: 21070114 DOI: 10.1089/hum.2010.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ProSavin is an equine infectious anemia virus vector-based gene therapy for Parkinson's disease for which inducible HEK293T-based producer cell lines (PCLs) have been developed. These cell lines demonstrate stringent tetracycline-regulated expression of the packaging components and yield titers comparable to the established transient production system. A prerequisite for the use of PCL-derived lentiviral vectors (LVs) in clinical applications is the thorough characterization of both the LV and respective PCL with regard to identity and genetic stability. We describe the detailed characterization of two ProSavin PCLs (PS5.8 and PS46.2) and resultant ProSavin vector. The two cell lines demonstrate stable production of vector over a time period sufficient to allow generation of master and working cell banks, and subsequent large-scale vector production. ProSavin generated from the PCLs performs comparably in vivo to that produced by the standard transient transfection process with respect to transduction efficiency and immunogenicity. The development of ProSavin PCLs, and the detailed characterization described here, will aid the advancement of ProSavin for clinical application.
Collapse
|
16
|
Abstract
Lentiviral vectors are now in clinical trials for a variety of inherited and acquired disorders. A challenge for moving any viral vector into the clinic is the ability to screen the vector product for the presence of replication-competent virus. Assay development for replication-competent lentivirus (RCL) is particularly challenging because recombination of vector packaging plasmids and cellular DNA leading to RCL has not been reported with the current viral vector systems. Therefore, the genomic structure of a RCL remains theoretical. In this report, we describe a highly sensitive RCL assay suitable for screening vector product and have screened large-scale vector supernatant, cells used in vector production, and cells transduced with clinical grade vector. We discuss the limitations and challenges of the current assay, and suggest modifications that may improve the suitability of this assay for screening US Food and Drug Administration (US FDA)-licensed products.
Collapse
|
17
|
Abstract
Retroviral vectors based on murine leukemia viruses (MuLV) have been used in clinical investigations for over a decade. Alternative retroviruses, most notably vectors based on HIV-1 and other lentiviruses, are now entering into clinical trials. Although vectors are designed to be replication defective, recombination events during vector production could lead to the generation of replication competent retroviruses (RCR) or replication competent lentiviruses (RCL). Careful screening of vector prior to human use must insure that patients are not inadvertently exposed to RCR or RCL. We describe methods capable of detecting low levels of virus contamination and discuss the current regulatory guidelines for screening gene therapy products intended for human use.
Collapse
Affiliation(s)
- Lakshmi Sastry
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
18
|
Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 2008; 14:299-305. [PMID: 18297084 DOI: 10.1038/nm1712] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 12/19/2007] [Indexed: 01/10/2023]
Abstract
Notch signaling is a key mechanism in the control of embryogenesis. However, its in vivo function during mesenchymal cell differentiation, and, specifically, in bone homeostasis, remains largely unknown. Here, we show that osteoblast-specific gain of Notch function causes severe osteosclerosis owing to increased proliferation of immature osteoblasts. Under these pathological conditions, Notch stimulates early osteoblastic proliferation by upregulating the genes encoding cyclin D, cyclin E and Sp7 (osterix). The intracellular domain of Notch1 also regulates terminal osteoblastic differentiation by directly binding Runx2 and repressing its transactivation function. In contrast, loss of all Notch signaling in osteoblasts, generated by deletion of the genes encoding presenilin-1 and presenilin-2 in bone, is associated with late-onset, age-related osteoporosis, which in turn results from increased osteoblast-dependent osteoclastic activity due to decreased osteoprotegerin mRNA expression in these cells. Together, these findings highlight the potential dimorphic effects of Notch signaling in bone homeostasis and may provide direction for novel therapeutic applications.
Collapse
|
19
|
Morris KV. Genetic-based therapies to select nonpathogenic variants of HIV-1. Per Med 2007; 4:261-269. [PMID: 29788674 DOI: 10.2217/17410541.4.3.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lentiviral-based genetic therapies offer a valuable addition to the current anti-HIV arsenal and allow for a rational directed approach to evolve HIV-1 to a less pathogenic state. Many lentiviral vector systems have been described that can be either replication incompetent, self-inactivating or conditionally replicating. Importantly, lentiviral vectors can be engineered to deliver anti-HIV-1 genes such as antisense RNAs, aptamers and siRNAs to those cells involved in HIV-1 infection: T-cells, hematopoietic stem cells and dendritic cells. Furthermore, the use of HIV-2-based vectors that can be mobilized by wild-type HIV-1 in vivo and spread to those cells targeted by the virus, as well as compete with HIV-1 viral RNA for packaging and access to viral proteins such as Tat and Rev required for viral replication, are of special interest. This review will focus on the rational design of therapeutic lentiviral vectors that can be used in combination with current antiretroviral therapies to essentially direct the evolution of HIV-1 to a less pathogenic state of existence.
