1
|
Yang SY, Liao L, Hu SY, Deng L, Andriani L, Zhang TM, Zhang YL, Ma XY, Zhang FL, Liu YY, Li DQ. ETHE1 Accelerates Triple-Negative Breast Cancer Metastasis by Activating GCN2/eIF2α/ATF4 Signaling. Int J Mol Sci 2023; 24:14566. [PMID: 37834012 PMCID: PMC10572406 DOI: 10.3390/ijms241914566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most fatal subtype of breast cancer; however, effective treatment strategies for TNBC are lacking. Therefore, it is important to explore the mechanism of TNBC metastasis and identify its therapeutic targets. Dysregulation of ETHE1 leads to ethylmalonic encephalopathy in humans; however, the role of ETHE1 in TNBC remains elusive. Stable cell lines with ETHE1 overexpression or knockdown were constructed to explore the biological functions of ETHE1 during TNBC progression in vitro and in vivo. Mass spectrometry was used to analyze the molecular mechanism through which ETHE1 functions in TNBC progression. ETHE1 had no impact on TNBC cell proliferation and xenograft tumor growth but promoted TNBC cell migration and invasion in vitro and lung metastasis in vivo. The effect of ETHE1 on TNBC cell migratory potential was independent of its enzymatic activity. Mechanistic investigations revealed that ETHE1 interacted with eIF2α and enhanced its phosphorylation by promoting the interaction between eIF2α and GCN2. Phosphorylated eIF2α in turn upregulated the expression of ATF4, a transcriptional activator of genes involved in cell migration and tumor metastasis. Notably, inhibition of eIF2α phosphorylation through ISRIB or ATF4 knockdown partially abolished the tumor-promoting effect of ETHE1 overexpression. ETHE1 has a functional and mechanistic role in TNBC metastasis and offers a new therapeutic strategy for targeting ETHE1-propelled TNBC using ISRIB.
Collapse
Affiliation(s)
- Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Y.-L.Z.); (F.-L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Y.-L.Z.); (F.-L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.A.); (X.-Y.M.)
| | - Tai-Mei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
| | - Yin-Ling Zhang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Y.-L.Z.); (F.-L.Z.)
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.A.); (X.-Y.M.)
| | - Fang-Lin Zhang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Y.-L.Z.); (F.-L.Z.)
| | - Ying-Ying Liu
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.A.); (X.-Y.M.)
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (S.-Y.Y.); (L.L.); (S.-Y.H.); (L.D.); (T.-M.Z.)
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Y.-L.Z.); (F.-L.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.A.); (X.-Y.M.)
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Chen Q, Zheng W, Zhu L, Liu H, Song Y, Hu S, Bai Y, Pan Y, Zhang J, Guan J, Shao C. LACTB2 renders radioresistance by activating PINK1/Parkin-dependent mitophagy in nasopharyngeal carcinoma. Cancer Lett 2021; 518:127-139. [PMID: 34271102 DOI: 10.1016/j.canlet.2021.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/04/2023]
Abstract
Radiotherapy is a standard and conventional treatment strategy for nasopharyngeal carcinoma (NPC); however, radioresistance remains refractory to clinical outcomes. Understanding the molecular mechanism of radioresistance is crucial for advancing the efficacy of radiotherapy and improving the prognosis of NPC. In this study, β-lactamase-like-protein 2 (LACTB2) was identified as a potential biomarker for radioresistance using tandem mass tag proteomic analysis of NPC cells, gene chip analysis of NPC tissues, and differential gene analysis between NPC and normal nasopharyngeal tissues from the Gene Expression Omnibus database GSE68799. Meanwhile, LACTB2 levels were elevated in the serum of patients with NPC after radiotherapy. Inhibiting LACTB2 levels and mitophagy can sensitize NPC cells to ionizing radiation. In NPC cells, LACTB2 was augmented at the transcription and protein levels after radiation rather than nucleus-cytoplasm-mitochondria transposition to activate PTEN-induced kinase 1 (PINK1) and mitophagy. In addition, LACTB2 was first authenticated to co-locate with PINK1 by interacting with its N-terminal domain. Together, our findings indicate that overexpressed LACTB2 provoked PINK1-dependent mitophagy to promote radioresistance and thus might serve as a prognostic biomarker for NPC radiotherapy.
Collapse
Affiliation(s)
- Qianping Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lin Zhu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hongxia Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yimeng Song
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Songling Hu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Sun Y, Sun X, You C, Ma S, Luo Y, Peng S, Tang F, Tian X, Wang F, Huang Z, Yu H, Xiao Y, Wang X, Zhang J, Gong Y, Xie C. MUC3A promotes non-small cell lung cancer progression via activating the NFκB pathway and attenuates radiosensitivity. Int J Biol Sci 2021; 17:2523-2536. [PMID: 34326691 PMCID: PMC8315024 DOI: 10.7150/ijbs.59430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022] Open
Abstract
Mucin 3A (MUC3A) is highly expressed in non-small cell lung cancer (NSCLC), but its functions and effects on clinical outcomes are not well understood. Tissue microarray of 92 NSCLC samples indicated that high levels of MUC3A were associated with poor prognosis, advanced staging, and low differentiation. MUC3A knockdown significantly suppressed NSCLC cell proliferation and induced G1/S accumulation via downregulating cell cycle checkpoints. MUC3A knockdown also inhibited tumor growth in vivo and had synergistic effects with radiation. MUC3A knockdown increased radiation-induced DNA double strain breaks and γ-H2AX phosphorylation in NSCLC cells. MUC3A downregulation inhibited the BRCA-1/RAD51 pathway and nucleus translocation of P53 and XCRR6, suggesting that MUC3A promoted DNA damage repair and attenuated radiation sensitivity. MUC3A knockdown also resulted in less nucleus translocation of RELA and P53 in vivo. Immunoprecipitation revealed that MUC3A interacted with RELA and activated the NFκB pathway via promoting RELA phosphorylation and interfering the binding of RELA to IκB. Our studies indicated that MUC3A was a potential oncogene and associated with unfavorable clinical outcomes. NSCLC patients with a high MUC3A level, who should be more frequent follow-up and might benefit less from radiotherapy.
Collapse
Affiliation(s)
- Yingming Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, China
| | - Xiaoge Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Chengcheng You
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pathology, China Three Gorges University Medical College, Yichang, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shan Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongnv Yu
- Central Laboratory of Xinhua Hospital of Dalian University, Department of Medical Oncology, Xinhua Hospital of Dalian University, Dalian, China
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyong Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Identification of Prognostic alternative splicing signatures and their clinical significance in uveal melanoma. Exp Eye Res 2021; 209:108666. [PMID: 34129849 DOI: 10.1016/j.exer.2021.108666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
As a posttranscriptional regulatory mechanism, alternative splicing (AS) has the potential to generate a large amount of protein diversity from limited genes. The purpose of our study was to assess the usefulness of prognostic splicing events as novel diagnostic and therapeutic signatures for uveal melanoma (UM). The datasets, clinical traits and AS data of UM were obtained from The Cancer Genome Atlas (TCGA) database and TCGA SpliceSeq database. Using bioinformatics analysis, we identified 1047 AS events as candidate AS events closely related to prognosis from 920 parent genes. The gene enrichment analysis indicated that these genes were mainly enriched in cellular components (CC) including cytosol, nucleoplasm, cytoplasm and ribosome, and in molecular functions (MF), including protein binding and poly(A) RNA binding. Furthermore, we selected all survival-associated splicing events to generate prognostic signatures, which included 4 exon skip (ES) events (DNASE1L1-90581-ES, NUDT1-78611-ES, BIN1-55198-ES, SEPN1-1195-ES) and 1 alternate promoter (AP) event (DPYSL2-83132-AP). The AS prognostic model was confirmed as independent overall survival (OS)-related factors (p = 0.014). A total of 17 splicing factors (SFs) involved in the regulation of AS were identified as related to the OS of UM patients. Our pooled data highlighted the usefulness and importance of AS biomarkers, which provided a potential strategy for the diagnosis and treatment of UM.
Collapse
|
5
|
Hao Y, Huang J, Ran Y, Wang S, Li J, Zhao Y, Ran X, Lu B, Liu J, Li R. Ethylmalonic encephalopathy 1 initiates overactive autophagy in depleted uranium-induced cytotoxicity in the human embryonic kidney 293 cells. J Biochem Mol Toxicol 2020; 35:e22669. [PMID: 33274826 DOI: 10.1002/jbt.22669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 11/07/2022]
Abstract
The kidney is the target of the acute toxicity of depleted uranium (DU). However, the mechanism of DU-induced cytotoxicity is not clear. The study was to demonstrate the role of autophagy in DU-induced cytotoxicity and to determine the potential mechanism. We confirmed that after a 4-h exposure to DU, the autophagic vacuoles and the autophagy marker light chain 3-II in the human embryonic kidney 293 cells (HEK293) increased, and cytotoxicity decreased by abrogation of excessive autophagy using autophagy inhibitor. We also found activation of nucleus p53 and inhibiting mTOR pathways in DU-treated HEK293 cells. Meanwhile, ethylmalonic encephalopathy 1 (ETHE1) decreased as the exposure dose of DU increased, with increasing autophagy flux. We suggested that by reducing ETHE1, activation of the p53 pathway, and inhibiting mTOR pathways, DU might induce overactive autophagy, which affected the cytotoxicity. This study will provide a novel therapeutic target for the treatment of DU-induced cytotoxicity.
