1
|
Abdollahpour H, Jafari Pastaki N, Karimzadeh M, Zamani H. Buspirone administration: Influence on growth, spawning, immune response, and stress in female goldfish ( Carassius auratus). Heliyon 2024; 10:e39754. [PMID: 39524707 PMCID: PMC11543890 DOI: 10.1016/j.heliyon.2024.e39754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The current study evaluated the impact of buspirone supplementation on the growth, physiology, stress response, spawning, and immunity in female goldfish (Carassius auratus). For this purpose, buspirone was dissolved in absolute methanol and sprayed onto the feed to create four experimental groups: B0 (control), B25 (25 mg kg-1), B50 (50 mg kg-1), and B100 (100 mg kg-1). Fish were fed their respective diets for 56 days and subjected to stress using the air exposure method at the end of the experiment. Growth performance analysis revealed that fish in the B100 group exhibited significantly higher final weight, weight gain, specific growth rate, and average daily gain than the other groups (P < 0.05). Plasma stress response indicated that cortisol levels were significantly lower in the B100 group after stress exposure, accompanied by a simultaneous decrease in glucose levels. The mucus stress response also showed lower cortisol and glucose levels in the B100 group compared to the other groups. Immunological analysis revealed significant increases in total protein, albumin, complement C3 and C4, and immunoglobulin M concentrations in both plasma and mucus of the B100 group (P < 0.05). Reproductive performance showed a notable enhancement in the number of eggs, fertilization rate, hatching rate, and survival rate in the B100 group compared to other groups (P < 0.05). Buspirone at higher concentrations, positively impacted various physiological aspects of goldfish, including growth, stress, immune activity, and reproductive performance. The significant improvements observed in growth parameters, cortisol levels, immunological markers, and reproductive outcomes suggest the potential of buspirone supplementation as a beneficial strategy in aquaculture practices.
Collapse
Affiliation(s)
- Hamed Abdollahpour
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Naghmeh Jafari Pastaki
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Milad Karimzadeh
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
- Fisheries, Shahid Dr. Beheshti Sturgeon Fishes Restoration and Genetic Conservation Complex, Sangar, Guilan, Iran
| | - Hosseinali Zamani
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| |
Collapse
|
2
|
Wang X, Liu BL, Zhang XH, Cao SQ, Gao XQ, Zhao KF, Zhang CX. Environmentally relevant concentrations of Mn 2+ disrupts the endocrine regulation of growth in juvenile Yunlong groupers (Epinephelus moara♀×Epinephelus lanceolatus♂). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106714. [PMID: 37862731 DOI: 10.1016/j.aquatox.2023.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023]
Abstract
Even though manganese is a bioelement essential for metabolism, excessive manganese levels in water can be detrimental to fish development and growth. Therefore, the aim of this study was to evaluate the effects of Mn2+ (0, 0.5,1, 2, and 4 mg·L-1) exposure for 30 d on the growth performance, growth hormone/insulin-like growth factor (GH/IGF) axis, hypothalamic-pituitary-thyroid (HPT) axis, and monoaminergic neurotransmitters of Epinephelus moara♀×Epinephelus lanceolatus♂(Yunlong grouper). Compared with the control and low Mn2+concentration groups of (0.5 and 1 mg·L-1), the high concentration of Mn2+ (4 mg·L-1) significantly reduced body weight (BW), body length (BL), weight gain rate (WGR), and specific growth rate (SGR), increased the feed coefficient rate (FCR) and mortality of Yunlong groupers (P < 0.05). Further, the levels of GH and IGF, along with the expression of ghra and ghrb were significantly reduced after exposure to 2 and 4 mg·L-1 Mn2+for 30 d, whereas the expression of sst5 was significantly up-regulated after exposure to 2 and 4 mg·L-1 Mn2+for 20 and 30 days. Moreover, Mn2+exposure increased thyroid hormone (T3) and thyroid stimulating hormone (TSH) contents, accompanied by increased mRNA levels of dio1 and dio2, however, the T4 level was decreased. Finally, dopamine (DA) and serotonin (5-HT) levels significantly decreased after long-term exposure to higher concentrations of Mn2+, and the levels their metabolites changed as well, suggesting that the synthesis and metabolism of DA and 5-HT were affected. Accordingly, changes in the GH/IGF and HPT axes-related parameters may be the cause of growth inhibition in juvenile groupers under Mn2+ exposure, indicating that the relationship between endocrine disorder and growth inhibition should not be ignored.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Bao-Liang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China.
