1
|
Agrillo B, Porritiello A, Gratino L, Balestrieri M, Proroga YT, Mancusi A, Cozzi L, Vicenza T, Dardano P, Miranda B, Escribá PV, Gogliettino M, Palmieri G. Antimicrobial activity, membrane interaction and structural features of short arginine-rich antimicrobial peptides. Front Microbiol 2023; 14:1244325. [PMID: 37869668 PMCID: PMC10585156 DOI: 10.3389/fmicb.2023.1244325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Antimicrobial activity of many AMPs can be improved by lysine-to-arginine substitution due to a more favourable interaction of arginine guanidinium moiety with bacterial membranes. In a previous work, the structural and functional characterization of an amphipathic antimicrobial peptide named RiLK1, including lysine and arginine as the positively charged amino acids in its sequence, was reported. Specifically, RiLK1 retained its β-sheet structure under a wide range of environmental conditions (temperature, pH, and ionic strength), and exhibited bactericidal activity against Gram-positive and Gram-negative bacteria and fungal pathogens with no evidence of toxicity on mammalian cells. To further elucidate the influence of a lysine-to-arginine replacement on RiLK1 conformational properties, antimicrobial activity and peptide-liposome interaction, a new RiLK1-derivative, named RiLK3, in which the lysine is replaced with an arginine residue, was projected and characterised in comparison with its parental compound. The results evidenced that lysine-to-arginine mutation not only did not assure an improvement in the antimicrobial potency of RiLK1 in terms of bactericidal, virucidal and fungicidal activities, but rather it was completely abolished against the hepatitis A virus. Therefore, RiLK1 exhibited a wide range of antimicrobial activity like other cationic peptides, although the exact mechanisms of action are not completely understood. Moreover, tryptophan fluorescence measurements confirmed that RiLK3 bound to negatively charged lipid vesicles with an affinity lower than that of RiLK1, although no substantial differences from the structural and self-assembled point of view were evidenced. Therefore, our findings imply that antimicrobial efficacy and selectivity are affected by several complex and interrelated factors related to substitution of lysine with arginine, such as their relative proportion and position. In this context, this study could provide a better rationalisation for the optimization of antimicrobial peptide sequences, paving the way for the development of novel AMPs with broad applications.
Collapse
Affiliation(s)
| | - Alessandra Porritiello
- National Research Council (IBBR-CNR), Institute of Biosciences and Bioresources, Napoli, Italy
| | - Lorena Gratino
- National Research Council (IBBR-CNR), Institute of Biosciences and Bioresources, Napoli, Italy
| | - Marco Balestrieri
- National Research Council (IBBR-CNR), Institute of Biosciences and Bioresources, Napoli, Italy
| | - Yolande Therese Proroga
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Loredana Cozzi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Teresa Vicenza
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Principia Dardano
- National Research Council (ISASI-CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy
| | - Bruno Miranda
- National Research Council (ISASI-CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy
| | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma, Spain
- Laminar Pharmaceuticals, Palma, Spain
| | - Marta Gogliettino
- National Research Council (IBBR-CNR), Institute of Biosciences and Bioresources, Napoli, Italy
| | - Gianna Palmieri
- National Research Council (IBBR-CNR), Institute of Biosciences and Bioresources, Napoli, Italy
- Materias S.R.L., Naples, Italy
| |
Collapse
|
2
|
Sun J, Kleuskens S, Luan J, Wang D, Zhang S, Li W, Uysal G, Wilson DA. Morphogenesis of starfish polymersomes. Nat Commun 2023; 14:3612. [PMID: 37330564 PMCID: PMC10276845 DOI: 10.1038/s41467-023-39305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/06/2023] [Indexed: 06/19/2023] Open
Abstract
The enhanced membrane stability and chemical versatility of polymeric vesicles have made them promising tools in micro/nanoreactors, drug delivery, cell mimicking, etc. However, shape control over polymersomes remains a challenge and has restricted their full potential. Here we show that local curvature formation on the polymeric membrane can be controlled by applying poly(N-isopropylacrylamide) as a responsive hydrophobic unit, while adding salt ions to modulate the properties of poly(N-isopropylacrylamide) and its interaction with the polymeric membrane. Polymersomes with multiple arms are fabricated, and the number of arms could be tuned by salt concentration. Furthermore, the salt ions are shown to have a thermodynamic effect on the insertion of poly(N-isopropylacrylamide) into the polymeric membrane. This controlled shape transformation can provide evidence for studying the role of salt ions in curvature formation on polymeric membranes and biomembranes. Moreover, potential stimuli-responsive non-spherical polymersomes can be good candidates for various applications, especially in nanomedicine.
