1
|
但 晴, 白 婧, 蔡 钟, 林 琨, 李 泱. [Changes of myocardial calcium currents in rats with myocardial injury induced by running exercise during acute hypoxia]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1359-1366. [PMID: 36210709 PMCID: PMC9550543 DOI: 10.12122/j.issn.1673-4254.2022.09.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the changes in myocardial calcium currents in rats subjected to forced running exercise during acute hypoxia and their association with myocardial injury. METHODS Forty SD rats were randomized into quiescent group and running group either in normal oxygen (NQ and NR groups, respectively) or in acute hypoxia (HQ and HR groups, respectively). Hypoxia was induced by keeping the rats in a hypobaric oxygen chamber (PaO2=61.6kpa) for 4 h a day; the rats in the two running groups were forced to run on running wheels for 4 h each day. Rat ventricular myocytes was isolated by enzymatic digestion for recording action potentials and currents using patch clamp technique, and confocal Ca2+ imaging was used to monitor intracellular Ca2+ levels. The expressions of Cav1.2 channel and the cardiac ryanodine receptor (RyR2) were determined using Western blotting. RESULTS Compared with those in NQ group, the rats in HR group showed significantly decreased SOD activity (P < 0.01), increased h-FABP, hs-CRP and IMA levels (P < 0.05 or 0.01), obvious myocardial pathology, and prolonged APD50 and APD90 (P < 0.05). Of the different stress conditions, forced running in acute hypoxia resulted in the most prominent increase of the densities of ICa, L currents, causing also a significant left shift of the steady state activation curve and a significant right shift of the steady state inactivation curve. Compared with those in NQ group, the rats in NR, HQ and HR groups all exhibited higher rates of spontaneous calcium wave events in the cardiac myocytes, increased frequency of calcium sparks with lowered amplitude, enhanced calcium release amplitude in the ventricular myocytes, and delayed calcium ion reabsorption; in particular, these changes were the most conspicuous in HR group (P < 0.05 or 0.01). There was also a significant increase in the protein levels of Cav1.2 channel and RyR2 receptor in HR group (P < 0.05 or 0.01). CONCLUSIONS The mechanism of myocardial injury in rats subjected to forced running in acute hypoxia may involve the increase of oxidative stress and calcium current and intracellular calcium overload.
Collapse
Affiliation(s)
- 晴 但
- 解放军总医院第一医学中心心血管内科,北京 100039Department of Cardiology, Fist Medical Center, Chinese PLA General Hospital, Beijing 100000, China
| | - 婧 白
- 郑州大学第一附属医院心血管内科,河南 郑州 450052Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - 钟奇 蔡
- 中国人民解放军南部战区总医院干部病房,广东 广州 510014Cadre's Ward, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, China
| | - 琨 林
- 解放军总医院第一医学中心心血管内科,北京 100039Department of Cardiology, Fist Medical Center, Chinese PLA General Hospital, Beijing 100000, China
| | - 泱 李
- 解放军总医院第六医学中心心血管 病医学部,北京 100048Department of Cardiology, Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
2
|
Costa KB, Leite HR, Garcia BCC, Ottone VO, Mendonça GDR, Cordeiro PJ, Chaves PR, Deus FA, Tossige-Gomes R, Coimbra CC, Rocha-Vieira E. Storage Duration Affects the Quantification of Oxidative Stress Markers in the Gastrocnemius, Heart, and Brain of Mice Submitted to a Maximum Exercise. Biopreserv Biobank 2021; 20:3-11. [PMID: 34252291 DOI: 10.1089/bio.2020.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the effect of sample storage duration on the quantification of oxidative stress markers in the gastrocnemius, heart, and brain of mice submitted to a maximum swimming exercise. Thiobarbituric acid reactive substances (TBARSs), protein carbonyl derivatives, total antioxidant capacity (TAC), and the activity of superoxide dismutase (SOD) and catalase (CAT) were quantified in fresh tissues and in samples stored at -80°C for 1, 3, or 6 months, from exercised (n = 13) and nonexercised mice (n = 13). Except for protein carbonyl derivatives in the heart, the exercise resulted in the modification of all markers in all fresh-evaluated samples (p < 0.001). The storage duration did not modify the effect of exercise on protein carbonyl derivatives and TAC. TBARS was stable for 3 months in the gastrocnemius and for 1 month in frozen heart and brain. Accordingly, the exercise effect on TBARS levels observed in fresh samples was absent in the gastrocnemius frozen for 6 months (p = 0.98) and in the heart and brain frozen for 3 months (p = 0.07 and 0.28, respectively) or more (p = 0.21 for heart and p > 0.99 for brain). In addition, CAT and SOD activities were reduced by storage duration in all tissues evaluated (p < 0.05). Our findings show that sample storage duration alters the quantification of oxidative stress markers in mice submitted to maximum exercise, and its effect is tissue and marker dependent. Some recommendations to achieve more accurate and reproducible data in the exercise physiology and oxidative stress markers field are presented.