| | - Xian-Hong Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Shu-Quan Cao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Xiao-Qiang Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Kui-Feng Zhao
- Yuhai Hongqi Ocean Engineering Co. LTD, Rizhao 276800, PR China
| | | |
Collapse
|
3
|
Ye W, Shi M, Chen S, Duan Y, Jiang Y, Cheng Y, Zhang W, Chen J, Wang Y, Xia XQ. Transcriptome analysis revealed the existence of family-specific regulation of growth traits in grass carp. Genomics 2023; 115:110706. [PMID: 37714387 DOI: 10.1016/j.ygeno.2023.110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The grass carp (Ctenopharyngodon idella) is the world's most prolific freshwater fish. Little is known, however, about the functional genes and genetic regulatory networks that govern its growth traits. We created three grass carp families in this study by using two grass carp parents with fast-growing offspring and two grass carp parents with slow-growing offspring, namely the fast-growing × fast-growing family (FF), the slow-growing × slow-growing family (SS), and the fast-growing × slow-growing family (FS). Under the satiation and starvation feeding modes, the average body weight of these families' offspring exhibited a consistent ordering (FF > FS > SS). The transcriptomes of grass carp whole brain and hepatopancreas were then acquired for each family, and it was discovered that the number of differentially expressed genes (DEGs) in the different organs demonstrated family specificity. DEGs were mostly identified in the hepatopancreas of FF and the whole brain of SS, but they were more evenly distributed in FS. There were 14 DEGs that were found in all three families, including three that were negatively correlated in hepatopancreas (ahsg2, lect2) or in brain (drd5), and 11 that were positively connected in hepatopancreas (sycn, pabpc4, zgc:112294, cel, endou, ela2, prss3, zbtb41, ela3) or in brain (fabp7, endod1). The deletion of ahsg2 boosted the growth rate only in certain zebrafish, suggesting that the growth-promoting effects of ahsg2 varies among individuals. Furthermore, we examined the SNP in each family and conducted preliminary research on the probable genetic pathways of family-specific control of growth traits. The family specificity of the growth regulation mechanism of grass carp at the transcriptional level was revealed for the first time in this study, and it was discovered that growth differences among individuals in the FF family were primarily due to differences in nutrient metabolism, whereas growth differences among individuals in the SS family may be primarily due to differences in foraging ability caused by differences in brain development. This research adds to our understanding of the genetic regulatory mechanism of grass carp growth.
Collapse
Affiliation(s)
- Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Sijia Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You Duan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiujiu Chen
- College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yaping Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Mennigen JA, Magnan J, Touma K, Best C, Culbert BM, Bernier NJ, Gilmour KM. Social status-dependent regulation and function of the somatotropic axis in juvenile rainbow trout. Mol Cell Endocrinol 2022; 554:111709. [PMID: 35787462 DOI: 10.1016/j.mce.2022.111709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) develop social hierarchies when competing for resources in a constrained environment. Among the physiological consequences of social status are changes in organismal energy metabolism, which generally favour anabolic pathways in dominant fish and catabolic pathways in subordinate fish. The somatotropic axis is an important regulator of metabolism and growth that could be involved in mediating metabolic changes in response to social status in juvenile rainbow trout. Here we used juvenile trout housed either in dyads or individually (sham controls) to determine whether social status changes indices of somatotropic axis function. Although pituitary growth hormone expression (gh1 and gh2) did not differ among groups, circulating growth hormone (GH) increased ∼12-fold in subordinate fish compared to sham and dominant fish. Social status caused consistent differential expression of GH receptor paralogues in liver and muscle, two principal target tissues of GH. Compared to dominant and/or sham fish, ghra paralogue expression (ghra1 and ghra2) was lower, while ghrb1 expression was higher in subordinate fish. Across tissues, ghra paralogue expression was generally positively correlated with expression of insulin growth factors (igf1, igf2), while ghrb1 expression was positively correlated with transcript abundance of hormone sensitive lipase (hsl1). Because igf and hsl expression are subject to context-dependent GH control in rainbow trout, these results suggest that increased circulating GH in conjunction with differential expression of ghr paralogues may translate into prioritization of downstream catabolic lipolytic pathways in subordinate rainbow trout. These findings support a social context-dependent role for GH signalling in mediating metabolic changes in juvenile rainbow trout.