Collapse
Affiliation(s)
- Jiawei Sun
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Sandra Kleuskens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Jiabin Luan
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Danni Wang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Shaohua Zhang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Wei Li
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Gizem Uysal
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Expanding therapeutic strategies for intracellular bacterial infections through conjugates of apoptotic body-antimicrobial peptides. Drug Discov Today 2023; 28:103444. [PMID: 36400344 DOI: 10.1016/j.drudis.2022.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Macrophage intracellular infections are difficult to treat because conventional antibiotics tend to have poor penetration of mammalian cells. As a consequence, the immune response is affected and bacteria remain protected inside macrophages. The use of antimicrobial peptides (AMPs) is one of the alternatives developed as new treatments because of their broad spectrum of action. To improve drug delivery into the intracellular space, extracellular vesicles (EVs) have emerged as an innovative strategy for drug delivery. In particular, apoptotic bodies (ApoBDs) are EVs that exhibit attraction to macrophages, which makes them a promising means of improving AMP delivery to treat macrophage intracellular infections. Here, we review important aspects that should be taken into account when developing ApoBD-AMP conjugates.
Collapse
|
4
|
Semeraro EF, Marx L, Mandl J, Letofsky-Papst I, Mayrhofer C, Frewein MPK, Scott HL, Prévost S, Bergler H, Lohner K, Pabst G. Lactoferricins impair the cytosolic membrane of Escherichia coli within a few seconds and accumulate inside the cell. eLife 2022; 11:e72850. [PMID: 35670565 PMCID: PMC9352351 DOI: 10.7554/elife.72850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
We report the real-time response of Escherichia coli to lactoferricin-derived antimicrobial peptides (AMPs) on length scales bridging microscopic cell sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multiscale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly permeabilize the cytosolic membrane within less than 3 s-much faster than previously considered. Final intracellular AMP concentrations of ∼80-100 mM suggest an efficient obstruction of physiologically important processes as the primary cause of bacterial killing. On the other hand, damage of the cell envelope and leakage occurred also at sublethal peptide concentrations, thus emerging as a collateral effect of AMP activity that does not kill the bacteria. This implies that the impairment of the membrane barrier is a necessary but not sufficient condition for microbial killing by lactoferricins. The most efficient AMP studied exceeds others in both speed of permeabilizing membranes and lowest intracellular peptide concentration needed to inhibit bacterial growth.
Collapse
Affiliation(s)
- Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Johannes Mandl
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Ilse Letofsky-Papst
- Institute of Electron Microscopy and Nanoanalysis and Center for Electron Microscopy, Graz University of Technology, NAWI GrazGrazAustria
| | | | - Moritz PK Frewein
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
- Institut Laue-LangevinGrenobleFrance
| | - Haden L Scott
- Center for Environmental Biotechnology, University of TennesseeKnoxvilleUnited States
- Shull Wollan Center, Oak Ridge National LaboratoryOak RidgeUnited States
| | | | - Helmut Bergler
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Karl Lohner
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| |
Collapse
|
5
|
Pandit G, Sarkar T, S. R. V, Debnath S, Satpati P, Chatterjee S. Delineating the Mechanism of Action of a Protease Resistant and Salt Tolerant Synthetic Antimicrobial Peptide against Pseudomonas aeruginosa. ACS OMEGA 2022; 7:15951-15968. [PMID: 35571791 PMCID: PMC9097201 DOI: 10.1021/acsomega.2c01089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Rapidly growing antimicrobial resistance (AMR) against antibiotics has propelled the development of synthetic antimicrobial peptides (AMPs) as potential antimicrobial agents. An antimicrobial peptide Nle-Dab-Trp-Nle-Dab-Dab-Nle-CONH2 (P36; Nle = norleucine, Dab = diaminobutyric acid, Trp = tryptophan) potent against Pseudomonas aeruginosa (P. aeruginosa) has been developed in the present study. Rational design strategy adopted in this study led to the improvisation of the therapeutic qualities such as activity, salt tolerance, cytotoxicity, and protease resistance of the template peptide P4, which was earlier reported from our group. P36 exhibited salt tolerant antimicrobial potency against P. aeruginosa, along with very low cytotoxicity against mammalian cell lines. P36 was found to be nonhemolytic and resistant toward protease degradation which qualified it as a potent antimicrobial agent. We have investigated the mechanism of action of this molecule in detail using several experimental techniques (spectroscopic, biophysical, and microscopic) and molecular dynamics simulations. P36 was a membrane active AMP with membrane destabilization and deformation abilities, leading to leakage of the intracellular materials and causing eventual cell death. The interaction between P36 and the microbial membrane/membrane mimics was primarily driven by electrostatics. P36 was unstructured in water and upon binding to the microbial membrane mimic SDS, suggesting no influence of secondary structure on its antimicrobial potency. Positive charge, optimum hydrophobic-hydrophilic balance, and chain length remained the most important concerns to be addressed while designing small cationic antimicrobial peptides.
