1
|
Somo DA, Onukwufor JO, Wood CM, Richards JG. Interactive effects of temperature and hypoxia on diffusive water flux and oxygen uptake rate in the tidepool sculpin, Oligocottus maculosus. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110781. [PMID: 32763468 DOI: 10.1016/j.cbpa.2020.110781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/07/2023]
Abstract
The osmorespiratory compromise hypothesis posits that respiratory epithelial characteristics and physiological regulatory mechanisms which promote gas permeability also increase permeability to ions and water. The hypothesis therefore predicts that physiological responses which increase effective gas permeability will result in increased effective ion and water permeabilities. Though analyses of water and gas effective permeabilities using high temperature have generally supported the hypothesis, water permeability responses to hypoxia remain equivocal and the combination of high temperature and hypoxia untested. We measured diffusive water flux (DWF) and oxygen uptake rate (Ṁo2) in response to acute temperature change, hypoxia, and the combination of high temperature and hypoxia in a hypoxia-tolerant intertidal fish, the tidepool sculpin (Oligocottus maculosus). In support of the osmorespiratory compromise hypothesis, Ṁo2 and DWF increased with temperature. In contrast, DWF decreased with hypoxia at a constant temperature, a result consistent with previously observed decoupling of water and gas effective permeabilities during hypoxia exposure in some hypoxia tolerant fishes. However, DWF levels during simultaneous high temperature and hypoxia exposure were not different from fish exposed to high temperature in normoxia, possibly suggesting a failure of the mechanism responsible for down-regulating DWF in hypoxia. These results, together with time-course analysis of hypoxia exposure and normoxic recovery, suggest that tidepool sculpins actively downregulate effective water permeability in hypoxia but the mechanism fails with multi-stressor exposure. Future investigations of the mechanistic basis of the regulation of gill permeability will be key to understanding the role of this regulatory ability in the persistence of this species in the dynamic intertidal environment.
Collapse
Affiliation(s)
- Derek A Somo
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - John O Onukwufor
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chris M Wood
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
Differential Expression and Localization of Branchial AQP1 and AQP3 in Japanese Medaka ( Oryzias latipes). Cells 2019; 8:cells8050422. [PMID: 31072010 PMCID: PMC6562476 DOI: 10.3390/cells8050422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Aquaporins (AQPs) facilitate transmembrane water and solute transport, and in addition to contributing to transepithelial water transport, they safeguard cell volume homeostasis. This study examined the expression and localization of AQP1 and AQP3 in the gills of Japanese medaka (Oryzias latipes) in response to osmotic challenges and osmoregulatory hormones, cortisol, and prolactin (PRL). AQP3 mRNA was inversely regulated in response to salinity with high levels in ion-poor water (IPW), intermediate levels in freshwater (FW), and low levels in seawater (SW). AQP3 protein levels decreased upon SW acclimation. By comparison, AQP1 expression was unaffected by salinity. In ex vivo gill incubation experiments, AQP3 mRNA was stimulated by PRL in a time- and dose-dependent manner but was unaffected by cortisol. In contrast, AQP1 was unaffected by both PRL and cortisol. Confocal microscopy revealed that AQP3 was abundant in the periphery of gill filament epithelial cells and co-localized at low intensity with Na+,K+-ATPase in ionocytes. AQP1 was present at a very low intensity in most filament epithelial cells and red blood cells. No epithelial cells in the gill lamellae showed immunoreactivity to AQP3 or AQP1. We suggest that both AQPs contribute to cellular volume regulation in the gill epithelium and that AQP3 is particularly important under hypo-osmotic conditions, while expression of AQP1 is constitutive.