Collapse
Affiliation(s)
- Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Julianne Magnan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenan Touma
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carol Best
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
5
|
Falahatkar B, Poursaeid S, Sheridan MA. Repeated intraperitoneal injection of ovine growth hormone accelerates growth in sub-yearling Siberian sturgeon Acipenser baerii. Heliyon 2022; 8:e09667. [PMID: 35785232 PMCID: PMC9244760 DOI: 10.1016/j.heliyon.2022.e09667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
The role of growth hormone (GH) in chondrosteans is poorly understood, particularly with regard to its effects on growth. In this study, we examined the influence of exogenous GH on growth performance and body composition in juvenile Siberian sturgeon (Acipenser baerii). Fish with initial weight of 80.2 ± 0.1 g (mean ± S.E) were injected once every 10 days with either purified ovine GH (oGH) at 1, 2, 4, and 8 μg oGH/g body weight (BW) or with saline over a 50-day period. Treatment with the highest dose of oGH significantly enhanced growth performance (final body weight and length, body weight increase and specific growth rate, SGR). Notably, 8 μg oGH/g BW increased body weight by 33% and SGRw by 141% compared to control fish. GH-stimulated (8 μg oGH/g BW) growth was accompanied by increased crude protein content; however, oGH treatment did not affect levels of total protein, total lipid, cholesterol, triglyceride, or glucose in plasma. oGH decreased plasma levels of thyroxine (at 4 μg oGH/g BW), but had no significant effect on plasma levels of triiodothyronine or cortisol compared to controls. These findings indicate that 8 μg oGH/g BW enhances somatic growth and synthesis of body protein in juvenile Siberian sturgeon and demonstrate the feasibility of exogenous oGH treatment in conservation and aquaculture programs for this ancient species.
Collapse
Affiliation(s)
- Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran.,Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Guilan, Iran
| | - Samaneh Poursaeid
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Mark A Sheridan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
6
|
Sheridan MA. Coordinate regulation of feeding, metabolism, and growth: Perspectives from studies in fish. Gen Comp Endocrinol 2021; 312:113873. [PMID: 34329604 DOI: 10.1016/j.ygcen.2021.113873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 01/15/2023]
Abstract
This paper develops a model for coordinate regulation of feeding, metabolism, and growth based on studies in fish. Many factors involved with the control of feeding [e.g., cholecystokinin (CCK) and ghrelin (GRLN)], energy metabolism [e.g., insulin (INS), glucagon (GLU), glucagon-like peptide (GLP), and somatostatins (SS), produced in the endocrine pancreas; and leptin (LEP) produced broadly], and growth [e.g., GRLN, growth hormone (GH), insulin-like growth factors (IGFs), GH receptors (GHR), IGF receptors (IGFR)] interact at various levels. Many such interactions serve to coordinate these systems to favor anabolic processes (i.e., lipid and protein synthesis, glycogenesis) and growth, including GH promotion of feeding and stimulation of INS production/secretion and the upregulation of GHR and IGFR by GRLN. As nutrient and stored energy status change, various feedbacks serve to curtail feeding and transition the animal from an anabolic/growth state to a catabolic state. Many factors, including LEP and IGF, promote satiety, whereas SS downregulates INS signaling as well as IGF production and GHR and IGFR abundance. As INS and IGF levels fall, GH becomes disconnected from growth as a result of altered linkage of GHR to cell signaling pathways. As a result, the catabolic actions of GH, GLU, GLP, LEP, and SS prevail, mobilizing stored energy reserves. Coordinate regulation involves relative abundances of blood-borne hormones as well as the ability to adjust responsiveness to hormones (via receptor and post-receptor events) in a cell-/tissue-specific manner that results from genetic and epigenetic programming and modulation by the local milieu of hormones, nutrients, and autocrine/paracrine interactions. The proposed model of coordinate regulation demonstrates how feeding, metabolism, and growth are integrated with each other and with other processes, such as reproduction, and how adaptive adjustments can be made to energy allocation during an animal's life history and/or in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Mark A Sheridan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