Collapse
Affiliation(s)
- Karine B Costa
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Hercules R Leite
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Bruna C C Garcia
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Vinicius O Ottone
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Gabriela D R Mendonça
- Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Patrício J Cordeiro
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Patrícia R Chaves
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Franciele A Deus
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Rosalina Tossige-Gomes
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Candido C Coimbra
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.,Programa de Pós-graduação em Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.,Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
3
|
Luo T, Liu H, Chen B, Liu H, Abdel-Latif A, Kitakaze M, Wang X, Wu Y, Chou D, Kim JK. A novel role of claudin-5 in prevention of mitochondrial fission against ischemic/hypoxic stress in cardiomyocytes. Can J Cardiol 2021; 37:1593-1606. [PMID: 33838228 DOI: 10.1016/j.cjca.2021.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Downregulation of claudin-5 in the heart is associated with the end-stage heart failure. However, the underlying mechanism of claudin-5 is unclear. Here we investigated the molecular actions of claudin-5 in perspective of mitochondria in cardiomyocytes to better understand the role of claudin-5 in cardioprotection during ischemia. METHODS AND RESULTS Claudin-5 was detected in the murine heart tissue and the neonatal rat cardiomyocytes (NRCM). Its protein level was severely decreased after myocardial ischemia/reperfusion (I/R; 30 min/24 h) or hypoxia/reoxygenation (H/R; 24 h/4 h). Claudin-5 was present in the mitochondria of NRCM as determined by confocal microscopy. H/R-induced downregulation of claudin-5 was accompanied by mitochondrial fragmentation. The protein level of mitofusin 2 (Mfn2) was dramatically decreased while the expression of dynamin-related protein (Drp) 1 was significantly increased after H/R. H/R-induced mitochondrial swelling and fission were observed by transmission electron microscope (TEM). Overexpression of claudin-5 by adenoviral infection reversed these structural disintegration of mitochondria. The mitochondria-centered intrinsic pathway of apoptosis triggered by H/R and indicated by the expression of cytochrome c and cleaved caspase 3 in the cytoplasm of NRCMs was also reduced by overexpressing claudin-5. Overexpression of claudin-5 in mouse heart also significantly decreased cleaved caspase 3 expression and the infarct size in ischemic heart with improved systolic function. CONCLUSION We demonstrated for the first time the presence of claudin-5 in the mitochondria in cardiomyocytes and provided the firm evidence for the cardioprotective role of claudin-5 in the preservation of mitochondrial dynamics and cell fate against hypoxia- or ischemia-induced stress.