Collapse
|
3
|
Giacomin M, Dal Pont G, Eom J, Schulte PM, Wood CM. The effects of salinity and hypoxia exposure on oxygen consumption, ventilation, diffusive water exchange and ionoregulation in the Pacific hagfish (Eptatretus stoutii). Comp Biochem Physiol A Mol Integr Physiol 2019; 232:47-59. [PMID: 30878760 DOI: 10.1016/j.cbpa.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Hagfishes (Class: Myxini) are marine jawless craniate fishes that are widely considered to be osmoconformers whose plasma [Na+], [Cl-] and osmolality closely resemble that of sea water, although they have the ability to regulate plasma [Ca2+] and [Mg2+] below seawater levels. We investigated the responses of Pacific hagfish to changes in respiratory and ionoregulatory demands imposed by a 48-h exposure to altered salinity (25 ppt, 30 ppt (control) and 35 ppt) and by an acute hypoxia exposure (30 Torr; 4 kPa). When hagfish were exposed to 25 ppt, oxygen consumption rate (MO2), ammonia excretion rate (Jamm) and unidirectional diffusive water flux rate (JH2O, measured with 3H2O) were all reduced, pointing to an interaction between ionoregulation and gas exchange. At 35 ppt, JH2O was reduced, though MO2 and Jamm did not change. As salinity increased, so did the difference between plasma and external water [Ca2+] and [Mg2+]. Notably, the same pattern was seen for plasma Cl-, which was kept below seawater [Cl-] at all salinities, while plasma [Na+] was regulated well above seawater [Na+], but plasma osmolality matched seawater values. MO2 was reduced by 49% and JH2O by 36% during hypoxia, despite a small elevation in overall ventilation. Our results depart from the "classical" osmorespiratory compromise but are in accord with responses in other hypoxia-tolerant fish; instead of an exacerbation of gill fluxes when gas transfer is upregulated, the opposite happens.
Collapse
Affiliation(s)
- Marina Giacomin
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - Giorgi Dal Pont
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada; Integrated Group for Aquaculture and Environmental Studies, Department of Animal Science, Federal University of Paraná, Curitiba, Paraná 83035-050, Brazil
| | - Junho Eom
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada; Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
4
|
The osmorespiratory compromise in rainbow trout ( Oncorhynchus mykiss ): The effects of fish size, hypoxia, temperature and strenuous exercise on gill diffusive water fluxes and sodium net loss rates. Comp Biochem Physiol A Mol Integr Physiol 2018; 219-220:10-18. [DOI: 10.1016/j.cbpa.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 11/18/2022]
|
5
|
Kwong RWM, Kumai Y, Perry SF. The role of aquaporin and tight junction proteins in the regulation of water movement in larval zebrafish (Danio rerio). PLoS One 2013; 8:e70764. [PMID: 23967101 PMCID: PMC3743848 DOI: 10.1371/journal.pone.0070764] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/23/2013] [Indexed: 01/17/2023] Open
Abstract
Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (Ku) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H+-ATPase-rich cells or Na+/K+-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca2+-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
6
|
Wood CM, Iftikar FI, Scott GR, De Boeck G, Sloman KA, Matey V, Valdez Domingos FX, Duarte RM, Almeida-Val VMF, Val AL. Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (Astronotus ocellatus): new angles to the osmorespiratory compromise. J Exp Biol 2009; 212:1949-64. [DOI: 10.1242/jeb.028464] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Earlier studies demonstrated that oscars, endemic to ion-poor Amazonian waters, are extremely hypoxia tolerant, and exhibit a marked reduction in active unidirectional Na+ uptake rate (measured directly) but unchanged net Na+ balance during acute exposure to low PO2, indicating a comparable reduction in whole body Na+ efflux rate. However, branchial O2 transfer factor does not fall. The present study focused on the nature of the efflux reduction in the face of maintained gill O2 permeability. Direct measurements of 22Na appearance in the water from bladder-catheterized fish confirmed a rapid 55% fall in unidirectional Na+ efflux rate across the gills upon acute exposure to hypoxia(PO2=10–20 torr; 1 torr=133.3 Pa), which was quickly reversed upon return to normoxia. An exchange diffusion mechanism for Na+ is not present, so the reduction in efflux was not directly linked to the reduction in Na+ influx. A quickly developing bradycardia occurred during hypoxia. Transepithelial potential, which was sensitive to water [Ca2+], became markedly less negative during hypoxia and was restored upon return to normoxia. Ammonia excretion, net K+ loss rates, and 3H2O exchange rates(diffusive water efflux rates) across the gills fell by 55–75% during hypoxia, with recovery during normoxia. Osmotic permeability to water also declined, but the fall (30%) was less than that in diffusive water permeability (70%). In total, these observations indicate a reduction in gill transcellular permeability during hypoxia, a conclusion supported by unchanged branchial efflux rates of the paracellular marker [3H]PEG-4000 during hypoxia and normoxic recovery. At the kidney, glomerular filtration rate, urine flow rate, and tubular Na+ reabsorption rate fell in parallel by 70% during hypoxia, facilitating additional reductions in costs and in urinary Na+, K+ and ammonia excretion rates. Scanning electron microscopy of the gill epithelium revealed no remodelling at a macro-level, but pronounced changes in surface morphology. Under normoxia,mitochondria-rich cells were exposed only through small apical crypts, and these decreased in number by 47% and in individual area by 65% during 3 h hypoxia. We suggest that a rapid closure of transcellular channels, perhaps effected by pavement cell coverage of the crypts, allows conservation of ions and reduction of ionoregulatory costs without compromise of O2exchange capacity during acute hypoxia, a response very different from the traditional osmorespiratory compromise.