Collapse
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jiawei Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xinze Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Binghui Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Mammalian cold-inducible RNA-binding protein facilitates wound healing through activation of AMP-activated protein kinase. Biochem Biophys Res Commun 2020; 533:1191-1197. [PMID: 33041006 DOI: 10.1016/j.bbrc.2020.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/04/2023]
Abstract
The skin is usually maintained within a temperature range that induces cold-inducible RNA-binding protein (Cirp). To determine whether Cirp plays a role in barrier function of the skin, we analyzed the skin wound healing in cirp-knockout (KO) mice. They exhibited delayed wound healing compared with wild-type littermates in the absence as well as presence of skin contraction. Dermal fibroblasts and keratinocytes from cirp-KO mice migrated slower than those from wild-type mice. When expression of Cirp was downregulated in cultured cells, migration rate was decreased. Cirp bound liver-kinase-B1 (LKB1) in the nucleus and was suggested to enhance its translocation to the cytoplasm, resulting in enhanced phosphorylation of AMP-activated protein kinase (AMPK) and cell motility. Stimulation of AMPK ameliorated the delayed wound healing in cirp-KO mice. These findings suggest that Cirp facilitates skin wound healing by enhancing cell migration via AMPK, indicating roles for Cirp in linking skin temperature with metabolism and defense mechanism.
Collapse
|
7
|
Upregulation of CASP9 through NF-κB and Its Target MiR-1276 Contributed to TNFα-promoted Apoptosis of Cancer Cells Induced by Doxorubicin. Int J Mol Sci 2020; 21:ijms21072290. [PMID: 32225068 PMCID: PMC7177739 DOI: 10.3390/ijms21072290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
Under some conditions, nuclear factor-κB (NF-κB) has a pro-apoptotic role, but the mechanisms underlying this function remain unclear. This study demonstrated that NF-κB directly binds to CASP9 and miR1276 in tumor necrosis factor α (TNFα)-treated HeLa and HepG2 cells. NF-κB upregulated CASP9 expression, whereas downregulated miR1276 expression in the TNFα-treated cells. The miR1276 repressed CASP9 expression in both cells. As a result, a typical NF-κB-mediated coherent feed-forward loop was formed in the TNFα-treated cells. It was proposed that the NF-κB-mediated loop may contribute to cell apoptosis under certain conditions. This opinion was supported by the following evidence: TNFα promoted the apoptosis of HeLa and HepG2 cells induced by doxorubicin (DOX). CASP9 was significantly upregulated and activated by TNFα in the DOX-induced cells. Moreover, a known inhibitor of CASP9 activation significantly repressed the TNFα promotion of apoptosis induced by DOX. These findings indicate that CASP9 is a new mediator of the NF-κB pro-apoptotic pathway, at least in such conditions. This study therefore provides new insights into the pro-apoptotic role of NF-κB. The results also shed new light on the molecular mechanism underlying TNFα-promotion of cancer cells apoptosis induced by some anticancer drugs such as DOX.
Collapse
|
8
|
Witherspoon M, Sandu D, Lu C, Wang K, Edwards R, Yeung A, Gelincik O, Manfredi G, Gross S, Kopelovich L, Lipkin S. ETHE1 overexpression promotes SIRT1 and PGC1α mediated aerobic glycolysis, oxidative phosphorylation, mitochondrial biogenesis and colorectal cancer. Oncotarget 2019; 10:4004-4017. [PMID: 31258845 PMCID: PMC6592291 DOI: 10.18632/oncotarget.26958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/21/2019] [Indexed: 12/25/2022] Open
Abstract
Ethylmalonic Encephalopathy Protein 1 (ETHE1) is a sulfur dioxygenase that regulates cellular H2S levels. We previously demonstrated a significant increase of ETHE1 expression in "single-hit" colon epithelial cells from crypts of patients with Familial Adenomatous Polyposis (FAP). Here, we report elevated levels of ETHE1 expression and increased mitochondrial density occurring in-situ in phenotypically normal FAP colorectal mucosa. We also found that constitutive expression of ETHE1 increased aerobic glycolysis ("Warburg effect"), oxidative phosphorylation, and mitochondrial biogenesis in colorectal cancer (CRC) cell lines, thereby depleting H2S which relieved the inhibition of phosphodiesterase (PDE), and increased adenosine monophosphate (AMP) levels. This led to activation of the energy sensing AMP-activated protein kinase (AMPKp), Sirtuin1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), a master regulator of mitochondrial biogenesis. By contrast, shRNA silencing of ETHE1 reduced PDE activity, AMPKp/SIRT1/PGC1α levels and mitochondrial biogenesis. Constitutive expression of ETHE1 accelerated both CRC cell xenograft and orthotopic patient derived xenograft CRC cell growth in vivo. Overall, our data nominate elevated ETHE1 expression levels as a novel biomarker and potential therapeutic target for the prevention of CRC tumorigenesis.
Collapse
Affiliation(s)
- Mavee Witherspoon
- Department of Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Davinder Sandu
- Department of Pharmacology, Weill Cornell College of Medicine, New York, NY, USA
| | - Changyuan Lu
- Department of Pharmacology, Weill Cornell College of Medicine, New York, NY, USA
| | - Kehui Wang
- Department of Pathology and Laboratory Medicine, University of Irvine School of Medicine, Irvine, CA, USA
| | - Robert Edwards
- Department of Pathology and Laboratory Medicine, University of Irvine School of Medicine, Irvine, CA, USA
| | | | - Ozkan Gelincik
- Department of Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Giovanni Manfredi
- Department of Neurology, Weill Cornell College of Medicine, New York, NY, USA
| | - Steven Gross
- Department of Pharmacology, Weill Cornell College of Medicine, New York, NY, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Steven Lipkin
- Department of Medicine, Weill Cornell College of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Wang R, Li D, Ouyang J, Tian X, Zhao Y, Peng X, Li S, Yu G, Yang J. Leonurine alleviates LPS-induced myocarditis through suppressing the NF-кB signaling pathway. Toxicology 2019; 422:1-13. [DOI: 10.1016/j.tox.2019.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/30/2022]
|
10
|
Quercetin Suppresses CYR61-Mediated Multidrug Resistance in Human Gastric Adenocarcinoma AGS Cells. Molecules 2018; 23:molecules23020209. [PMID: 29364834 PMCID: PMC6017870 DOI: 10.3390/molecules23020209] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 01/23/2023] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61) is an extracellular matrix-associated protein involved in survival, tumorigenesis, and drug resistance. Therefore, we examined the effects of flavones against CYR61-overexpressing human gastric adenocarcinoma AGS (AGS-cyr61) cells, which show remarkable resistance to 5-fluorouracil (5-FU), adriamycin (ADR), tamoxifen (TAM), paclitaxel (PAC), and docetaxel (DOC). Among the tested flavones, quercetin had the lowest 50% inhibitory concentration (IC50) and significantly reduced the viability of AGS-cyr61 cells compared with AGS cells. Quercetin: (1) reduced multidrug resistance-associated protein 1 and nuclear factor (NF)-kappa B p65 subunit levels; (2) reversed multidrug resistance (MDR); (3) inhibited colony formation and induced caspase-dependent apoptosis; and (4) suppressed migration and down-regulated epithelial-mesenchymal transition-related proteins in AGS-cyr61. Moreover, AGS-cyr61 cells treated with quercetin concentrations close to the IC50 and simultaneously treated with 5-FU or ADR in the sub-lethal range showed strong synergism between quercetin and these two drugs. These findings indicate that CYR61 is a potential regulator of drug resistance and that quercetin may be a novel agent for improving the efficacy of anticancer drugs in AGS-cyr61 cells.
Collapse
|
11
|
Proteomics-Based Identification of the Molecular Signatures of Liver Tissues from Aged Rats following Eight Weeks of Medium-Intensity Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3269405. [PMID: 28116034 PMCID: PMC5223045 DOI: 10.1155/2016/3269405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/05/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
Physical activity has emerged as a powerful intervention that promotes healthy aging by maintaining the functional capacity of critical organ systems. Here, by combining functional and proteomics analyses, we examined how hepatic phenotypes might respond to exercise treatment in aged rats. 16 male aged (20 months old) SD rats were divided into exercise and parallel control groups at random; the exercise group had 8 weeks of treadmill training with medium intensity. Whole protein samples of the liver were extracted from both groups and separated by two-dimensional gel electrophoresis. Alternatively objective protein spots with >2-fold difference in expression were selected for enzymological extraction and MS/MS identification. Results show increased activity of the manganese superoxide dismutase and elevated glutathione levels in the livers of exercise-treated animals, but malondialdehyde contents obviously decreased in the liver of the exercise group. Proteomics-based identification of differentially expressed proteins provided an integrated view of the metabolic adaptations occurring in the liver proteome during exercise, which significantly altered the expression of several proteins involved in key liver metabolic pathways including mitochondrial sulfur, glycolysis, methionine, and protein metabolism. These findings indicate that exercise may be beneficial to aged rats through modulation of hepatic protein expression profiles.
Collapse
|
12
|
Jung M, Kasamatsu S, Matsunaga T, Akashi S, Ono K, Nishimura A, Morita M, Abdul Hamid H, Fujii S, Kitamura H, Sawa T, Ida T, Motohashi H, Akaike T. Protein polysulfidation-dependent persulfide dioxygenase activity of ethylmalonic encephalopathy protein 1. Biochem Biophys Res Commun 2016; 480:180-186. [DOI: 10.1016/j.bbrc.2016.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/25/2023]
|
13
|
Völgyi K, Háden K, Kis V, Gulyássy P, Badics K, Györffy BA, Simor A, Szabó Z, Janáky T, Drahos L, Dobolyi Á, Penke B, Juhász G, Kékesi KA. Mitochondrial Proteome Changes Correlating with β-Amyloid Accumulation. Mol Neurobiol 2016; 54:2060-2078. [PMID: 26910821 DOI: 10.1007/s12035-015-9682-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial disease of wide clinical heterogenity. Overproduction of amyloid precursor protein (APP) and accumulation of β-amyloid (Aβ) and tau proteins are important hallmarks of AD. The identification of early pathomechanisms of AD is critically important for discovery of early diagnosis markers. Decreased brain metabolism is one of the earliest clinical symptoms of AD that indicate mitochondrial dysfunction in the brain. We performed the first comprehensive study integrating synaptic and non-synaptic mitochondrial proteome analysis (two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry) in correlation with Aβ progression in APP/PS1 mice (3, 6, and 9 months of age). We identified changes of 60 mitochondrial proteins that reflect the progressive effect of APP overproduction and Aβ accumulation on mitochondrial processes. Most of the significantly affected proteins play role in the mitochondrial electron transport chain, citric acid cycle, oxidative stress, or apoptosis. Altered expression levels of Htra2 and Ethe1, which showed parallel changes in different age groups, were confirmed also by Western blot. The common regulator bioinformatical analysis suggests the regulatory role of tumor necrosis factor (TNF) in Aβ-mediated mitochondrial protein changes. Our results are in accordance with the previous postmortem human brain proteomic studies in AD in the case of many proteins. Our results could open a new path of research aiming early mitochondrial molecular mechanisms of Aβ accumulation as a prodromal stage of human AD.