Collapse
Affiliation(s)
- Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China; Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Haiqiong Liu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Baihe Chen
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China; Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Han Liu
- Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536-0509, USA
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, 5675-8565, Japan
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuanzhou Wu
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Dylan Chou
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Jin Kyung Kim
- Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
4
|
Mundstock E, Amaral MA, Baptista RR, Sarria EE, dos Santos RRG, Filho AD, Rodrigues CAS, Forte GC, Castro L, Padoin AV, Stein R, Perez LM, Ziegelmann PK, Mattiello R. Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis. Clin Nutr 2019; 38:1504-1510. [DOI: 10.1016/j.clnu.2018.08.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022]
|
5
|
Gao C, Chen X, Li J, Li Y, Tang Y, Liu L, Chen S, Yu H, Liu L, Yao P. Myocardial mitochondrial oxidative stress and dysfunction in intense exercise: regulatory effects of quercetin. Eur J Appl Physiol 2013; 114:695-705. [PMID: 24368555 DOI: 10.1007/s00421-013-2802-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/14/2013] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Oxidative stress plays a pivotal role in the intense exercise-induced myocardium injury, and mitochondrial compartment is presumed as the main source and susceptible target of intracellular reactive oxygen species (ROS). PURPOSE The objective of this study was to evaluate the protective effect of quercetin, a naturally occurring flavonoids possessing antioxidant effect on repeated intense exercise-induced mitochondrial oxidative stress and dysfunction. METHODS Adult male BALB/C mice were treated by quercetin (100 mg/kg bw) for 4 weeks and subjected to the exercise protocol on a treadmill (28 m/min at 5° slope for 90 min) for seven consecutive days concurrently at the fourth week. RESULTS Intense exercise in mice resulted in the leakage of creatine kinase-MB (increased from 221.5 ± 33.8 to 151.1 ± 19.1 U/l, P < 0.01) and ultrastructural malformation mainly evidenced by disrupted myofibrils and swollen mitochondria, which was overtly attenuated by quercetin prophylaxis. Quercetin pretreatment evidently alleviated mitochondrial oxidative stress by inhibiting glutathione depletion and aconitase inactivation, ROS over-generation, and lipid peroxidation in cardiac mitochondria of intense exercise mice. Furthermore, mitochondrial dysfunction manifested by decreased mitochondrial membrane potential (68.6 ± 7.6 versus 100.0 ± 7.7 %, P < 0.01) and respiratory control ratio (5.03 ± 0.55 versus 7.48 ± 0.71, P < 0.01) induced as a consequence of acute exercise was markedly mitigated by quercetin precondition. CONCLUSION Quercetin protects mouse myocardium against intense exercise injury, especially ultrastructural damage and mitochondrial dysfunction, probably through its beneficial antioxidative effect, highlighting a promising strategy for over-training injury by naturally occurring phytochemicals.
Collapse
Affiliation(s)
- Chao Gao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Ministry of Environmental Protection Key Laboratory of Environment, and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lee NJ, Lee JW, Sung JH, Ko YG, Hwang S, Kang JK. Effects of administration of IH901, a ginsenoside intestinal metabolite, on muscular and pulmonary antioxidant functions after eccentric exercise. J Vet Sci 2013; 14:249-56. [PMID: 23820200 PMCID: PMC3788149 DOI: 10.4142/jvs.2013.14.3.249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/24/2012] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to investigate whether administration of IH901, a ginseng intestinal metabolite, ameliorates exercise-induced oxidative stress while preserving antioxidant defense capability in rat skeletal muscles and lung. Eight adult male Sprague-Dawley rats per group were randomly assigned to the resting control, exercise control, resting with IH901 (25, 50, and 100 mg/kg) consumption (R/IH901), or exercise with IH901 (25, 50, and 100 mg/kg) consumption (E/IH901) group. The trained groups ran 35 min 2 days/week for 8 weeks. To analyze the IH901-training interaction, serum biochemical analysis, lipid peroxidation, citrate synthase, protein oxidation, antioxidant and superoxide dismutase in skeletal muscles and lung tissue were measured. Compared to the exercise control group, animals that consumed IH901 had significantly increased exercise endurance times (p < 0.05) and decreased plasma creatine kinase and lactate dehydrogenase levels (p < 0.05), while those in the E/IH901 groups had increased citrate synthase and anti-oxidant enzymes and decreased lipid peroxidation and protein oxidation (p < 0.05). In conclusion, IH901 consumption in aging rats after eccentric exercise has beneficial effects on anti-inflammatory and anti-oxidant activities through down-regulation of pro-inflammatory mediators, lipid peroxidation, and protein oxidation and up-regulation of anti-oxidant enzymes.