Collapse
Affiliation(s)
- Kevin V Morris
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 N. Torrey Pines Road, MEM-115, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Coskun AK, van Maanen M, Janka D, Stockton D, Stankiewicz P, Stankiewicsz P, Yatsenko S, Sutton RE. Isolation and characterization of mouse-human microcell hybrid cell clones permissive for infectious HIV particle release. Virology 2007; 362:283-93. [PMID: 17270231 PMCID: PMC1987707 DOI: 10.1016/j.virol.2006.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 09/22/2006] [Accepted: 12/18/2006] [Indexed: 01/09/2023]
Abstract
Mouse cells are non-permissive to human immunodeficiency virus type 1 (HIV) in that there is a pronounced post-integration block to viral replication. We have recently demonstrated that mouse-human somatic cell hybrids that contain human chromosome 2 increase both HIV Capsid (CA) production and infectious virus release. Here we report on the isolation of three mouse-human microcell hybrids (MCHs) that behave similarly, starting from a pool of 500 MCH clones. Release of virus was specific to HIV and cell revertants that no longer contained any human chromosome fragments did not release CA or infectious virus. Two of the three cell clones were identical as judged by PCR STS content and fluorescence in situ hybridization (FISH) and contained a single 2-12 human chromosome chimera. The third cell clone only contained human chromosome 12, as determined by PCR, FISH, and microarray analyses. There were no consistent differences in Gag protein and spliced/unspliced viral RNA levels between mouse cell lines. CMV promoter-driven, codon-optimized gag-pol had no effect on infectious HIV release from these mouse cells, despite allowing Gag targeting and increasing CA production. These permissive mouse-human MCHs and their corresponding non-permissive revertants may prove useful for mechanistic studies and also for identifying the responsible gene(s) or factor(s) involved in the production of HIV.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Line, Tumor
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 2
- Codon
- DNA, Viral/analysis
- Gene Products, gag/analysis
- Gene Products, gag/biosynthesis
- HIV Core Protein p24/biosynthesis
- HIV-1/growth & development
- Humans
- Hybrid Cells/virology
- In Situ Hybridization, Fluorescence
- Mice
- Microarray Analysis
- Polymerase Chain Reaction
- Protein Precursors/analysis
- RNA, Viral/analysis
- RNA, Viral/genetics
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Ayse K Coskun
- Baylor College of Medicine, Department of Molecular Virology and Microbiology, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Baliga CS, van Maanen M, Chastain M, Sutton RE. Vaccination of mice with replication-defective human immunodeficiency virus induces cellular and humoral immunity and protects against vaccinia virus-gag challenge. Mol Ther 2006; 14:432-41. [PMID: 16713742 DOI: 10.1016/j.ymthe.2006.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 02/07/2006] [Accepted: 02/23/2006] [Indexed: 10/24/2022] Open
Abstract
Here we describe as a potential vaccine candidate a replication-defective HIV that encodes multiple viral genes in addition to a cassette that includes both truncated cyclin T1 and an autofluorescent protein. After confirming functionality of the cyclin T1, we immunized mice intramuscularly once or twice with the replication-defective HIV vector pseudotyped with vesicular stomatitis virus (VSV) G protein (RD HIV), a plasmid encoding CMV-driven gag (gag DNA), or adenovirus gag (Ad5-gag). Capsid-specific antibody titers following RD HIV immunization were >10(6)/ml and approximately equivalent to those induced by gag DNA and Ad5-gag. Antibodies against the autofluorescent protein and VSV G were also detected. After RD HIV immunization ELISpot assays demonstrated Gag-specific interferon-gamma (IFN-gamma) SFU equivalent to that of Ad5-gag and fourfold greater than that of gag DNA. HIV polymerase-specific IFN-gamma SFU values were similar, and boosting increased both antibody titers and the IFN-gamma response. Challenge using vaccinia virus (VV)-gag demonstrated significantly lower recoverable VV for RD HIV-immunized mice compared to controls. No significant differences were observed in vaccinated mice challenged with wild-type VV. This study demonstrates the efficacy of RD HIV in conferring HIV-specific immunity and protection in mice and suggests its potential use in humans as either a prophylactic or a therapeutic vaccine.