7
|
Rodríguez Gabilondo A, Hernández Pérez L, Martínez Rodríguez R. Hormonal and neuroendocrine control of reproductive function in teleost fish. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reproduction is one of the important physiological events for the maintenance of the species. Hormonal and neuroendocrine regulation of teleost requires multiple and complex interactions along the hypothalamic-pituitary-gonad (HPG) axis. Within this axis, gonadotropin-releasing hormone (GnRH) regulates the synthesis and release of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Steroidogenesis drives reproduction function in which the development and differentiation of gonads. In recent years, new neuropeptides have become the focus of reproductive physiology research as they are involved in the different regulatory mechanisms of these species' growth, metabolism, and reproduction. However, especially in fish, the role of these neuropeptides in the control of reproductive function is not well studied. The study of hormonal and neuroendocrine events that regulate reproduction is crucial for the development and success of aquaculture.
Collapse
Affiliation(s)
- Adrian Rodríguez Gabilondo
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Liz Hernández Pérez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rebeca Martínez Rodríguez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
8
|
Vissio PG, Darias MJ, Di Yorio MP, Pérez Sirkin DI, Delgadin TH. Fish skin pigmentation in aquaculture: The influence of rearing conditions and its neuroendocrine regulation. Gen Comp Endocrinol 2021; 301:113662. [PMID: 33220300 DOI: 10.1016/j.ygcen.2020.113662] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Skin pigmentation pattern is a species-specific characteristic that depends on the number and the spatial combination of several types of chromatophores. This feature can change during life, for example in the metamorphosis or reproductive cycle, or as a response to biotic and/or abiotic environmental cues (nutrition, UV incidence, surrounding luminosity, and social interactions). Fish skin pigmentation is one of the most important quality criteria dictating the market value of both aquaculture and ornamental species because it serves as an external signal to infer its welfare and the culture conditions used. For that reason, several studies have been conducted aiming to understand the mechanisms underlying fish pigmentation as well as the influence exerted by rearing conditions. In this context, the present review focuses on the current knowledge on endocrine regulation of fish pigmentation as well as on the aquaculture conditions affecting skin coloration. Available information on Iberoamerican fish species cultured is presented.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - Maria J Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Tomás H Delgadin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
Ogawa S, Liu X, Shepherd BS, Parhar IS. Ghrelin stimulates growth hormone release from the pituitary via hypothalamic growth hormone-releasing hormone neurons in the cichlid, Oreochromis niloticus. Cell Tissue Res 2018; 374:349-365. [PMID: 29934855 DOI: 10.1007/s00441-018-2870-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
Ghrelin, a gut-brain peptide hormone, is implicated in a multiplicity of biological functions, including energy homeostasis and reproduction. Neuronal systems that are involved in energy homeostasis as well as reproduction traverse the hypothalamus; however, the mechanism by which they control energy homeostasis is not fully understood. The present study analyzes the anatomical relationship of neurons expressing gonadotropin-releasing hormone (GnRH), neuropeptide Y (NPY) and growth hormone-releasing hormone (GHRH) in a cichlid, tilapia (Oreochromis niloticus). Additionally, we examine in vivo effects of ghrelin on these hypothalamic neurons and plasma growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels. Double-immunofluorescence showed neuronal fiber associations between GnRH, NPY and GHRH in the brain and pituitary. Intracerebroventricular injection of ghrelin had no effect on numbers, soma size, or optical density of GnRH and NPY neurons, whereas the number of GHRH neurons was significantly decreased in the animals injected with ghrelin when compared to controls, which may indicate administered ghrelin promoted GHRH release. Plasma GH and pituitary GH mRNA levels were significantly increased in the animals injected with ghrelin. These results suggest that central administration of ghrelin primarily act on hypothalamic GHRH neurons to stimulate GH release from the pituitary in the tilapia.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Xiaochun Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Brian S Shepherd