Collapse
Affiliation(s)
- Nam-Jin Lee
- Biotoxtech Co. Ltd., Ochang Science Industrial Complex, Ochang 363-883, Korea
| | | | | | | | | | | |
Collapse
|
7
|
Ziolkowski W, Vadhana M S D, Kaczor JJ, Olek RA, Flis DJ, Halon M, Wozniak M, Fedeli D, Carloni M, Antosiewicz J, Gabbianelli R. Exercise-induced heart mitochondrial cholesterol depletion influences the inhibition of mitochondrial swelling. Exp Physiol 2013; 98:1457-68. [PMID: 23733522 DOI: 10.1113/expphysiol.2013.073007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The significance of the reduction of the cholesterol pool in heart mitochondria after exercise is still unknown. Recently, published data have suggested that cholesterol may influence the components of mitochondrial contact site and affect mitochondrial swelling. Therefore, the aim of this study was to determine whether the decreased cholesterol content in heart mitochondria caused by prolonged swimming may provoke changes in their bioenergetics and result in an increased resistance to calcium chloride-induced mitochondrial swelling. Male Wistar rats were divided into a sedentary control group and an exercise group. The rats exercised for 3 h, burdened with an additional 3% of their body weight. Their hearts were removed immediately after completing the exercise. The left ventricle was divided and used for experiments. Mitochondrial cholesterol content, membrane fluidity and mitochondrial bioenergetics were measured in the control and exercised rat heart mitochondria. To assess whether mitochondrial modifications are linked to disruption of lipid microdomains, methyl-β-cyclodextrin, a well-known lipid microdomain-disrupting agent and cholesterol chelator, was applied to the mitochondria of the control group. Cholesterol depletion, increased membrane fluidity and increased resistance to calcium chloride-induced swelling were observed in postexercise heart crude mitochondrial fraction. Similar results were achieved in control mitochondria treated with 2% methyl-β-cyclodextrin. All of the mitochondrial bioenergetics parameters were similar between the groups. Therefore, the disruption of raft-like microdomains appears to be an adaptive change in the rat heart following exercise.
Collapse
Affiliation(s)
- Wieslaw Ziolkowski
- W. Ziolkowski: Department of Biochemistry, Gdansk University of Physical Education and Sport, 1 K. Gorskiego Street, 80-336 Gdansk, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yu SH, Huang HY, Korivi M, Hsu MF, Huang CY, Hou CW, Chen CY, Kao CL, Lee RP, Lee SD, Kuo CH. Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles. J Int Soc Sports Nutr 2012; 9:23. [PMID: 22607394 PMCID: PMC3469378 DOI: 10.1186/1550-2783-9-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 04/06/2012] [Indexed: 12/04/2022] Open
Abstract
Background Previous studies reported divergent results on nutraceutical actions and free radical scavenging capability of ginseng extracts. Variations in ginsenoside profile of ginseng due to different soil and cultivating season may contribute to the inconsistency. To circumvent this drawback, we assessed the effect of major ginsenoside-Rg1 (Rg1) on skeletal muscle antioxidant defense system against exhaustive exercise-induced oxidative stress. Methods Forty weight-matched rats were evenly divided into control (N = 20) and Rg1 (N = 20) groups. Rg1 was orally administered at the dose of 0.1 mg/kg bodyweight per day for 10-week. After this long-term Rg1 administration, ten rats from each group performed an exhaustive swimming, and remaining rats considered as non-exercise control. Tibialis anterior (TA) muscles were surgically collected immediately after exercise along with non-exercise rats. Results Exhaustive exercise significantly (p<0.05) increased the lipid peroxidation of control group, as evidenced by elevated malondialdehyde (MDA) levels. The increased oxidative stress after exercise was also confirmed by decreased reduced glutathione to oxidized glutathione ratio (GSH/GSSG ratio) in control rats. However, these changes were completely eliminated in Rg1 group. Catalase (CAT) and glutathione peroxidase (GPx) activities were significantly (p<0.05) increased by Rg1 in non-exercise rats, while no significant change after exercise. Nevertheless, glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly increased after exercise in Rg1 group. Conclusions This study provide compelling evidences that Rg1 supplementation can strengthen antioxidant defense system in skeletal muscle and completely attenuate the membrane lipid peroxidation induced by exhaustive exercise. Our findings suggest that Rg1 can use as a nutraceutical supplement to buffer the exhaustive exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Szu-Hsien Yu
- Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei City, Taiwan
| | - Hui-Yu Huang
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih-Chien University, Taipei City, 10462, Taiwan
| | - Mallikarjuna Korivi
- Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei City, Taiwan
| | - Ming-Fen Hsu
- Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei City, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chien-Wen Hou
- Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei City, Taiwan
| | - Chung-Yu Chen
- Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei City, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | - Ru-Ping Lee
- Department of Nursing, Tzu Chi University, Hualien, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei City, Taiwan.,Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Markert CD, Ambrosio F, Call JA, Grange RW. Exercise and Duchenne muscular dystrophy: toward evidence-based exercise prescription. Muscle Nerve 2011; 43:464-78. [PMID: 21404285 DOI: 10.1002/mus.21987] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To develop a rational framework for answering questions about the role of exercise in Duchenne muscular dystrophy (DMD), we focused on five pathophysiological mechanisms and offer brief hypotheses regarding how exercise may beneficially modulate pertinent cellular and molecular pathways. We aimed to provide an integrative overview of mechanisms of DMD pathology that may improve or worsen as a result of exercise. We also sought to stimulate discussion of what outcomes/dependent variables most appropriately measure these mechanisms, with the purpose of defining criteria for well-designed, controlled studies of exercise in DMD. The five mechanisms include pathways that are both intrinsic and extrinsic to the diseased muscle cells.
Collapse
Affiliation(s)
- Chad D Markert
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
10
|
Saborido A, Naudí A, Portero-Otín M, Pamplona R, Megías A. Stanozolol treatment decreases the mitochondrial ROS generation and oxidative stress induced by acute exercise in rat skeletal muscle. J Appl Physiol (1985) 2010; 110:661-9. [PMID: 21164155 DOI: 10.1152/japplphysiol.00790.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anabolic androgenic steroids are used in the sport context to enhance muscle mass and strength and to increase muscle fatigue resistance. Since muscle fatigue has been related to oxidative stress caused by an exercise-linked reactive oxygen species (ROS) production, we investigated the potential effects of a treatment with the anabolic androgenic steroid stanozolol against oxidative damage induced on rat skeletal muscle mitochondria by an acute bout of exhaustive exercise. Mitochondrial ROS generation with complex I- and complex II-linked substrates was increased in exercised control rats, whereas it remained unchanged in the steroid-treated animals. Stanozolol treatment markedly reduced the extent of exercise-induced oxidative damage to mitochondrial proteins, as indicated by the lower levels of the specific markers of protein oxidation, glycoxidation, and lipoxidation, and the preservation of the activity of the superoxide-sensitive enzyme aconitase. This effect was not due to an enhancement of antioxidant enzyme activities. Acute exercise provoked changes in mitochondrial membrane fatty acid composition characterized by an increased content in docosahexaenoic acid. In contrast, the postexercise mitochondrial fatty acid composition was not altered in stanozolol-treated rats. Our results suggest that stanozolol protects against acute exercise-induced oxidative stress by reducing mitochondrial ROS production, in association with a preservation of mitochondrial membrane properties.