Collapse
Affiliation(s)
- Katalin Völgyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary.
| | - Krisztina Háden
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Gulyássy
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Badics
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Balázs András Györffy
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP B Neuroimmunology Research Group, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Szabó
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Botond Penke
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - Gábor Juhász
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
14
|
The Chemical Biology of Human Metallo-β-Lactamase Fold Proteins. Trends Biochem Sci 2016; 41:338-355. [PMID: 26805042 PMCID: PMC4819959 DOI: 10.1016/j.tibs.2015.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 01/30/2023]
Abstract
The αββα metallo β-lactamase (MBL) fold (MBLf) was first observed in bacterial enzymes that catalyze the hydrolysis of almost all β-lactam antibiotics, but is now known to be widely distributed. The MBL core protein fold is present in human enzymes with diverse biological roles, including cell detoxification pathways and enabling resistance to clinically important anticancer medicines. Human (h)MBLf enzymes can bind metals, including zinc and iron ions, and catalyze a range of chemically interesting reactions, including both redox (e.g., ETHE1) and hydrolytic processes (e.g., Glyoxalase II, SNM1 nucleases, and CPSF73). With a view to promoting basic research on MBLf enzymes and their medicinal targeting, here we summarize current knowledge of the mechanisms and roles of these important molecules. MBLs are mono- or di-zinc ion-dependent hydrolases that enable bacterial resistance to almost all β-lactam antibiotics. The αββα MBL core fold is widely distributed and supports a range of catalytic activities, including redox reactions. hMBL proteins are a small family of approximately 18 zinc- and iron-dependent proteins with roles in metabolism and/or detoxification and nucleic acid modification. In a notable parallel with the role of bacterial MBLs in antibiotic resistance, some hMBLf enzymes enable resistance to chemotherapy drugs, such as cisplatin and mitomycin C.
Collapse
|
15
|
Proteomic Study to Survey the CIGB-552 Antitumor Effect. BIOMED RESEARCH INTERNATIONAL 2015; 2015:124082. [PMID: 26576414 PMCID: PMC4630370 DOI: 10.1155/2015/124082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022]
Abstract
CIGB-552 is a cell-penetrating peptide that exerts in vitro and in vivo antitumor effect on cancer cells. In the present work, the mechanism involved in such anticancer activity was studied using chemical proteomics and expression-based proteomics in culture cancer cell lines. CIGB-552 interacts with at least 55 proteins, as determined by chemical proteomics. A temporal differential proteomics based on iTRAQ quantification method was performed to identify CIGB-552 modulated proteins. The proteomic profile includes 72 differentially expressed proteins in response to CIGB-552 treatment. Proteins related to cell proliferation and apoptosis were identified by both approaches. In line with previous findings, proteomic data revealed that CIGB-552 triggers the inhibition of NF-κB signaling pathway. Furthermore, proteins related to cell invasion were differentially modulated by CIGB-552 treatment suggesting new potentialities of CIGB-552 as anticancer agent. Overall, the current study contributes to a better understanding of the antitumor action mechanism of CIGB-552.
Collapse
|
16
|
Hsiang CY, Lin LJ, Kao ST, Lo HY, Chou ST, Ho TY. Glycyrrhizin, silymarin, and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:768-777. [PMID: 26141764 DOI: 10.1016/j.phymed.2015.05.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Glycyrrhizin, silymarin, and ursodeoxycholic acid are widely used hepatoprotectants for the treatment of liver disorders, such as hepatitis C virus infection, primary biliary cirrhosis, and hepatocellular carcinoma. PURPOSE The gene expression profiles of HepG2 cells responsive to glycyrrhizin, silymarin, and ursodeoxycholic acid were analyzed in this study. METHODS HepG2 cells were treated with 25 µM hepatoprotectants for 24 h. Gene expression profiles of hepatoprotectants-treated cells were analyzed by oligonucleotide microarray in triplicates. Nuclear factor-κB (NF-κB) activities were assessed by luciferase assay. RESULTS Among a total of 30,968 genes, 252 genes were commonly regulated by glycyrrhizin, silymarin, and ursodeoxycholic acid. These compounds affected the expression of genes relevant various biological pathways, such as neurotransmission, and glucose and lipid metabolism. Genes involved in hepatocarcinogenesis, apoptosis, and anti-oxidative pathways were differentially regulated by all compounds. Moreover, interaction networks showed that NF-κB might play a central role in the regulation of gene expression. Further analysis revealed that these hepatoprotectants inhibited NF-κB activities in a dose-dependent manner. CONCLUSION Our data suggested that glycyrrhizin, silymarin, and ursodeoxycholic acid regulated the expression of genes relevant to apoptosis and oxidative stress in HepG2 cells. Moreover, the regulation by these hepatoprotectants might be relevant to the suppression of NF-κB activities.
Collapse
Affiliation(s)
- Chien-Yun Hsiang
- Department of Microbiology, China Medical University, Taichung 40402, Taiwan
| | - Li-Jen Lin
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shun-Ting Chou
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
17
|
Hepatocellular carcinoma and other malignancies in autoimmune hepatitis. Dig Dis Sci 2013; 58:1459-76. [PMID: 23306849 DOI: 10.1007/s10620-012-2525-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma and extrahepatic malignancies can complicate the course of autoimmune hepatitis, and these occurrences may increase in frequency as the survival of patients with cirrhosis is extended and the prospect of new nonstandard immune-modifying intervention is realized. The frequency of hepatocellular carcinoma in patients with autoimmune hepatitis and cirrhosis is 1-9 %, and annual occurrence in patients with cirrhosis is 1.1-1.9 %. The standardized incidence ratio for hepatocellular carcinoma in autoimmune hepatitis is 23.3 (95 % confidence interval (CI) 7.5-54.3) in Sweden, and the standardized mortality ratio for hepatobiliary cancer is 42.3 (95 % CI 20.3-77.9) in New Zealand. The principal risk factor is long-standing cirrhosis, and patients at risk are characterized mainly by cirrhosis for ≥ 10 years, manifestations of portal hypertension, persistent liver inflammation, and immunosuppressive therapy for ≥ 3 years. Multiple molecular disturbances, including the accumulation of senescent hepatocytes because of telomere shortening, step-wise accumulation of chromosomal injuries, and aberrations in transcription factors and genes, may contribute to the risk. Extraheptic malignancies of diverse cell types occur in 5 % in an unpredictable fashion. The standardized incidence ratio is 2.7 (95 % CI 1.8-3.9) in New Zealand, and non-melanoma skin cancers are most common. Outcomes are related to the nature and stage of the tumor at diagnosis. Surveillance recommendations have not been promulgated, but hepatic ultrasonography every six months in patients with cirrhosis is a consideration. Routine health screening measures for other malignancies should be applied diligently.
Collapse
|
18
|
Sumitomo Y, Higashitsuji H, Higashitsuji H, Liu Y, Fujita T, Sakurai T, Candeias MM, Itoh K, Chiba T, Fujita J. Identification of a novel enhancer that binds Sp1 and contributes to induction of cold-inducible RNA-binding protein (cirp) expression in mammalian cells. BMC Biotechnol 2012; 12:72. [PMID: 23046908 PMCID: PMC3534229 DOI: 10.1186/1472-6750-12-72] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/09/2012] [Indexed: 11/26/2022] Open
Abstract
Background There are a growing number of reports on the sub-physiological temperature culturing of mammalian cells for increased recombinant protein yields. However, the effect varies and the reasons for the enhancement are not fully elucidated. Expression of cold-inducible RNA-binding protein (cirp, also called cirbp or hnRNP A18) is known to be induced in response to mild, but not severe, hypothermia in mammalian cells. To clarify the molecular mechanism underlying the induction and to exploit this to improve the productivity of recombinant proteins, we tried to identify the regulatory sequence(s) in the 5′ flanking region of the mouse cirp gene. Results By transiently transfecting HEK293 cells with plasmids expressing chloramphenicol acetyltransferase as a reporter, we found that the cirp 5′ flanking region octanucleotide 5′-TCCCCGCC-3′ is a mild-cold responsive element (MCRE). When 3 copies of MCRE were placed upstream of the CMV promoter and used in transient transfection, reporter gene expression was increased 3- to 7-fold at 32°C relative to 37°C in various cell lines including HEK293, U-2 OS, NIH/3T3, BALB/3T3 and CHO-K1 cells. In stable transfectants, MCRE also enhanced the reporter gene expression at 32°C, although more copy numbers of MCRE were necessary. Sp1 transcription factor bound to MCRE in vitro. Immunohistochemistry and chromatin immunoprecipitation assays demonstrated that more Sp1, but not Sp3, was localized in the nucleus to bind to the cirp regulatory region containing MCRE at 32°C than 37°C. Overexpression of Sp1 protein increased the expression of endogenous Cirp as well as a reporter gene driven by the 5′ flanking region of the cirp gene, and down-regulation of Sp1 had the opposite effect. Mutations within the MCRE sequence in the 5′ flanking region abolished the effects of Sp1 on the reporter gene expression both at 37°C and 32°C. Conclusions Cold-induced, as well as constitutive, expression of cirp is dependent, at least partly, on MCRE and Sp1. The present novel enhancer permits conditional high-level gene expression at moderately low culture temperatures and could be utilized to increase the yield of recombinant proteins in mammalian cells.