Collapse
Affiliation(s)
- Gopal Pandit
- Department
of Chemistry, Indian Institute of Technology.
Guwahati (IITG), Guwahati, Assam 781039, India
| | - Tanumoy Sarkar
- Department
of Chemistry, Indian Institute of Technology.
Guwahati (IITG), Guwahati, Assam 781039, India
| | - Vignesh S. R.
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology. Guwahati (IITG), Guwahati, Assam 781039, India
| | - Swapna Debnath
- Department
of Chemistry, Indian Institute of Technology.
Guwahati (IITG), Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology. Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sunanda Chatterjee
- Department
of Chemistry, Indian Institute of Technology.
Guwahati (IITG), Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Marx L, Frewein MPK, Semeraro EF, Rechberger GN, Lohner K, Porcar L, Pabst G. Antimicrobial peptide activity in asymmetric bacterial membrane mimics. Faraday Discuss 2021; 232:435-447. [PMID: 34532723 PMCID: PMC8704130 DOI: 10.1039/d1fd00039j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022]
Abstract
We report on the response of asymmetric lipid membranes composed of palmitoyl oleoyl phosphatidylethanolamine and palmitoyl oleoyl phosphatidylglycerol, to interactions with the frog peptides L18W-PGLa and magainin 2 (MG2a), as well as the lactoferricin derivative LF11-215. In particular we determined the peptide-induced lipid flip-flop, as well as membrane partitioning of L18W-PGLa and LF11-215, and vesicle dye-leakage induced by L18W-PGLa. The ability of L18W-PGLa and MG2a to translocate through the membrane appears to correlate with the observed lipid flip-flop, which occurred at the fastest rate for L18W-PGLa. The higher structural flexibility of LF11-215 in turn allows this peptide to insert into the bilayers without detectable changes of membrane asymmetry. The increased vulnerability of asymmetric membranes to L18W-PGLa in terms of permeability, appears to be a consequence of tension differences between the compositionally distinct leaflets, but not due to increased peptide partitioning.