Collapse
Affiliation(s)
- Chris M. Wood
- Department of Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Fathima I. Iftikar
- Department of Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Graham R. Scott
- Department of Zoology, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - Gudrun De Boeck
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | - Victoria Matey
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Fabiola X. Valdez Domingos
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Rafael Mendonça Duarte
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Vera M. F. Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Adalberto L. Val
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| |
Collapse
|
7
|
Giffard-Mena I, Lorin-Nebel C, Charmantier G, Castille R, Boulo V. Adaptation of the sea-bass (Dicentrarchus labrax) to fresh water: Role of aquaporins and Na+/K+-ATPases. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:332-8. [DOI: 10.1016/j.cbpa.2008.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/10/2023]
|
8
|
Ferrito V, Mauceri A, Minniti F, Isaja M, Maisano M, Tigano C. Comparative morphological studies of the neurocranium and the gills of two species of blennies living in different habitats. Acta Histochem 2007; 109:428-36. [PMID: 17706753 DOI: 10.1016/j.acthis.2007.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 03/18/2007] [Accepted: 03/30/2007] [Indexed: 11/30/2022]
Abstract
Two species of Blennies--Salaria fluviatilis, which lives in freshwaters, and Salaria pavo, which lives in the sea--are considered to be phylogenetically related. Due to the interesting feature of one species having a freshwater and one having a marine habitat, and because of the paucity of studies on the intraspecific and interspecific variability of skeletal characters, in the study reported here, several populations of S. fluviatilis and S. pavo were compared. The intraspecific and interspecific morphology of the cranial characteristics, as well as the branchial epithelium, was studied in relationship to the adaptation of the two species to different environments. Osteological results confirmed the intraspecific variability already found in S. fluviatilis and showed a notable interspecific differentiation between S. pavo and S. fluviatilis. Histological studies indicate that the two species have morphological differences, which are the result of the diversity of the environments in which they live. The results from the two approaches, taken together, are in agreement with the hypothesis of the origin of these two species being from a common marine ancestor.
Collapse
Affiliation(s)
- Venera Ferrito
- Department of Animal biology M. La Greca, Faculty of Sciences, University of Catania, Via Androne 81, Catania 95124, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Santos CRA, Estêvão MD, Fuentes J, Cardoso JCR, Fabra M, Passos AL, Detmers FJ, Deen PMT, Cerdà J, Power DM. Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus): function and tissue distribution. J Exp Biol 2004; 207:1217-27. [PMID: 14978062 DOI: 10.1242/jeb.00867] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe aquaporins (formerly called the major intrinsic protein family) are transmembrane channel proteins. The family includes the CHIP group, which are functionally characterised as water channels and the GLP group, which are specialised for glycerol transport. The present study reports the identification and characterisation of a novel GLP family member in a teleost fish, the sea bream Sparus auratus. A sea bream aquaporin (sbAQP)cDNA of 1047 bp and encoding a protein of 298 amino acids was isolated from a kidney cDNA library. Functional characterization of the sbAQP using a Xenopus oocyte assay revealed that the isolated cDNA stimulated osmotic water permeability in a mercury-sensitive manner and also stimulated urea and glycerol uptake. Northern blotting demonstrated that sbAQP was expressed at high levels in the posterior region of the gut, where two transcripts were identified (1.6 kb and 2 kb), and in kidney, where a single transcript was present (2 kb). In situ hybridisation studies with a sbAQP riboprobe revealed its presence in the lamina propria and smooth muscle layer of the posterior region of the gut and in epithelial cells of some kidney tubules. sbAQP was also present in putative chloride cells of the gill. Phylogenetic analysis of sbAQP, including putative GLP genes from Fugu rubripes, revealed that it did not group with any of the previously isolated vertebrate GLPs and instead formed a separate group, suggesting that it may be a novel GLP member.