Collapse
Affiliation(s)
- Yasuhiko Sumitomo
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li Q, Wang L, Tan W, Peng Z, Luo Y, Zhang Y, Zhang G, Na D, Jin P, Shi T, Ma D, Wang L. Identification of C1qTNF-related protein 4 as a potential cytokine that stimulates the STAT3 and NF-κB pathways and promotes cell survival in human cancer cells. Cancer Lett 2011; 308:203-14. [PMID: 21658842 DOI: 10.1016/j.canlet.2011.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/02/2011] [Accepted: 05/05/2011] [Indexed: 01/05/2023]
Abstract
The NF-κB and IL6/STAT3 pathways are major participants in tumor-promoting inflammation. C1qTNF related protein (CTRP) is a family with multiple physiological functions, but their involvement in tumor-promoting inflammation has received little attention. For the first time, we have identified CTRP4 as a novel secretary protein by N-terminal sequencing. Moreover, recombinant CTRP4 can effectively induce the activation of both NF-κB and IL6/STAT3 signaling pathways in the pattern similar to that of classical cytokine. By western blot analysis, we detected the upregulation of CTRP4 in response to IL6. Importantly, functional research revealed that CTRP4 could promote tumor cell survival and tumor resistance against apoptosis induced by chemotherapeutics. These results strongly suggest that CTRP4 is a novel tumor-promoting inflammatory regulator. Our findings might provide a meaningful indication for cancer research.
Collapse
Affiliation(s)
- Qi Li
- Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gehrau R, Maluf D, Archer K, Stravitz R, Suh J, Le N, Mas V. Molecular pathways differentiate hepatitis C virus (HCV) recurrence from acute cellular rejection in HCV liver recipients. Mol Med 2011; 17:824-33. [PMID: 21519635 DOI: 10.2119/molmed.2011.00072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/19/2011] [Indexed: 12/11/2022] Open
Abstract
Acute cellular rejection (ACR) and hepatitis C virus (HCV) recurrence (HCVrec) are common complications after liver transplantation (LT) in HCV patients, who share common clinical and histological features, making a differential diagnosis difficult. Fifty-three liver allograft samples from unique HCV LT recipients were studied using microarrays, including a training set (n = 32) and a validation set (n = 19). Two no-HCV-ACR samples from LT recipients were also included. Probe set intensity values were obtained using the robust multiarray average method (RMA) method. Analysis of variance identified statistically differentially expressed genes (P ≤ 0.005). The limma package was used to fit the mixed-effects models using a restricted maximum likelihood procedure. The last absolute shrinkage and selection operator (LASSO) model was fit with HCVrec versus ACR as the dependent variable predicted. N-fold cross-validation was performed to provide an unbiased estimate of generalization error. A total of 179 probe sets were differentially expressed among groups, with 71 exclusive genes between HCVrec and HCV-ACR. No differences were found within ACR group (HCV-ACR vs. no-HCV-ACR). Supervised clustering analysis displayed two clearly independent groups, and no-HCV-ACR clustered within HCV-ACR. HCVrec-related genes were associated with a cytotoxic T-cell profile, and HCV-ACR-related genes were associated with the inflammatory response. The best-fitting LASSO model classifier accuracy, including 15 genes, has an accuracy of 100% in the training set. N-fold cross-validation accuracy was 78.1%, and sensitivity, specificity and positive and negative predictive values were 50.0%, 90.9%, 71.4% and 80.0%, respectively. Arginase type II (ARG2), ethylmalonic encephalopathy 1 (ETHE1), transmembrane protein 176A (TMEM176A) and TMEM176B genes were significantly confirmed in the validation set. A molecular signature capable of distinguishing HCVrec and ACR in HCV LT recipients was identified and validated.
Collapse
Affiliation(s)
- Ricardo Gehrau
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Májek P, Reicheltová Z, Stikarová J, Suttnar J, Sobotková A, Dyr JE. Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Sci 2010. [PMID: 21073729 DOI: 10.1186/1477-5956-8-56.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Platelets are small anucleated blood particles that play a key role in the control of bleeding. Platelets need to be activated to perform their functions and participate in hemostasis. The process of activation is accompanied by vast protein reorganization and posttranslational modifications. The goal of this study was to identify changes in proteins in platelets activated by different agonists. Platelets were activated by three different agonists - arachidonic acid, collagen, and thrombin. 2D SDS-PAGE (pI 4-7) was used to separate platelet proteins. Proteomes of activated and resting platelets were compared with each other by Progenesis SameSpots statistical software; and proteins were identified by nanoLC-MS/MS. RESULTS 190 spots were found to be significantly different. Of these, 180 spots were successfully identified and correspond to 144 different proteins. Five proteins were found that had not previously been identified in platelets: protein CDV3 homolog, protein ETHE1, protein LZIC, FGFR1 oncogene partner 2, and guanine nucleotide-binding protein subunit beta-5. Using spot expression profile analysis, we found two proteins (WD repeat-containing protein 1 and mitochondrial glycerol-3-phosphate dehydrogenase) that may be part of thrombin specific activation or signal transduction pathway(s). CONCLUSIONS Our results, characterizing the differences within proteins in both activated (by various agonists) and resting platelets, can thus contribute to the basic knowledge of platelets and to the understanding of the function and development of new antiplatelet drugs.
Collapse
Affiliation(s)
- Pavel Májek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
22
|
Májek P, Reicheltová Z, Stikarová J, Suttnar J, Sobotková A, Dyr JE. Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Sci 2010; 8:56. [PMID: 21073729 PMCID: PMC2996359 DOI: 10.1186/1477-5956-8-56] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/12/2010] [Indexed: 12/27/2022] Open
Abstract
Background Platelets are small anucleated blood particles that play a key role in the control of bleeding. Platelets need to be activated to perform their functions and participate in hemostasis. The process of activation is accompanied by vast protein reorganization and posttranslational modifications. The goal of this study was to identify changes in proteins in platelets activated by different agonists. Platelets were activated by three different agonists - arachidonic acid, collagen, and thrombin. 2D SDS-PAGE (pI 4-7) was used to separate platelet proteins. Proteomes of activated and resting platelets were compared with each other by Progenesis SameSpots statistical software; and proteins were identified by nanoLC-MS/MS. Results 190 spots were found to be significantly different. Of these, 180 spots were successfully identified and correspond to 144 different proteins. Five proteins were found that had not previously been identified in platelets: protein CDV3 homolog, protein ETHE1, protein LZIC, FGFR1 oncogene partner 2, and guanine nucleotide-binding protein subunit beta-5. Using spot expression profile analysis, we found two proteins (WD repeat-containing protein 1 and mitochondrial glycerol-3-phosphate dehydrogenase) that may be part of thrombin specific activation or signal transduction pathway(s). Conclusions Our results, characterizing the differences within proteins in both activated (by various agonists) and resting platelets, can thus contribute to the basic knowledge of platelets and to the understanding of the function and development of new antiplatelet drugs.
Collapse
Affiliation(s)
- Pavel Májek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Jiang H, Xia J, Kang J, Ding Y, Wu W. Short hairpin RNA targeting beta-catenin suppresses cell proliferation and induces apoptosis in human gastric carcinoma cells. Scand J Gastroenterol 2010; 44:1452-62. [PMID: 19958059 DOI: 10.3109/00365520903342166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Aberrant activation of Wnt/beta-catenin signaling is involved in various cancers, including human gastric cancer. Here we investigate the role of Wnt/beta-catenin signaling in regulating gastric cancer cell apoptosis. MATERIAL AND METHODS Expression of beta-catenin was investigated after transfection with beta-catenin short hairpin RNA (shRNA) in gastric cancer cells by Western blotting and immunofluorescence analysis. beta-catenin/T-cell factor transcriptional activity was also investigated by using a luciferase reporter assay. Next, the effects of beta-catenin shRNA on cell proliferation and apoptosis were evaluated by the 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide assay and flow cytometric analysis. To investigate the precise mechanism of these effects, a comprehensive analysis was performed using a cDNA microarray. RESULTS shRNA targeting beta-catenin resulted in a significant decrease in beta-catenin expression, and its nuclear localization and cell proliferation. Meanwhile, increased cell apoptosis was confirmed. The comprehensive analysis showed that shRNA targeting beta-catenin upregulated 26 apoptosis-related genes (including PERP, TRAF3, PDCD2, TNFRSF25, AKT2 and YWHAZ) and downregulated 48 apoptosis-related genes (including MALT1, IRAK1, TNFAIP3, PPP1R13L, TRIP and YWHAB) in gastric cancer cells. Pathway analysis suggested that the nuclear factor-kappaB pathway was involved in beta-catenin knockdown-induced apoptosis. CONCLUSIONS Attenuation of beta-catenin by shRNA resulted in suppressed cell proliferation and apparent apoptosis, suggesting that beta-catenin may be a target for therapy of gastric cancer.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | | | | | | | | |
Collapse
|
24
|
Vousden KH. Partners in death: a role for p73 and NF-kB in promoting apoptosis. Aging (Albany NY) 2009; 1:275-7. [PMID: 20157515 PMCID: PMC2806010 DOI: 10.18632/aging.100033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 03/27/2009] [Indexed: 11/25/2022]
Affiliation(s)
- Karen H Vousden
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G611BD, UK.
| |
Collapse
|
25
|
Martin AG, Trama J, Crighton D, Ryan KM, Fearnhead HO. Activation of p73 and induction of Noxa by DNA damage requires NF-kappa B. Aging (Albany NY) 2009; 1:335-49. [PMID: 20195489 PMCID: PMC2830049 DOI: 10.18632/aging.100026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/10/2009] [Indexed: 01/17/2023]
Abstract
Although the
transcription factor NF-κB is most clearly linked to the inhibition of
extrinsic apoptotic signals such as TNFα by upregulating known anti-apoptotic genes, NF-κB has also been proposed to be required for
p53-induced apoptosis in transformed cells. However, the involvement of NF-κB in this process is poorly understood. Here we investigate this mechanism and show that in
transformed MEFs lacking NF-κB (p65-null cells) genotoxin-induced cytochrome c release is
compromised. To further address how NF-κB contributes to apoptosis, gene
profiling by microarray analysis of MEFs was
performed, revealing that NF-κB is required for
expression of Noxa, a pro-apoptotic BH3-only protein that is induced by
genotoxins and that triggers cytochrome c release. Moreover, we find
that in the absence of NF-κB, genotoxin treatment cannot induce Noxa
mRNA expression. Noxa expression had been shown to be regulated directly by
genes of the p53 family, like p73 and p63, following genotoxin treatment.