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
10
|
Sun C, He M, Ko WKW, Wong AOL. Mechanisms for luteinizing hormone induction of growth hormone gene transcription in fish model: crosstalk of the cAMP/PKA pathway with MAPK-and PI3K-dependent cascades. Mol Cell Endocrinol 2014; 382:835-50. [PMID: 24161589 DOI: 10.1016/j.mce.2013.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 12/31/2022]
Abstract
In our previous studies in grass carp pituitary cells, local production of luteinizing hormone (LH) was shown to induce growth hormone (GH) production and gene expression, which constitutes a major component of the "intrapituitary feedback loop" regulating GH secretion and synthesis via autocrine/paracrine interactions between gonadotrophs and somatotrophs in the carp pituitary. To further investigate the signaling mechanisms mediating LH action at the transcriptional level, promoter studies were performed in GH3 cells co-transfected with the expression vector for carp LH receptor and luciferase-expressing reporter constructs with grass carp GH promoter. In this cell model, treatment with human chorionic gonadotropin (hCG) was effective in increasing GH promoter activity and the responsive sequence was mapped to position -616 and -572 of the grass carp GH promoter. GH promoter activation induced by hCG occurred with concurrent rise in cAMP production, CREB phosphorylation, and could be inhibited by inactivation of adenylate cyclase (AC), PKA, MEK1/2, P(38) MAPK, PI3K and mTOR. AC activation, presumably via cAMP production, could mimic hCG-induced CREB phosphorylation and GH promoter activity, and these stimulatory effects were also sensitive to the blockade of PKA-, MAPK- and PI3K- dependent cascades. These results, as a whole, suggest that LH receptor activation in the carp pituitary may trigger GH gene transcription through CREB phosphorylation as a result of the functional crosstalk of the cAMP/PKA pathway with MAPK-and PI3K-dependent cascades.
Collapse
Affiliation(s)
- Caiyun Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wendy K W Ko
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Anderson O L Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Grey CL, Chang JP. Differential modulation of ghrelin-induced GH and LH release by PACAP and dopamine in goldfish pituitary cells. Gen Comp Endocrinol 2013; 191:215-24. [PMID: 23851105 DOI: 10.1016/j.ygcen.2013.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Ghrelin (GRLN) participates in multiple physiological processes, including the regulation of growth hormone (GH) and luteinizing hormone (LH) release. In the goldfish, neuroendocrine control of GH and LH release are multifactorial. In this system, pituitary adenylate cyclase-activating polypeptide (PACAP)-stimulated GH and LH secretion, as well as dopamine (DA)-induced GH release, are mediated by protein kinase A (PKA)-dependent, but protein kinase C (PKC)-independent, mechanisms. In addition, DA inhibits LH secretion by actions at sites along both PKA and PKC signaling pathways. Recently, goldfish GRLN (gGRLN19) has been shown to induce GH release via PKC, and LH secretion via both PKC and PKA. To further understand the neuroendocrine regulation of goldfish GH and LH release, we examined the effects of DA and PACAP on gGRLN19 actions in primary cultures of goldfish pituitary cells in perifusion and in Ca(2+)-imaging experiments. Consistent with their known intracellular signaling mechanisms in gonadotrophs, DA inhibited gGRLN19-induced LH release while cotreatment of PACAP and gGRLN19 did not produce additive LH responses. When applied prior to gGRLN19, PACAP potentiated gGRLN19-induced GH release and Ca(2+) signals within somatotrophs. In contrast, neither prior treatment with DA followed by gGRLN19 nor pretreatment with gGRLN19 prior to PACAP produced an enhanced GH release response. These observations suggest that PKA activators positively modulate gGRLN19 actions on goldfish somatotrophs in a ligand- and treatment order-specific manner. Results add to our understanding of the complexity of neuroendocrine control of GH and LH release at the pituitary cell level, and our understanding of GRLN action.