Collapse
Affiliation(s)
- Christopher S Baliga
- Department of Pediatrics, Section of Allergy and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
22
|
Coskun AK, van Maanen M, Nguyen V, Sutton RE. Human chromosome 2 carries a gene required for production of infectious human immunodeficiency virus type 1. J Virol 2006; 80:3406-15. [PMID: 16537608 PMCID: PMC1440379 DOI: 10.1128/jvi.80.7.3406-3415.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV) replicates only in certain primate cells. In murine cells expressing cyclin T1, a posttranscriptional block exists such that small amounts of capsid and little infectious virus are released. This block is relieved in part by fusion with human cells. Here we have tested a panel of mouse-human somatic cell hybrids for production of infectious virus. Only those containing human chromosome 2 were permissive, which correlated with capsid production. The effect was specific to HIV in that release of murine leukemia virus was minimally affected by the presence of chromosome 2. Although expression of Vpu markedly increased capsid production in the absence of chromosome 2, it did not result in a corresponding increase in infectious HIV. The presence of chromosome 2 did not have consistent effects on the amount of unspliced viral RNA, whereas the amount of cell-associated Gag p55 was increased a fewfold. These results suggest that processing of HIV Gag can be corrected by one or more genes present on human chromosome 2 to allow production of infectious HIV from murine cells.
Collapse
Affiliation(s)
- Ayse K Coskun
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
23
|
Delenda C, Gaillard C. Real-time quantitative PCR for the design of lentiviral vector analytical assays. Gene Ther 2006; 12 Suppl 1:S36-50. [PMID: 16231054 DOI: 10.1038/sj.gt.3302614] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
From the recent and emerging concerns for approving lentiviral vector-mediated gene transfer in human clinical applications, several analytical methods have been applied in preclinical models to address the lentiviral vector load in batches, cells or tissues. This review points out the oldest generation methods (blots, RT activity, standard PCR) as well as a full description of the newest real-time quantitative PCR (qPCR) applications. Combinations of primer and probe sequences, which have worked in the lentiviral amplification context, have been included in the effort to dress an exhaustive list. Also, great variations have been observed from interlaboratory results, we have tempted to compare between them the different analytical methods that have been used to consider (i) the titration of lentiviral vector batches, (ii) the absence of the susceptible emerging replicative lentiviruses or (iii) the lentiviral vector biodistribution in the organism.
Collapse
Affiliation(s)
- C Delenda
- Genethon, CNRS UMR 8115, 1bis rue de l'Internationale, Evry Cedex, France
| | | |
Collapse
|
24
|
Loewen N, Poeschla EM. Lentiviral vectors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 99:169-91. [PMID: 16568892 DOI: 10.1007/10_007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review the use of lentiviral vectors in current human gene therapy applications that involve genetic modification of nondividing tissues with integrated transgenes. Safety issues, including insertional mutagenesis and replication-competent retroviruses, are discussed. Innate cellular defenses against retroviruses and their implications for human gene therapy with different lentiviral vectors are also addressed.
Collapse
Affiliation(s)
- Nils Loewen
- Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
25
|
Sinn PL, Sauter SL, McCray PB. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors--design, biosafety, and production. Gene Ther 2005; 12:1089-98. [PMID: 16003340 DOI: 10.1038/sj.gt.3302570] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Replication defective vectors derived from simple retroviruses or the more complex genomes of lentiviruses continue to offer the advantages of long-term expression, cell and tissue specific tropism, and large packaging capacity for the delivery of therapeutic genes. The occurrence of adverse events caused by insertional mutagenesis in three patients in a gene therapy trial for X-linked SCID emphasizes the potential for problems in translating this approach to the clinic. Several genome-wide studies of retroviral integration are now providing novel insights into the integration site preferences of different vector classes. We review recent developments in vector design, integration, biosafety, and production.
Collapse
Affiliation(s)
- P L Sinn
- Program in Gene Therapy, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
26
|
Miskin J, Chipchase D, Rohll J, Beard G, Wardell T, Angell D, Roehl H, Jolly D, Kingsman S, Mitrophanous K. A replication competent lentivirus (RCL) assay for equine infectious anaemia virus (EIAV)-based lentiviral vectors. Gene Ther 2005; 13:196-205. [PMID: 16208418 DOI: 10.1038/sj.gt.3302666] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lentiviral vectors are being developed to satisfy a wide range of currently unmet medical needs. Vectors destined for clinical evaluation have been rendered multiply defective by deletion of all viral coding sequences and nonessential cis-acting sequences from the transfer genome. The viral envelope and accessory proteins are excluded from the production system. The vectors are produced from separate expression plasmids that are designed to minimize the potential for homologous recombination. These features ensure that the regeneration of the starting virus is impossible. It is a regulatory requirement to confirm the absence of any replication competent virus, so we describe here the development and validation of a replication competent lentivirus (RCL) assay for equine infectious anaemia virus (EIAV)-based vectors. The assay is based on the guidelines developed for testing retroviral vectors, and uses the F-PERT (fluorescent-product enhanced reverse transcriptase) assay to test for the presence of a transmissible reverse transcriptase. We have empirically modelled the replication kinetics of an EIAV-like entity in human cells and devised an amplification protocol by comparison with a replication competent MLV. The RCL assay has been validated at the 20 litre manufacturing scale, during which no RCL was detected. The assay is theoretically applicable to any lentiviral vector and pseudotype combination.