Here we show that p73 is activated after genotoxin treatment only in the
presence of NF-κB and that p73 induces Noxa gene
expression through the p53 element in the promoter. Together our data
provides an explanation for how loss of NF-κB abrogates
genotoxin-induced apoptosis.
Collapse
Affiliation(s)
- Angel G Martin
- Apoptosis Section, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
26
|
Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 2009; 15:200-5. [PMID: 19136963 DOI: 10.1038/nm.1907] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/03/2008] [Indexed: 02/06/2023]
Abstract
Ethylmalonic encephalopathy is an autosomal recessive, invariably fatal disorder characterized by early-onset encephalopathy, microangiopathy, chronic diarrhea, defective cytochrome c oxidase (COX) in muscle and brain, high concentrations of C4 and C5 acylcarnitines in blood and high excretion of ethylmalonic acid in urine. ETHE1, a gene encoding a beta-lactamase-like, iron-coordinating metalloprotein, is mutated in ethylmalonic encephalopathy. In bacteria, ETHE1-like sequences are in the same operon of, or fused with, orthologs of TST, the gene encoding rhodanese, a sulfurtransferase. In eukaryotes, both ETHE1 and rhodanese are located within the mitochondrial matrix. We created a Ethe1(-/-) mouse that showed the cardinal features of ethylmalonic encephalopathy. We found that thiosulfate was excreted in massive amounts in urine of both Ethe1(-/-) mice and humans with ethylmalonic encephalopathy. High thiosulfate and sulfide concentrations were present in Ethe1(-/-) mouse tissues. Sulfide is a powerful inhibitor of COX and short-chain fatty acid oxidation, with vasoactive and vasotoxic effects that explain the microangiopathy in ethylmalonic encephalopathy patients. Sulfide is detoxified by a mitochondrial pathway that includes a sulfur dioxygenase. Sulfur dioxygenase activity was absent in Ethe1(-/-) mice, whereas it was markedly increased by ETHE1 overexpression in HeLa cells and Escherichia coli. Therefore, ETHE1 is a mitochondrial sulfur dioxygenase involved in catabolism of sulfide that accumulates to toxic levels in ethylmalonic encephalopathy.
Collapse
|
27
|
Yeung AT, Patel BB, Li XM, Seeholzer SH, Coudry RA, Cooper HS, Bellacosa A, Boman BM, Zhang T, Litwin S, Ross EA, Conrad P, Crowell JA, Kopelovich L, Knudson A. One-hit effects in cancer: altered proteome of morphologically normal colon crypts in familial adenomatous polyposis. Cancer Res 2008; 68:7579-86. [PMID: 18794146 PMCID: PMC2562578 DOI: 10.1158/0008-5472.can-08-0856] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We studied patients with Familial Adenomatous Polyposis (FAP) because they are virtually certain to develop colon cancer, and because much is known about the causative APC gene. We hypothesized that the inherited heterozygous mutation itself leads to changes in the proteome of morphologically normal crypts and the proteins that changed may represent targets for preventive and therapeutic agents. We determined the differential protein expression of morphologically normal colon crypts of FAP patients versus those of individuals without the mutation, using two-dimensional gel electrophoresis, mass spectrometry, and validation by two-dimensional gel Western blotting. Approximately 13% of 1,695 identified proteins were abnormally expressed in the morphologically normal crypts of APC mutation carriers, indicating that a colon crypt cell under the one-hit state is already abnormal. Many of the expression changes affect pathways consistent with the function of the APC protein, including apoptosis, cell adhesion, cell motility, cytoskeletal organization and biogenesis, mitosis, transcription, and oxidative stress response. Thus, heterozygosity for a mutant APC tumor suppressor gene alters the proteome of normal-appearing crypt cells in a gene-specific manner, consistent with a detectable one-hit event. These changes may represent the earliest biomarkers of colorectal cancer development, potentially leading to the identification of molecular targets for cancer prevention.
Collapse
Affiliation(s)
- Anthony T Yeung
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export. Cell Res 2008; 17:1020-9. [PMID: 18040287 DOI: 10.1038/cr.2007.99] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
p28(GANK) (also known as PSMD10, p28 and gankyrin) is an ankyrin repeat anti-apoptotic oncoprotein that is commonly overexpressed in hepatocellular carcinomas and increases the degradation of p53 and Rb. NF-kappaB (nuclear factor-kappaB) is known to be sequestered in the cytoplasm by I kappaB (inhibitor of NF-kappaB) proteins, but much less is known about the cytoplasmic retention of NF-kappaB by other cellular proteins. Here we show that p28(GANK) inhibits NF-kappaB activity. As a nuclear-cytoplasmic shuttling protein, p28(GANK) directly binds to NF-kappaB/RelA and exports RelA from nucleus through a chromosomal region maintenance-1 (CRM-1) dependent pathway, which results in the cytoplasmic retention of NF-kappaB/RelA. We demonstrate that all the ankyrin repeats of p28(GANK) are required for the interaction with RelA and that the N terminus of p28(GANK), which contains the nuclear export sequence (NES), is responsible for suppressing NF-kappaB/RelA nuclear translocation. These results suggest that overexpression of p28(GANK) prevents the nuclear localization and inhibits the activity of NF-kappaB/RelA.
Collapse
|
29
|
Wong HL, Liebler DC. Mitochondrial protein targets of thiol-reactive electrophiles. Chem Res Toxicol 2008; 21:796-804. [PMID: 18324786 DOI: 10.1021/tx700433m] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria serve a pivotal role in the regulation of apoptosis or programmed cell death. Recent studies have demonstrated that reactive electrophiles induce mitochondrion-dependent apoptosis. We hypothesize that covalent modification of specific mitochondrial proteins by reactive electrophiles serves as a trigger leading to the initiation of apoptosis. In this study, we identified protein targets of the model biotin-tagged electrophile probes N-iodoacetyl- N-biotinylhexylene-diamine (IAB) and 1-biotinamido-4-(4'-[maleimidoethylcyclohexane]carboxamido)butane (BMCC) in HEK293 cell mitochondrial fractions by liquid chromatography-tandem mass spectrometry (LC-MS-MS). These electrophiles reproducibly adducted a total of 1693 cysteine residues that mapped to 809 proteins. Protein modifications were selective in that only 438 cysteine sites in 1255 cysteinyl peptide adducts (35%) and 362 of the 809 identified protein targets (45%) were adducted by both electrophiles. Of these, approximately one-third were annotated to the mitochondria following protein database analysis. IAB initiated apoptotic events including cytochrome c release, caspase-3 activation, and poly(ADP-ribose)polymerase (PARP) cleavage, whereas BMCC did not. Of the identified targets of IAB and BMCC, 44 were apoptosis-related proteins, and adduction site specificity on these targets differed between the two probes. Differences in sites of modification between these two electrophiles may reveal alkylation sites whose modification triggers apoptosis.
Collapse
Affiliation(s)
- Hansen L Wong
- Department of Biochemistry, Vanderbilt University School of Medicine, U1213C Medical Research Building III, 465 21st Avenue South, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
30
|
Umemura A, Itoh Y, Itoh K, Yamaguchi K, Nakajima T, Higashitsuji H, Onoue H, Fukumoto M, Okanoue T, Fujita J. Association of gankyrin protein expression with early clinical stages and insulin-like growth factor-binding protein 5 expression in human hepatocellular carcinoma. Hepatology 2008; 47:493-502. [PMID: 18161051 DOI: 10.1002/hep.22027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Gankyrin (also known as PSMD10) is a liver oncoprotein that interacts with multiple proteins including MDM2 and accelerates degradation of the tumor suppressors p53 and Rb. We produced a monoclonal anti-gankyrin antibody and immunohistochemically assessed the clinicopathological significance of gankyrin overexpression in 43 specimens of human hepatocellular carcinoma (HCC). Specific cytoplasmic staining for gankyrin was observed in 62.8% (27/43) of HCCs, which was significantly associated with low TNM stage (P = 0.004), no capsular invasion (P = 0.018), no portal venous invasion (P = 0.008), and no intrahepatic metastasis (P = 0.012). The cumulative survival rate of patients with gankyrin-positive HCC was significantly higher than that with gankyrin-negative HCC (P = 0.037). p53 and MDM2 were positively stained by antibodies in 30.2% and 23.3%, respectively, of HCCs, but neither was inversely associated with gankyrin expression. In the Huh-7 human HCC cell line, overexpression of gankyrin up-regulated expression of insulin-like growth factor binding protein 5 (IGFBP-5), whereas suppression of gankyrin expression by siRNA down-regulated it. Supression of IGFBP-5 expression inhibited proliferation of Huh-7 cells as well as U-2 OS osteosarcoma cells. In HCC specimens, positive staining for IGFBP-5 was observed by immunohistochemistry in 41.9% (18/43), and the level of expression was significantly correlated with that of gankyrin (rho = 0.629, P < 0.001). CONCLUSION These results suggest that gankyrin plays an oncogenic role(s) mainly at the early stages of human hepatocarcinogenesis, and that IGFBP-5 inducible by gankyrin overexpression may be involved in it.