Collapse
Affiliation(s)
- Caleb L Grey
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | |
Collapse
|
12
|
Sun C, He M, Ko WKW, Wong AOL. Gene expression of luteinizing hormone receptor in carp somatotrophs differentially regulated by local action of gonadotropin and dopamine D1 receptor activation. Mol Cell Endocrinol 2013; 374:22-34. [PMID: 23603402 DOI: 10.1016/j.mce.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 04/07/2013] [Indexed: 01/25/2023]
Abstract
In grass carp, luteinizing hormone (LH) can act locally within the pituitary to regulate growth hormone expression. To test if LH receptor (LHR) expression in the carp pituitary can also serve as a target of modulation for LH actions, grass carp LHR was cloned and characterized by functional expression. In carp pituitary cells, LHR mRNA (lhr) level could be reduced by LH or human chorionic gonadotropin (hCG) but up-regulated by dopamine treatment. Dopamine-induced lhr expression occurred mainly in carp somatotrophs via the cAMP/PKA pathway coupled to pituitary D1 receptors. This stimulatory effect could be blocked by LHR activation by hCG, presumably through phosphodiesterase III activation. These findings provide evidence that lhr expression in the carp pituitary is under the differential control of LH and dopamine via modification of cAMP-dependent signaling mechanisms, which may play a role in regulating somatotroph responsiveness to the paracrine action of LH in carp species.
Collapse
Affiliation(s)
- Caiyun Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
13
|
Grey CL, Chang JP. Growth hormone-releasing hormone stimulates GH release while inhibiting ghrelin- and sGnRH-induced LH release from goldfish pituitary cells. Gen Comp Endocrinol 2013; 186:150-6. [PMID: 23510860 DOI: 10.1016/j.ygcen.2013.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 11/17/2022]
Abstract
Goldfish GH-releasing hormone (gGHRH) has been recently identified and shown to stimulate GH release in goldfish. In goldfish, neuroendocrine regulation of GH release is multifactorial and known stimulators include goldfish ghrelin (gGRLN19) and salmon gonadotropin-releasing hormone (sGnRH), factors that also enhance LH secretion. To further understand the complex regulation of pituitary hormone release in goldfish, we examined the interactions between gGHRH, gGRLN19, and sGnRH on GH and LH release from primary cultures of goldfish pituitary cells in perifusion. Treatment with 100nM gGHRH for 55min stimulated GH release. A 5-min pulse of either 1nM gGRLN19 or 100nM sGnRH induced GH release in naïve cells, and these were just as effective in cells receiving gGHRH. Interestingly, gGHRH abolished both gGRLN19- and sGnRH-induced LH release and reduced basal LH secretion levels. These results suggest that gGHRH does not interfere with sGnRH or gGRLN19 actions in the goldfish somatotropes and further reveal, for the first time, that GHRH may act as an inhibitor of stimulated and basal LH release by actions at the level of pituitary cells.