Collapse
Affiliation(s)
- C R A Santos
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cutler CP, Cramb G. Branchial expression of an aquaporin 3 (AQP-3) homologue is downregulated in the European eelAnguilla anguillafollowing seawater acclimation. J Exp Biol 2002; 205:2643-51. [PMID: 12151370 DOI: 10.1242/jeb.205.17.2643] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYA cDNA encoding the homologue of mammalian aquaporin 3 (AQP-3) was isolated by reverse transcription—polymerase chain reaction from the gill of the European eel. The derived amino acid sequence shares 67-70% homology with other vertebrate AQP-3 homologues. Northern blot analysis revealed two AQP-3-specific mRNA species of 2.4 kb and 7 kb. AQP-3 mRNA is expressed predominantly in the eye, oesophagus, intestine (as found in mammals) and the gill; no expression could be demonstrated in the stomach and only low and sporadic levels in the kidney. Quantitative studies demonstrated that,following the 3-week acclimation of freshwater (FW)-adapted yellow and silver eels to seawater (SW), transcript abundance in the gill was reduced by 76% and 97%, respectively. The half time of branchial AQP-3 mRNA downregulation in yellow eels was approximately 10 h, with a maximal 94% decrease in expression after 2 days in SW (compared to time-matched FW controls). However, in fish acclimated to SW for more than 4 days, the fall in AQP-3 mRNA abundance recovered slightly, such that after 3 weeks, expression was 16% of that in time-matched FW controls. The potential roles for this aquaporin isoform in water or solute transport in the eel gill are discussed.
Collapse
Affiliation(s)
- Christopher P Cutler
- School of Biology, Bute Medical Buildings, University of St Andrews, St Andrews, Fife KY16 9TS, Scotland.
| | | |
Collapse
|
11
|
Abstract
We review the literature on the way the structure of icefish gills relates the physiology of these haemoglobin-less fishes. Vascular casting confirmed earlier reports that the only special feature of the gills is the large size of the blood vessels, especially the prominent and continuous marginal channels Isolated perfused gill arches were used to study the effects of changes in afferent and efferent pressure on gill resistance and tritiated water influx in Chionobathyscus dewitti. Increasing perfusion rate did not change gill resistance, but there were moderate proportional increases in water influx. Reducing efferent pressure increased gill resistance but did not affect water influx. In both C. dewitti and Cryodraco antarcticus gills perfused at constant flow rate, noradrenaline produced concentration-dependent decreases in gill resistance and, with high concentrations, increases in water influx. Fixation while perfusion continued was used to compare blood space dimensions in control, noradrenaline-treated and unperfused gills. Noradrenaline caused large increases in the thickness of the lamellar blood space and increased lamellar height, despite a greatly reduced afferent pressure. This suggests that modulation of pillar cell active tension might be involved in control of lamellar perfusion. The possible relationship between gill water fluxes and lamellar recruitment is discussed.
Collapse
Affiliation(s)
- J C Rankin
- Biologisk Institut, Odense Universitet, Denmark.
| | | |
Collapse
|
12
|
Pärt P, Wright PA, Wood CM. Urea and water permeability in dogfish (Squalus acanthias) gills. Comp Biochem Physiol A Mol Integr Physiol 1998; 119:117-23. [PMID: 11253775 DOI: 10.1016/s1095-6433(97)00400-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used a perfused gill preparation from dogfish to investigate the origin of low branchial permeability to urea. Urea permeability (14C-urea) was measured simultaneously with diffusional water permeability (3H2O). Permeability coefficients for urea and ammonia in the perfused preparation were almost identical to in vivo values. The permeability coefficient of urea was 0.032 x 10(-6) cm/sec and of 3H2O 6.55 x 10(-6) cm/sec. Adrenalin (1 x 10(-6) M) increased water and ammonia effluxes by a factor of 1.5 and urea efflux by a factor of 3.1. Urea efflux was almost independent of the urea concentration in the perfusion medium. The urea analogue thiourea in the perfusate had no effect on urea efflux, whereas the non-competitive inhibitor of urea transport, phloretin, increased efflux markedly. The basolateral membrane is approximately 14 times more permeable to urea than the apical membrane. We conclude that the dogfish apical membrane is extremely tight to urea, but the low apparent branchial permeability may also relate to the presence of an active urea transporter on the basolateral membrane that returns urea to the blood and hence reduces the apical urea gradient.
Collapse
Affiliation(s)
- P Pärt
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, Sweden.
| | | | | |
Collapse
|