Collapse
Affiliation(s)
- Atsushi Umemura
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen Y, Li HH, Fu J, Wang XF, Ren YB, Dong LW, Tang SH, Liu SQ, Wu MC, Wang HY. Oncoprotein p28GANK binds to RelA and retains NF-κB in the cytoplasm through nuclear export. Cell Res 2007. [DOI: 10.1038/sj.cr.2007.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
32
|
Chung C, Park SG, Park YM, Joh JW, Jung G. Interferon-gamma sensitizes hepatitis B virus-expressing hepatocarcinoma cells to 5-fluorouracil through inhibition of hepatitis B virus-mediated nuclear factor-kappaB activation. Cancer Sci 2007; 98:1758-66. [PMID: 17711513 PMCID: PMC11159465 DOI: 10.1111/j.1349-7006.2007.00591.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor (NF)-kappaB is important for immune responses and cell survival; however, abnormal activation of NF-kappaB is linked with many types of diseases, including hepatocellular carcinoma (HCC). Our previous report indicated that hepatitis B virus (HBV) induces NF-kappaB activation through NF-kappaB-inducing kinase (NIK), and this can be blocked specifically by interferon (IFN)-gamma. In the present study, we report that HBV expression in HCC cell lines induces drug resistance against 5-fluorouracil (5-FU). This drug resistance was abolished by inhibition of NF-kappaB activation through small interfering RNA-mediated NIK 'knockdown' and IFN-gamma treatment. In addition to the reduced NF-kappaB activation and drug resistance, the upregulated growth arrest- and DNA damage-inducible protein 45beta (Gadd45beta) in HBV-expressing HCC cell lines was downregulated by the small interfering RNA-mediated NIK knockdown and IFN-gamma treatment. The overexpression of Gadd45beta in HCC cell lines also induces drug resistance against 5-FU. Based on our data, we suggest that IFN-gamma treatment might be helpful for chemotherapy in HBV-integrated HCC through inhibition of the NIK-mediated NF-kappaB activation and downregulation of the NF-kappaB target gene Gadd45beta.
Collapse
Affiliation(s)
- Chan Chung
- School of Biological Sciences, Seoul National University, Shillim-dong, Kwanak-gu, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
33
|
Higashitsuji H, Higashitsuji H, Liu Y, Masuda T, Fujita T, Abdel-Aziz HI, Kongkham S, Dawson S, John Mayer R, Itoh Y, Sakurai T, Itoh K, Fujita J. The oncoprotein gankyrin interacts with RelA and suppresses NF-κB activity. Biochem Biophys Res Commun 2007; 363:879-84. [PMID: 17904523 DOI: 10.1016/j.bbrc.2007.09.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Gankyrin is an oncoprotein commonly overexpressed in hepatocellular carcinomas. It interacts with multiple proteins and accelerates degradation of tumor suppressors Rb and p53. Since gankyrin consists of 7 ankyrin repeats and is structurally similar to IkappaBs, we investigated its interaction with NF-kappaB. We found that gankyrin directly binds to RelA. In HeLa and 293 cells, overexpression of gankyrin suppressed the basal as well as TNFalpha-induced transcriptional activity of NF-kappaB, whereas down-regulation of gankyrin increased it. Gankyrin did not affect the NF-kappaB DNA-binding activity or nuclear translocation of RelA induced by TNFalpha in these cells. Leptomycin B that inhibits nuclear export of RelA suppressed the NF-kappaB activity, which was further suppressed by gankyrin. The inhibitory effect of gankyrin was abrogated by nicotinamide as well as down-regulation of SIRT1, a class III histone deacetylase. Thus, gankyrin binds to NF-kappaB and suppresses its activity at the transcription level by modulating acetylation via SIRT1.
Collapse
Affiliation(s)
- Hiroaki Higashitsuji
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Weichert W, Boehm M, Gekeler V, Bahra M, Langrehr J, Neuhaus P, Denkert C, Imre G, Weller C, Hofmann HP, Niesporek S, Jacob J, Dietel M, Scheidereit C, Kristiansen G. High expression of RelA/p65 is associated with activation of nuclear factor-kappaB-dependent signaling in pancreatic cancer and marks a patient population with poor prognosis. Br J Cancer 2007; 97:523-30. [PMID: 17622249 PMCID: PMC2360349 DOI: 10.1038/sj.bjc.6603878] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activation of nuclear factor-kappaB (NF-kappaB) signaling was observed in pancreatic adenocarcinoma cell lines and tumours. However, information on the expression of RelA/p65, the major transcription activating NF-kappaB subunit, in these carcinomas and possible correlations thereof with NF-kappaB activation and patient survival is not available. To provide this missing translational link, we analysed expression of RelA/p65 in 82 pancreatic adenocarcinomas by immunohistochemistry. Moreover, we measured activation of the NF-kappaB pathway in 11 tumours by quantitative PCR for NF-kappaB target genes. We observed strong cytoplasmic or nuclear expression of RelA/p65 in 42 and 37 carcinomas, respectively. High cytoplasmic and nuclear expression of RelA/p65 had negative prognostic impact with 2-year survival rates for patients without cytoplasmic or nuclear RelA/p65 positivity of 41 and 40% and rates for patients with strong cytoplasmic or nuclear RelA/p65 expression of 22 and 20%, respectively. High RelA/p65 expression was correlated to increased expression of NF-kappaB target genes. The observation that high expression of RelA/p65 is correlated to an activation of the NF-kappaB pathway and indicates poor patient survival identifies a patient subgroup that might particularly benefit from NF-kappaB-inhibiting agents in the treatment of pancreatic cancer. Based on our findings, this subgroup could be identified by applying simple immunohistochemical techniques.
Collapse
Affiliation(s)
- W Weichert
- Institute of Pathology, Charité University Hospital, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shkoda A, Werner T, Daniel H, Gunckel M, Rogler G, Haller D. Differential protein expression profile in the intestinal epithelium from patients with inflammatory bowel disease. J Proteome Res 2007; 6:1114-25. [PMID: 17330946 DOI: 10.1021/pr060433m] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of intestinal epithelial cell (IEC) function is a critical component in the initiation and perpetuation of chronic intestinal inflammation in the genetically susceptible host. We applied proteome analysis (PA) to characterize changes in the protein expression profile of primary IEC from patients with Crohn's disease (CD) and ulcerative colitis (UC). Surgical specimens from 18 patients with active CD (N = 6), UC (N = 6), and colonic cancer (N = 6) were used to purify primary IEC from ileal and colonic tissues. Changes in protein expression were identified using 2D-gel electrophoreses (2D SDS-PAGE) and peptide mass fingerprinting via MALDI-TOF mass spectrometry (MS) as well as Western blot analysis. PA of primary IEC from inflamed ileal tissue of CD patients and colonic tissue of UC patients identified 21 protein spots with at least 2-fold changes in steady-state expression levels compared to the noninflamed tissue of control patients. Statistical significance was achieved for 9 proteins including the Rho-GDP dissociation inhibitor alpha that was up-regulated in CD and UC patients. Additionally, 40 proteins with significantly altered expression levels were identified in IEC from inflamed compared to noninflamed tissue regions of single UC (N = 2) patients. The most significant change was detected for programmed cell death protein 8 (7.4-fold increase) and annexin 2A (7.7-fold increase). PA in primary IEC from IBD patients revealed significant expression changes of proteins that are associated with signal transduction, stress response as well as energy metabolism. The induction of Rho GDI alpha expression may be associated with the destruction of IEC homeostasis under condition of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Anna Shkoda
- Else-Kroener-Fresenius Center for Experimental Nutritional Medicine, Molecular Nutrition, Technical University of Munich, Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
36
|
El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132:2557-76. [PMID: 17570226 DOI: 10.1053/j.gastro.2007.04.061] [Citation(s) in RCA: 4166] [Impact Index Per Article: 245.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/18/2007] [Indexed: 02/06/2023]
Abstract
Primary liver cancer, which consists predominantly of hepatocellular carcinoma (HCC), is the fifth most common cancer worldwide and the third most common cause of cancer mortality. HCC has several interesting epidemiologic features including dynamic temporal trends; marked variations among geographic regions, racial and ethnic groups, and between men and women; and the presence of several well-documented environmental potentially preventable risk factors. Moreover, there is a growing understanding on the molecular mechanisms inducing hepatocarcinogenesis, which almost never occurs in healthy liver, but the cancer risk increases sharply in response to chronic liver injury at the cirrhosis stage. A detailed understanding of epidemiologic factors and molecular mechanisms associated with HCC ultimately could improve our current concepts for screening and treatment of this disease.
Collapse
Affiliation(s)
- Hashem B El-Serag
- Michael E. DeBakey Veterans Administration Medical Center and Baylor College of Medicine, Houston Center for Quality of Care and Utilization Studies, Houston, Texas, USA.
| | | |
Collapse
|
37
|
Higashitsuji H, Higashitsuji H, Masuda T, Liu Y, Itoh K, Fujita J. Enhanced deacetylation of p53 by the anti-apoptotic protein HSCO in association with histone deacetylase 1. J Biol Chem 2007; 282:13716-25. [PMID: 17353187 DOI: 10.1074/jbc.m609751200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HSCO (hepatoma subtracted-cDNA library clone one, also called ETHE1) was originally identified by its frequent overexpression in hepatocellular carcinomas. HSCO inhibits function of NF-kappaB by binding to RelA and accelerating its export from the nucleus. We show here that HSCO exhibits anti-apoptotic activity in cells exposed to DNA-damaging agents by suppressing transcriptional activity of p53. Induction of pro-apoptotic genes, Noxa, Perp, PIG3, and Bax were suppressed in cells over-expressing HSCO. By increasing ubiquitylation and degradation of p53, HSCO reduces p53 protein levels. HSCO specifically associates with histone deacetylase 1 (HDAC1) independently of Mdm2 and facilitates deacetylation of p53 at Lys-373/382 by HDAC1. The metallo-beta-lactamase family consensus sequence in HSCO is important for its effect on p53 deacetylation. Co-immunoprecipitation and immunofluorescence studies suggested that HSCO, HDAC1, and p53 form a complex in the nucleus. Thus, HSCO is a cofactor that increases the deacetylase activity of HDAC1 toward p53, leading to suppression of apoptosis. Treatment of hepatocellular carcinomas that retain wild-type p53 and overexpress HSCO with anti-HSCO agents might re-establish the p53 response and revert chemoresistance.