Collapse
Affiliation(s)
- Caleb L Grey
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
14
|
Martinez R, Ubieta K, Herrera F, Forellat A, Morales R, de la Nuez A, Rodriguez R, Reyes O, Oliva A, Estrada MP. A novel GH secretagogue, A233, exhibits enhanced growth activity and innate immune system stimulation in teleosts fish. J Endocrinol 2012; 214:409-19. [PMID: 22707376 DOI: 10.1530/joe-11-0373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In teleosts fish, secretion of GH is regulated by several hypothalamic factors that are influenced by the physiological state of the animal. There is an interaction between immune and endocrine systems through hormones and cytokines. GH in fish is involved in many physiological processes that are not overtly growth related, such as saltwater osmoregulation, antifreeze synthesis, and the regulation of sexual maturation and immune functions. This study was conducted to characterize a decapeptide compound A233 (GKFDLSPEHQ) designed by molecular modeling to evaluate its function as a GH secretagogue (GHS). In pituitary cell culture, the peptide A233 induces GH secretion and it is also able to increase superoxide production in tilapia head-kidney leukocyte cultures. This effect is blocked by preincubation with the GHS receptor antagonist [d-Lys(3)]-GHRP6. Immunoneutralization of GH by addition of anti-tilapia GH monoclonal antibody blocked the stimulatory effect of A233 on superoxide production. These experiments propose a GH-mediated mechanism for the action of A233. The in vivo biological action of the decapeptide was also demonstrated for growth stimulation in goldfish and tilapia larvae (P<0.001). Superoxide dismutase levels, antiprotease activity, and lectin titer were enhanced in tilapia larvae treated with this novel molecule. The decapeptide A233 designed by molecular modeling is able to function as a GHS in teleosts and enhance parameters of the innate immune system in the fish larvae.
Collapse
Affiliation(s)
- Rebeca Martinez
- Biotechnology Animal Division, Aquatic Biotechnology Department, CIGB, Havana 10600, Cuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yu Y, Chang JP. Goldfish brain somatostatin-28 differentially affects dopamine- and pituitary adenylate cyclase-activating polypeptide-induced GH release and Ca(2+) and cAMP signals. Mol Cell Endocrinol 2011; 332:283-92. [PMID: 21093539 DOI: 10.1016/j.mce.2010.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/14/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Dopamine (DA) and pituitary adenylate cyclase-activating polypeptide (PACAP) stimulate goldfish growth hormone (GH) release via cAMP- and Ca(2+)-dependent pathways while DA also utilizes NO. In this study, identified goldfish somatotropes responded to sequential applications of PACAP and the DA D1 agonist SKF38393 with increased intracellular Ca(2+) levels ([Ca(2+)](i)), indicating that PACAP and DA D1 receptors were present on the same cell. A native goldfish brain somatostatin (gbSS-28) reduced SKF38393-stimulated cAMP production and PACAP- and NO donor-elicited GH and [Ca(2+)](i) increases, but not PACAP-induced cAMP production nor the GH and [Ca(2+)](i) responses to forskolin, 8-bromo-cAMP and SKF38393. gbSS-28 might inhibit PACAP-induced GH release by interfering with PACAP's ability to increase [Ca(2+)](i) in a non-cAMP-dependent manner. However, DA D1 receptor activation bypassed gbSS-28 inhibitory effects on cAMP production and NO actions via unknown mechanisms to maintain a normal [Ca(2+)](i) response leading to unhampered GH release.