Collapse
Affiliation(s)
- Ana Saborido
- Departamento de Bioquímica y Biología Molecular I, Facultad de Biología, C/José Antonio Novais-2, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
de Araujo FLB, Bertolino G, Funayama CAR, Coimbra NC, de Araujo JE. Influence of treadmill training on motor performance and organization of exploratory behavior in Meriones unguiculatus with unilateral ischemic stroke: Histological correlates in hippocampal CA1 region and the neostriatum. Neurosci Lett 2008; 431:179-83. [DOI: 10.1016/j.neulet.2007.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/19/2007] [Accepted: 11/23/2007] [Indexed: 11/28/2022]
|
12
|
Ascensão A, Ferreira R, Magalhães J. Exercise-induced cardioprotection--biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol 2006; 117:16-30. [PMID: 16860886 DOI: 10.1016/j.ijcard.2006.04.076] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 04/06/2006] [Accepted: 04/28/2006] [Indexed: 11/21/2022]
Abstract
Myocardial injury is a major contributor to the morbidity and mortality associated with coronary artery disease. Regular exercise has been confirmed as a pragmatic countermeasure to protect against cardiac injury. Specifically, endurance exercise has been proven to provide cardioprotection against cardiac insults in both young and old animals. Proposed mechanisms to explain the cardioprotective effects of exercise are mediated, at least partially, by redox changes and include the induction of myocardial heat shock proteins, improved cardiac antioxidant capacity, and/or elevation of other cardioprotective molecules. Understanding the molecular basis for exercise-induced cardioprotection is important in developing exercise strategies to protect the heart during and after insults. Data suggest that these positive modulator effects occur at different levels of cellular organization, being mitochondria fundamental organelles that are sensitive to disturbances imposed by exercise on basal homeostasis. At present, which of these protective mechanisms is essential for exercise-induced cardioprotection remains unclear. This review analyzes the biochemical, morphological and functional outcomes of acute and chronic exercise on the overall cardiac muscle tissue and in isolated mitochondria. Some redox-based mechanisms behind the cross-tolerance effects particularly induced by endurance training, against certain stressors responsible for the impairments in cardiac homeostasis caused by aging, diabetes, drug administration or ischemia-reperfusion are also outlined. Further work should be addressed in order to clarify the precise regulatory mechanisms by which physical exercise augments heart tolerance against many cardiotoxic agents.
Collapse
Affiliation(s)
- António Ascensão
- Department of Sports Biology, Research Center in Physical Activity, Health and Leisure, Faculty of Sport Sciences, University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal.
| | | | | |
Collapse
|
13
|
Molnar AM, Servais S, Guichardant M, Lagarde M, Macedo DV, Pereira-Da-Silva L, Sibille B, Favier R. Mitochondrial H2O2 production is reduced with acute and chronic eccentric exercise in rat skeletal muscle. Antioxid Redox Signal 2006; 8:548-58. [PMID: 16677099 DOI: 10.1089/ars.2006.8.548] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oxidative stress with acute/chronic exercise has been so far examined using exercise involving a combination of concentric and eccentric contractions, but skeletal muscles are likely to be injured to a greater extent by pliometric contractions. In the present study, the effects of acute and chronic bouts of downhill running exercise on mitochondrial hydrogen peroxide (H2O2) generation (fluorimetric detection of a dimer with homovanillic acid in presence of horseradish peroxidase) and oxygen consumption in conjunction with antioxidant enzymes activity were examined. The results show that acute eccentric exercise was accompanied by a significantly reduced mitochondrial H2O2 production that is likely due to a decrease in complex I of the electron transport chain (ETC). On the other hand, eccentric training leads to positive adaptations, reflected by a higher citrate synthase activity and decreased mitochondrial H2O2 production. The decrease in mitochondrial H2O2 cannot be attributed to alterations in antioxidant capacities but rather to changes in mitochondrial membrane composition characterized by an increased polyunsaturated to saturated fatty acids ratio, and decreased contents in arachidonic acid and plasmalogens. These results suggest that changes in mitochondrial membrane properties with eccentric training can affect H2O2 production by muscle mitochondria. It is hypothesized that these changes resulted in a mild uncoupling sufficient to reduce electron back flow through complex I of the ETC, the major generator of reactive oxygen species by skeletal muscle mitochondria.
Collapse
Affiliation(s)
- A M Molnar
- Unité Mixte Recherche 5123 CNRS, Université Claude Bernard-Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gerwin RD, Dommerholt J, Shah JP. An expansion of Simons' integrated hypothesis of trigger point formation. Curr Pain Headache Rep 2005; 8:468-75. [PMID: 15509461 DOI: 10.1007/s11916-004-0069-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simons' integrated hypothesis proposed a model of trigger point (TrP) activation to explain known TrP phenomena, particularly endplate noise. We propose an expansion of this hypothesis to account for new experimental data and established muscle pathophysiology.
Collapse
Affiliation(s)
- Robert D Gerwin
- Johns Hopkins University Pain and Rehabilitation Medicine, Bethesda, MD 20814-2432, USA.
| | | | | |
Collapse
|