Collapse
Affiliation(s)
- Hisako Higashitsuji
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Williams TD, Diab AM, George SG, Godfrey RE, Sabine V, Conesa A, Minchin SD, Watts PC, Chipman JK. Development of the GENIPOL European flounder (Platichthys flesus) microarray and determination of temporal transcriptional responses to cadmium at low dose. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:6479-88. [PMID: 17120584 DOI: 10.1021/es061142h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We have constructed a high density, 13 270-clone cDNA array for the sentinel fish species European flounder (Platichthys flesus), combining clones from suppressive subtractive hybridization and a liver cDNA library; DNA sequences of 5211 clones were determined. Fish were treated by single intraperitoneal injection with 50 micrograms cadmium chloride per kilogram body weight, a dose relevant to environmental exposures, and hepatic gene expression changes were determined at 1, 2, 4, 8, and 16 days postinjection in comparison to saline-treated controls. Gene expression responses were confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). Blast2GO gene ontology analysis highlighted a general induction of the unfolded protein response, response to oxidative stress, protein synthesis, transport, and degradation pathways, while apoptosis, cell cycle, cytoskeleton, and cytokine genes were also affected. Transcript levels of cytochrome P450 1A (CYP1A) were repressed and vitellogenin altered, real-time PCR showed induction of metallothionein. We thus describe the establishment of a useful resource for ecotoxicogenomics and the determination of the temporal molecular responses to cadmium, a prototypical heavy metal pollutant.
Collapse
Affiliation(s)
- Tim D Williams
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Complexes formed from the nuclear factor kappaB (NF-kappaB) family of transcription factors are ubiquitously expressed and are induced by a diverse array of stimuli. This results in their becoming activated in a wide variety of different settings. While the functions of NF-kappaB in many of these contexts have been the subject of intense research and are now well established, it is also clear that there is great diversity in the effects and consequences of NF-kappaB activation. NF-kappaB subunits do not necessarily regulate the same genes, in an identical manner, in all of the different circumstances in which they are induced. This review will discuss the different functions of NF-kappaB, the pathways that modulate NF-kappaB subunit activity and, in contrast to its more commonly thought of role as a promoter of cancer cell growth and survival, the ability of NF-kappaB, under some circumstances, to behave as a tumor suppressor.
Collapse
Affiliation(s)
- N D Perkins
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee, Scotland DD1 5EH, UK.
| | | |
Collapse
|
40
|
Sakurai T, Itoh K, Higashitsuji H, Nonoguchi K, Liu Y, Watanabe H, Nakano T, Fukumoto M, Chiba T, Fujita J. Cirp protects against tumor necrosis factor-alpha-induced apoptosis via activation of extracellular signal-regulated kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:290-5. [PMID: 16569452 DOI: 10.1016/j.bbamcr.2006.02.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 01/19/2023]
Abstract
Mild hypothermia shows protective effects on patients with brain damage and cardiac arrest. To elucidate the molecular mechanisms underlying these effects, we analyzed the effects of low culture temperature (32 degrees C) and cold-inducible RNA-binding protein (Cirp) expression on apoptosis in vitro. In BALB/3T3 cells treated with tumor necrosis factor (TNF)-alpha and cycloheximide, the down-shift in temperature from 37 degrees C to 32 degrees C increased the expression of Cirp and suppressed the apoptosis. Activation of caspase-8 was suppressed, and the level of phosphorylated extracellular signal-regulated kinase (ERK) was increased. Transduction of Cirp into the Cirp-deficient mouse fibroblasts increased the level of phosphorylated ERK and suppressed the TNF-alpha-induced apoptosis both at 37 degrees C and 32 degrees C. The ERK-specific inhibitor PD98059 decreased the cytoprotective effect of Cirp as well as that of low culture temperature. These data suggest that mild hypothermia protects cells from TNF-alpha-induced apoptosis, at least partly, via induction of Cirp, and that Cirp protects cells by activating the ERK pathway.
Collapse
Affiliation(s)
- Toshiharu Sakurai
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 605-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
After more than three decades of its declaration, the war against cancer still appears far from being won. Although there have been decisive victories in a few battles, such as the one against testicular cancer, the overall result is sobering. Hopes for an imminent cure had been raised among the public by the promises of molecular biology, combinatorial chemistry and high-throughput screening. These promises have manifested themselves in the widely proclaimed strategy of rationally targeted anticancer drug discovery, which may be summarized as the 'one-gene-one target-one drug' approach. Over the years, however, it has gradually become clear that, in most cases, treatment of cancer with a single drug may at best delay progression of the disease but is unlikely to lead to a cure. Thus, it appears that rationally targeted monotherapy will have to be replaced by rationally targeted combination therapy. Inhibitors of NF-kappaB look likely to become an important weapon in the anticancer combination therapy arsenal.
Collapse
Affiliation(s)
- Burkhard Haefner
- Department of Oncology, Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| |
Collapse
|
42
|
Owen HR, Quadroni M, Bienvenut W, Buerki C, Hottiger MO. Identification of Novel and Cell Type Enriched Cofactors of the Transcription Activation Domain of RelA (p65 NF-κB). J Proteome Res 2005; 4:1381-90. [PMID: 16083290 DOI: 10.1021/pr0500713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RelA (NF-kappaB) is a transcription factor inducible by distinct stimuli in many different cell types. To find new cell type specific cofactors of NF-kappaB dependent transcription, we isolated RelA transcription activation domain binding proteins from the nuclear extracts of three different cell types. Analysis by electrophoresis and liquid chromatography tandem mass spectrometry identified several novel putative molecular partners. Some were strongly enriched in the complex formed from the nuclear extracts of specific cell types.
Collapse
Affiliation(s)
- Heather R Owen
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y, Sumitomo H, Masuda T, Dawson S, Shimada Y, Mayer RJ, Fujita J. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 2005; 8:75-87. [PMID: 16023600 DOI: 10.1016/j.ccr.2005.06.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 04/25/2005] [Accepted: 06/01/2005] [Indexed: 02/08/2023]
Abstract
Gankyrin is an ankyrin repeat oncoprotein commonly overexpressed in hepatocellular carcinomas. Gankyrin interacts with the S6 proteasomal ATPase and accelerates the degradation of the tumor suppressor Rb. We show here that gankyrin has an antiapoptotic activity in cells exposed to DNA damaging agents. Downregulation of gankyrin induces apoptosis in cells with wild-type p53. In vitro and in vivo experiments revealed that gankyrin binds to Mdm2, facilitating p53-Mdm2 binding, and increases ubiquitylation and degradation of p53. Gankyrin also enhances Mdm2 autoubiquitylation in the absence of p53. Downregulation of gankyrin reduced amounts of Mdm2 and p53 associated with the 26S proteasome. Thus, gankyrin is a cofactor that increases the activities of Mdm2 on p53 and probably targets polyubiquitylated p53 into the 26S proteasome.
Collapse
Affiliation(s)
- Hiroaki Higashitsuji
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Low TY, Leow CK, Salto-Tellez M, Chung MCM. A proteomic analysis of thioacetamide-induced hepatotoxicity and cirrhosis in rat livers. Proteomics 2005; 4:3960-74. [PMID: 15526343 DOI: 10.1002/pmic.200400852] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thioacetamide (TAA) administration is an established technique for generating rat models of liver fibrosis and cirrhosis. Oxidative stress is believed to be involved as TAA-induced liver fibrosis is initiated by thioacetamide S-oxide, which is derived from the biotransformation of TAA by the microsomal flavine-adenine dinucleotide (FAD)-containing monooxygense (FMO) and cytochrome P450 systems. A two-dimensional gel electrophoresis-mass spectrometry approach was applied to analyze the protein profiles of livers of rats administered with sublethal doses of TAA for 3, 6 and 10 weeks respectively. With this approach, 59 protein spots whose expression levels changed significantly upon TAA administration were identified, including three novel proteins. These proteins were then sorted according to their common biochemical properties and functions, so that pathways involved in the pathogenesis of rat liver fibrosis due to TAA-induced toxicity could be elucidated. As a result, it was found that TAA-administration down-regulated the enzymes of the primary metabolic pathways such as fatty acid beta-oxidation, branched chain amino acids and methionine breakdown. This phenomenon is suggestive of the depletion of succinyl-CoA which affects heme and iron metabolism. Up-regulated proteins, on the other hand, are related to oxidative stress and lipid peroxidation. Finally, these proteomics data and the data obtained from the scientific literature were integrated into an "overview model" for TAA-induced liver cirrhosis. This model could now serve as a useful resource for researchers working in the same area.