Collapse
Affiliation(s)
- Lisa Marx
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Moritz P K Frewein
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- Institut Laue-Langevin, 38043 Grenoble, France
| | - Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Gerald N Rechberger
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Karl Lohner
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | | | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
7
|
Ajingi YS, Muhammad A, Khunrae P, Rattanarojpong T, Pattanapanyasat K, Sutthibutpong T, Jongruja N. Antibacterial Potential of a Novel Peptide from the Consensus Sequence of Dermaseptin Related Peptides Secreted by Agalychnis annae. Curr Pharm Biotechnol 2021; 22:1216-1227. [PMID: 33081682 DOI: 10.2174/1389201021666201020161428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The consistently increasing reports of bacterial resistance and the reemergence of bacterial epidemics have inspired the health and scientific community to discover new molecules with antibacterial potential continuously. Frog-skin secretions constitute bioactive compounds essential for finding new biopharmaceuticals. The exact antibacterial characterization of dermaseptin related peptides derived from Agalychnis annae, is limited. The resemblance in their conserved and functionally linked genomes indicates an unprecedented opportunity to obtain novel bioactive compounds. OBJECTIVE In this study, we derived a novel peptide sequence and determined its antibacterial potentials. METHODS Consensus sequence strategy was used to design the novel and active antibacterial peptide named 'AGAAN' from skin secretions of Agalychnis annae. The in-vitro activities of the novel peptide against some bacterial strains were investigated. Time kill studies, DNA retardation, cytotoxicity, betagalactosidase, and molecular computational studies were conducted. RESULTS AGAAN inhibited P. aeruginosa, E. faecalis, and S. typhimurium at 20 μM concentration. E. coli and S. aureus were inhibited at 25 μM, and lastly, B. subtilis at 50 μM. Kinetics of inactivation against exponential and stationary growing bacteria was found to be rapid within 1-5 hours of peptide exposure, depending on time and concentration. The peptide displayed weak hemolytic activity between 0.01%-7.31% at the antibacterial concentrations. AGAAN efficiently induced bacterial membrane damage with subsequent cell lysis. The peptide's DNA binding shows that it also targets intracellular DNA by retarding its movement. Our in-silico molecular docking analysis displayed a strong affinity to the bacterial cytoplasmic membrane. CONCLUSION AGAAN exhibits potential antibacterial properties that could be used to combat bacterial resistance.
Collapse
Affiliation(s)
- Ya'u Sabo Ajingi
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Auwal Muhammad
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology, Thonburi, (KMUTT), Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology, Thonburi, (KMUTT), Thailand
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| |
Collapse
|
8
|
Sun J, Rijpkema SJ, Luan J, Zhang S, Wilson DA. Generating biomembrane-like local curvature in polymersomes via dynamic polymer insertion. Nat Commun 2021; 12:2235. [PMID: 33854061 PMCID: PMC8046815 DOI: 10.1038/s41467-021-22563-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/16/2021] [Indexed: 11/29/2022] Open
Abstract
Biomembrane curvature formation has long been observed to be essential in the change of membrane morphology and intracellular processes. The significant importance of curvature formation has attracted scientists from different backgrounds to study it. Although magnificent progress has been achieved using liposome models, the instability of these models restrict further exploration. Here, we report a new approach to mimic biomembrane curvature formation using polymersomes as a model, and poly(N-isopropylacrylamide) to induce the local curvature based on its co-nonsolvency phenomenon. Curvatures form when poly(N-isopropylacrylamide) becomes hydrophobic and inserts into the membrane through solvent addition. The insertion area can be fine-tuned by adjusting the poly(N-isopropylacrylamide) concentration, accompanied by the formation of new polymersome-based non-axisymmetric shapes. Moreover, a systematic view of curvature formation is provided through investigation of the segregation, local distribution and dissociation of inserted poly(N-isopropylacrylamide). This strategy successfully mimicks biomembrane curvature formation in polymersomes and a detailed observation of the insertion can be beneficial for a further understanding of the curvature formation process. Furthermore, polymer insertion induced shape changing could open up new routes for the design of non-axisymmetric nanocarriers and nanomachines to enrich the boundless possibilities of nanotechnology. Investigating biomembrane curvature formation is important for studying intracellular processes, but the instability of liposome models mimicking these membranes restricts exploration of membrane processes. Here, the authors demonstrate control over the curvature formation in polymersome membranes by insertion of PNIPAm as stimuli responsive polymer.