Collapse
Affiliation(s)
- Yi Yu
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
16
|
Yu Y, Ali DW, Chang JP. Characterization of ionic currents and electrophysiological properties of goldfish somatotropes in primary culture. Gen Comp Endocrinol 2010; 169:231-43. [PMID: 20850441 DOI: 10.1016/j.ygcen.2010.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 11/30/2022]
Abstract
Growth hormone release in goldfish is partly dependent on voltage-sensitive Ca(2+) channels but somatotrope electrophysiological events affecting such channel activities have not been elucidated in this system. The electrophysiological properties of goldfish somatotropes in primary culture were studied using the whole-cell and amphotericin B-perforated patch-clamp techniques. Intracellular Ca(2+) concentration ([Ca(2+)]i) of identified somatotropes was measured using Fura-2/AM dye. Goldfish somatotropes had an average resting membrane potential of -78.4 ± 4.6 mV and membrane input resistance of 6.2 ± 0.2 GΩ. Voltage steps from a holding potential of -90 mV elicited a non-inactivating outward current and transient inward currents at potentials more positive than 0 and -30 mV, respectively. Isolated current recordings indicate the presence of 4-aminopyridine- and tetraethylammonium (TEA)-sensitive K(+), tetrodotoxin (TTX)-sensitive Na(+), and nifedipine (L-type)- and ω-conotoxin GVIA (N-type)-sensitive Ca(2+) channels. Goldfish somatotropes rarely fire action potentials (APs) spontaneously, but single APs can be induced at the start of a depolarizing current step; this single AP was abolished by TTX and significantly reduced by nifedipine and ω-conotoxin GVIA. TEA increased AP duration and triggered repetitive AP firing resulting in an increase in [Ca(2+)]i, whereas TTX, nifedipine and ω-conotoxin GVIA inhibited TEA-induced [Ca(2+)]i pulses. These results indicate that in goldfish somatotropes, TEA-sensitive K(+) channels regulate excitability while TTX-sensitive Na(+) channels together with N- and L-type Ca channels mediates the depolarization phase of APs. Opening of voltage-sensitive Ca(2+) channels during AP firing leads to increases in [Ca(2+)]i.
Collapse
Affiliation(s)
- Yi Yu
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
17
|
Volkoff H, Hoskins LJ, Tuziak SM. Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: potential application in aquaculture. Gen Comp Endocrinol 2010; 167:352-9. [PMID: 19735660 DOI: 10.1016/j.ygcen.2009.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/30/2009] [Accepted: 09/02/2009] [Indexed: 01/05/2023]
Abstract
Optimization of food consumption and ultimately growth are major concerns for aquaculture. In fish, food intake is regulated by several hormones produced by both brain and peripheral tissues. Changes in feeding behavior and appetite usually occur through the modulation of the gene expression and/or action of these appetite-regulating hormones and can be due not only to variations in intrinsic factors such as nutritional/metabolic or reproductive status, but also to changes in environmental factors, such as temperature and photoperiod. In addition, the gene expression and/or plasma levels of appetite-regulating hormones might also display daily as well as circannual (seasonal) rhythms. Despite recent advances, our current understanding of the regulation of feeding in fish is still limited. We give here a brief overview of our current knowledge of the endocrine regulation of feeding in fish and describe how a better understanding of appetite-related hormones in fish might lead to the development of sustainable aquaculture.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | | |
Collapse
|
18
|
Li GL, Parks SK, Goss GG, Chang JP. PKC mediates GnRH activation of a Na+/H+ exchanger in goldfish somatotropes. Gen Comp Endocrinol 2010; 166:296-306. [PMID: 19835876 DOI: 10.1016/j.ygcen.2009.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
Previous results suggest that gonadotropin-releasing hormone (GnRH) stimulation of somatotropin secretion in goldfish involves activation of Na(+)/H(+) exchange (NHE). We tested the hypothesis that GnRH alkalinizes intracellular pH (pH(i)) via protein kinase C (PKC) activation of NHE. Two types of alkalinization responses were observed in identified goldfish somatotropes preloaded with the pH-sensitive dye BCECF; the rate of pH(i) changes went from a neutral or slightly negative slope to either a positive or a less negative slope relative to control. Two GnRHs, the PKC-activating TPA, and dioctanoyl glycerol each caused an alkalinization in 70-90% of somatotropes. The PKC inhibitors, Bis II and Gö6976, the NHE inhibitor amiloride, or Na(+)-free solution attenuated TPA and GnRHs actions, suggesting that PKC mediates GnRH activation of NHE. Since amiloride and Na(+)-free solution caused acidification in somatotropes at rest, regulation of basal pH(i) in these cells likely involves Na(+) flux through amiloride-sensitive NHE.
Collapse
Affiliation(s)
- Guang-Li Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|