Collapse
Affiliation(s)
- Teck Yew Low
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
45
|
Kiss DL, Xu W, Gopalan S, Buzanowska K, Wilczynska KM, Rydel RE, Kordula T. Duration of alpha 1-antichymotrypsin gene activation by interleukin-1 is determined by efficiency of inhibitor of nuclear factor kappa B alpha resynthesis in primary human astrocytes. J Neurochem 2005; 92:730-8. [PMID: 15686474 PMCID: PMC4558886 DOI: 10.1111/j.1471-4159.2004.02900.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Expression of alpha1antichymotrypsin (ACT) is significantly activated by interleukin-1 (IL-1) in human astrocytes; however, it is barely affected by IL-1 in hepatocytes. This tissue-specific regulation depends upon an enhancer that contains both nuclear factor kappaB (NF-kappaB) and activating protein 1 (AP-1) elements, and is also observed for an NF-kappaB reporter but not for an AP-1 reporter. We found efficient activation of NF-kappaB binding in both cell types; however, this binding was persistent in glial cells and only transient in hepatocytes. IL-1-activated NF-kappaB complexes consisted of p65 and p50, with p65 transiently phosphorylated on serine 536 in glial cells whereas more persistently in hepatic cells. Overexpression of p65 or constitutively active IKKbeta (inhibitor of NF-kappaB kinase beta) resulted in an efficient activation of the ACT reporter in hepatic cells, indicating that a specific mechanism exists in these cells terminating IL-1 signaling. IL-1 effectively induced the degradation of inhibitor of NF-kappaBalpha (IkBalpha) and IkBepsilon in both cell types but IkBbeta was not affected. However, IkBalpha was resynthesized much more rapidly in hepatic cells in comparison to glial cells. In addition, the initial levels of IkBalpha were much lower in glial cells. We propose that the tissue-specific regulation of the ACT gene expression by IL-1 is determined by different efficiencies of IkBalpha resynthesis in glial and hepatic cells.
Collapse
Affiliation(s)
- Daniel L. Kiss
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | - Weili Xu
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Sunita Gopalan
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Katarzyna Buzanowska
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | - Katarzyna M. Wilczynska
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | - Tomasz Kordula
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298
- Corresponding author: Dr. Tomasz Kordula, Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, tel. (804) 828-0771, fax. (804) 828-1473,
| |
Collapse
|
46
|
Abstract
A role for the NF-kappaB family of transcription factors as tumor promoters is firmly established. However, other data suggest that NF-kappaB can also inhibit tumor growth. Moreover, NF-kappaB activity is modulated by tumor suppressors, such as p53 and ARF, whereby NF-kappaB subunits repress, rather than activate, the expression of tumor-promoting genes. This suggests a dual function of NF-kappaB during tumor progression - in the early stages, NF-kappaB inhibits tumor growth but, as further mutations lead to a loss of tumor suppressor expression, the oncogenic functions of NF-kappaB become unleashed, allowing it to actively contribute to tumorigenesis. Here, I discuss this hypothesis, its implications for NF-kappaB function, and how this might influence the use of NF-kappaB-based anticancer therapies.
Collapse
Affiliation(s)
- Neil D Perkins
- Division of Gene Regulation and Expression, School of Life Sciences, MSI/WTB Complex, Dow Street, University of Dundee, Dundee, UK DD1 5EH.
| |
Collapse
|
47
|
Ryan KM, O'Prey J, Vousden KH. Loss of nuclear factor-kappaB is tumor promoting but does not substitute for loss of p53. Cancer Res 2004; 64:4415-8. [PMID: 15231649 DOI: 10.1158/0008-5472.can-04-1474] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inactivation of apoptotic pathways is a common event in cancer. Two transcription factors that regulate apoptosis during tumorigenesis are p53 and nuclear factor (NF)-kappaB. Although NF-kappaB is generally considered a suppressor of cell death, we showed previously that NF-kappaB can contribute to p53-induced death. Here, we show that loss of p65, a critical subunit of NF-kappaB, can cause resistance to different agents that signal death through p53. Loss of p65 also enhances tumorigenesis induced by E1a and Ras. Unlike loss of p53, however, loss of p65 does not cause anchorage-independent growth or enable tumor development following expression of a single oncogene. These findings reaffirm the role of NF-kappaB in p53-induced death but show that its loss does not substitute for loss of p53 in tumor development. Moreover, this indicates that, although perhaps central to p53 function, loss of the ability to induce programmed cell death does not completely inactivate p53's tumor-suppressive effects.
Collapse
Affiliation(s)
- Kevin M Ryan
- Tumor Cell Death Laboratory, Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Glasgow, United Kingdom.
| | | | | |
Collapse
|
48
|
Corton JC, Apte U, Anderson SP, Limaye P, Yoon L, Latendresse J, Dunn C, Everitt JI, Voss KA, Swanson C, Kimbrough C, Wong JS, Gill SS, Chandraratna RAS, Kwak MK, Kensler TW, Stulnig TM, Steffensen KR, Gustafsson JA, Mehendale HM. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem 2004; 279:46204-12. [PMID: 15302862 DOI: 10.1074/jbc.m406739200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The obesity epidemic in industrialized countries is associated with increases in cardiovascular disease (CVD) and certain types of cancer. In animal models, caloric restriction (CR) suppresses these diseases as well as chemical-induced tissue damage. These beneficial effects of CR overlap with those altered by agonists of nuclear receptors (NR) under control of the fasting-responsive transcriptional co-activator, peroxisome proliferator-activated co-activator 1alpha (PGC-1alpha). In a screen for compounds that mimic CR effects in the liver, we found statistically significant overlaps between the CR transcript profile in wild-type mice and the profiles altered by agonists of lipid-activated NR, including peroxisome proliferator-activated receptor alpha (PPARalpha), liver X receptor, and their obligate heterodimer partner, retinoid X receptor. The overlapping genes included those involved in CVD (lipid metabolism and inflammation) and cancer (cell fate). Based on this overlap, we hypothesized that some effects of CR are mediated by PPARalpha. As determined by transcript profiling, 19% of all gene expression changes in wild-type mice were dependent on PPARalpha, including Cyp4a10 and Cyp4a14, involved in fatty acid omega-oxidation, acute phase response genes, and epidermal growth factor receptor but not increases in PGC-1alpha. CR protected the livers of wild-type mice from damage induced by thioacetamide, a liver toxicant and hepatocarcinogen. CR protection was lost in PPARalpha-null mice due to inadequate tissue repair. These results demonstrate that PPARalpha mediates some of the effects of CR and indicate that a pharmacological approach to mimicking many of the beneficial effects of CR may be possible.
Collapse
|
49
|
Cordell PA, Futers TS, Grant PJ, Pease RJ. The Human Hydroxyacylglutathione Hydrolase (HAGH) Gene Encodes Both Cytosolic and Mitochondrial Forms of Glyoxalase II. J Biol Chem 2004; 279:28653-61. [PMID: 15117945 DOI: 10.1074/jbc.m403470200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast and higher plants, separate genes encode the cytosolic and mitochondrial forms of glyoxalase II. In contrast, although glyoxalase II activity has been detected both in the cytosol and mitochondria of mammals, only a single gene encoding glyoxalase II has been identified. Previously it was thought that this gene (the hydroxyacylglutathione hydrolase gene), comprised 8 exons that are transcribed into mRNA and that the resulting mRNA species encoded a single cytosolic form of glyoxalase II. Here we show that this gene gives rise to two distinct mRNA species transcribed from 9 and 10 exons, respectively. The 9-exon-derived transcript encodes two protein species: mitochondrially targeted glyoxylase II, which is initiated from an AUG codon in a previously uncharacterized part of the mRNA sequence, and cytosolic glyoxalase II, which is initiated by internal ribosome entry at a downstream AUG codon. The transcript deriving from 10 exons has an in-frame termination codon between the two initiating AUG codons and hence only encodes the cytosolic form of the protein. Confocal fluorescence microscopy indicates that the mitochondrially targeted form of glyoxalase II is directed to the mitochondrial matrix. Analysis of glyoxalase II mRNA sequences from a number of species indicates that dual initiation from alternative AUG codons is conserved throughout vertebrates.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Line
- Codon
- Cytosol/enzymology
- Cytosol/metabolism
- DNA, Complementary/metabolism
- Exons
- Genes, Reporter
- Humans
- Immunoblotting
- Luciferases/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitochondria/enzymology
- Mitochondria/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomes/metabolism
- Thiolester Hydrolases/chemistry
- Thiolester Hydrolases/genetics
Collapse
Affiliation(s)
- Paul A Cordell
- Academic Unit of Molecular Vascular Medicine, Leeds Institute for Genetics Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, United Kingdom
| | | | | | | |
Collapse
|
50
|
Burroughs A, Hochhauser D, Meyer T. Systemic treatment and liver transplantation for hepatocellular carcinoma: two ends of the therapeutic spectrum. Lancet Oncol 2004; 5:409-18. [PMID: 15231247 DOI: 10.1016/s1470-2045(04)01508-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma is the fifth most common malignant disorder and causes nearly 1 million deaths a year worldwide. A background of cirrhosis is the major risk factor, and in Asia and subSaharan Africa, cirrhosis is attributable mainly to endemic hepatitis B infection. In Europe and the USA the incidence of hepatocellular carcinoma is increasing as a result of the high prevalence of hepatitis C. The only curative treatments are surgical resection or liver transplantation, but only a few patients are eligible for these procedures. Local ablative treatments such as ethanol injection can lengthen survival in selected patients, and radiofrequency ablation also shows promise. Unfortunately, most patients are suitable only for palliative treatment because of the extent of their tumour or background liver disease or both. For these patients, a wide range of therapeutic interventions have been assessed, including transarterial embolisation (with or without chemotherapy), hormone therapy with antioestrogens and androgens, octreotide, interferon, and both arterial and systemic chemotherapy, of which only chemoembolisation improves survival over symptomatic care. Tamoxifen is ineffective, and there are insufficient randomised data to show the benefit of any other intervention. In this review, we focus on two ends of the therapeutic spectrum--transplantation, which is highly effective but applicable to only a few patients, and systemic chemotherapy, which is of uncertain benefit but widely applicable.
Collapse
Affiliation(s)
- Andrew Burroughs
- Liver Transplantation and Hepatobiliary Medicine Department, Royal Free and University College Medical School, London, UK
| | | | | |
Collapse
|