Collapse
Affiliation(s)
- J Miskin
- Oxford BioMedica (UK) Ltd, Medawar Centre, The Oxford Science Park, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sastry L, Xu Y, Duffy L, Koop S, Jasti A, Roehl H, Jolly D, Cornetta K. Product-Enhanced Reverse Transcriptase Assay for Replication-Competent Retrovirus and Lentivirus Detection. Hum Gene Ther 2005; 16:1227-36. [PMID: 16218784 DOI: 10.1089/hum.2005.16.1227] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The product-enhanced reverse transcriptase (PERT) assay has been used to detect reverse transcriptase (RT) activity associated with retroviruses. Although the PERT assay has been proposed as a method for detection of replication-competent retrovirus (RCR) and lentivirus (RCL), it has not been rigorously compared with existing methods for RCR and RCL detection. We have assessed the PERT assay for detection of RCL and RCR that may contaminate lentiviral and retroviral vectors and compared it with published methods for RCL (p24gag ELISA/gag PCR) and RCR (S+/L-) detection. Our results suggest that the PERT assay is as sensitive as p24gag ELISA and gag PCR for detection of replication-competent HIV-1 in an RCL detection assay. Comparison of detection of replication-competent retroviruses, GALV and RD114, by extended S+/L- and PERT assays indicates that both assays can detect 1 IU of each virus. Our findings suggest that the PERT assay can be used for RCL and RCR testing of a variety of retroviral vectors regardless of the structure, sequence, and envelope of the vectors.
Collapse
Affiliation(s)
- Lakshmi Sastry
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sastry L, Xu Y, Duffy L, Koop S, Jasti A, Roehl H, Jolly D, Cornetta K. Product-Enhanced Reverse Transcriptase Assay for Replication-Competent Retrovirus and Lentivirus Detection. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Ni Y, Sun S, Oparaocha I, Humeau L, Davis B, Cohen R, Binder G, Chang YN, Slepushkin V, Dropulic B. Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector. J Gene Med 2005; 7:818-34. [PMID: 15693055 DOI: 10.1002/jgm.726] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A stable packaging cell line facilitates large-scale lentivirus vector manufacture. However, it has been difficult to produce clinical-scale HIV-1-based lentiviral vectors using a packaging cell line, in part due to toxicity of packaging genes, and gene silencing that occurs during the long culture period necessary for sequential addition of packaging constructs. METHODS To avoid these problems, we developed a three-level cascade gene regulation system designed to remove tetracycline transactivator (tTA) from cytomegalovirus immediate early promoter (CMV)-controlled expression to reduce cytotoxicity from constitutive expression of tTA and leaky expression of packaging genes. We also performed a one-step integration of the three packaging plasmids to shorten the culture time for clonal selection. RESULTS Although leaky expression of p24 and vector production still occurred despite the three-level regulation system, little cytotoxicity was observed and producer cells could be expanded for large-scale production. Producer cells yielded remarkably stable vector production over a period greater than 11 days with the highest titer 3.5 x 10(7) transducing units (TU)/ml and p24 300 ng/ml, yielding 2.2 x 10(11) TU and 1.8 milligram (mg) p24 from one cell factory. No replication-competent lentivirus (RCL) was detected. Long-term analysis demonstrated that, although the cells are genetically stable, partial gene silencing occurs after 2-3 months in culture; however, the one-step construct integration allowed prolonged vector production before significant gene silencing. Concentrated vector resulted in 90% transduction in CD4+ lymphocytes at 20 TU per cell. CD34+ progenitor cells were transduced at 41-46% efficiency, and long-term initiating culture (LTC-IC) was transduced at 45-51%. CONCLUSIONS These results demonstrate for the first time HIV-1-based lentiviral vector production on the large scale using a packaging cell line.
Collapse
MESH Headings
- Base Sequence
- Cell Line
- Clone Cells
- Cloning, Molecular
- Codon
- Enzyme-Linked Immunosorbent Assay
- Fusion Proteins, gag-pol/chemistry
- Fusion Proteins, gag-pol/genetics
- Gene Expression Regulation/drug effects
- Gene Products, rev/chemistry
- Gene Products, rev/genetics
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Genetic Engineering
- Genetic Vectors/biosynthesis
- Genetic Vectors/genetics
- HIV-1/genetics
- HeLa Cells
- Humans
- Kinetics
- Lentivirus/genetics
- Membrane Glycoproteins/metabolism
- Models, Genetic
- Molecular Sequence Data
- Plasmids
- Tetracycline/pharmacology
- Transduction, Genetic
- Transfection
- Viral Envelope Proteins/metabolism
- Virion/metabolism
- Virus Replication
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Yajin Ni
- VIRxSYS Corporation, Gaithersburg, Maryland 20877 [correction] USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|