Collapse
Affiliation(s)
- Jiawei Sun
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Sjoerd J Rijpkema
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Jiabin Luan
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Shaohua Zhang
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Marx L, Semeraro EF, Mandl J, Kremser J, Frewein MP, Malanovic N, Lohner K, Pabst G. Bridging the Antimicrobial Activity of Two Lactoferricin Derivatives in E. coli and Lipid-Only Membranes. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:625975. [PMID: 35047906 PMCID: PMC8757871 DOI: 10.3389/fmedt.2021.625975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
We coupled the antimicrobial activity of two well-studied lactoferricin derivatives, LF11-215 and LF11-324, in Escherichia coli and different lipid-only mimics of its cytoplasmic membrane using a common thermodynamic framework for peptide partitioning. In particular, we combined an improved analysis of microdilution assays with ζ-potential measurements, which allowed us to discriminate between the maximum number of surface-adsorbed peptides and peptides fully partitioned into the bacteria. At the same time, we measured the partitioning of the peptides into vesicles composed of phosphatidylethanolamine (PE), phosphatidylgylcerol (PG), and cardiolipin (CL) mixtures using tryptophan fluorescence and determined their membrane activity using a dye leakage assay and small-angle X-ray scattering. We found that the vast majority of LF11-215 and LF11-324 readily enter inner bacterial compartments, whereas only 1-5% remain surface bound. We observed comparable membrane binding of both peptides in membrane mimics containing PE and different molar ratios of PG and CL. The peptides' activity caused a concentration-dependent dye leakage in all studied membrane mimics; however, it also led to the formation of large aggregates, part of which contained collapsed multibilayers with sandwiched peptides in the interstitial space between membranes. This effect was least pronounced in pure PG vesicles, requiring also the highest peptide concentration to induce membrane permeabilization. In PE-containing systems, we additionally observed an effective shielding of the fluorescent dyes from leakage even at highest peptide concentrations, suggesting a coupling of the peptide activity to vesicle fusion, being mediated by the intrinsic lipid curvatures of PE and CL. Our results thus show that LF11-215 and LF11-324 effectively target inner bacterial components, while the stored elastic stress makes membranes more vulnerable to peptide translocation.
Collapse
Affiliation(s)
- Lisa Marx
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Enrico F. Semeraro
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Johannes Mandl
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Johannes Kremser
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Moritz P. Frewein
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
- Soft Matter Science and Support Group, Institut Laue-Langevin, Grenoble, France
| | - Nermina Malanovic
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Karl Lohner
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Georg Pabst
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| |
Collapse
|
10
|
Mohanan G, Nair KS, Nampoothiri KM, Bajaj H. Engineering bio-mimicking functional vesicles with multiple compartments for quantifying molecular transport. Chem Sci 2020; 11:4669-4679. [PMID: 34122921 PMCID: PMC8159255 DOI: 10.1039/d0sc00084a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Controlled design of giant unilamellar vesicles under defined conditions has vast applications in the field of membrane and synthetic biology. Here, we bio-engineer bacterial-membrane mimicking models of controlled size under defined salt conditions over a range of pH. A complex bacterial lipid extract is used for construction of physiologically relevant Gram-negative membrane mimicking vesicles whereas a ternary mixture of charged lipids (DOPG, cardiolipin and lysyl-PG) is used for building Gram-positive bacterial-membrane vesicles. Furthermore, we construct stable multi-compartment biomimicking vesicles using the gel-assisted swelling method. Importantly, we validate the bio-application of the bacterial vesicle models by quantifying diffusion of chemically synthetic amphoteric antibiotics. The transport rate is pH-responsive and depends on the lipid composition, based on which a permeation model is proposed. The permeability properties of antimicrobial peptides reveal pH dependent pore-forming activity in the model vesicles. Finally, we demonstrate the functionality of the vesicles by quantifying the uptake of membrane-impermeable molecules facilitated by embedded pore-forming proteins. We suggest that the bacterial vesicle models developed here can be used to understand fundamental biological processes like the peptide assembly mechanism or bacterial cell division and will have a multitude of applications in the bottom-up assembly of a protocell. Giant vesicle functional models mimicking a bacterial membrane under physiological conditions are constructed.![]()
Collapse
Affiliation(s)
- Gayathri Mohanan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| |
Collapse
|
11
|
Malanovic N, Marx L, Blondelle SE, Pabst G, Semeraro EF. Experimental concepts for linking the biological activities of antimicrobial peptides to their molecular modes of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183275. [PMID: 32173291 DOI: 10.1016/j.bbamem.2020.183275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The search for novel compounds to combat multi-resistant bacterial infections includes exploring the potency of antimicrobial peptides and derivatives thereof. Complementary to high-throughput screening techniques, biophysical and biochemical studies of the biological activity of these compounds enable deep insight, which can be exploited in designing antimicrobial peptides with improved efficacy. This approach requires the combination of several techniques to study the effect of such peptides on both bacterial cells and simple mimics of their cell envelope, such as lipid-only vesicles. These efforts carry the challenge of bridging results across techniques and sample systems, including the proper choice of membrane mimics. This review describes some important concepts toward the development of potent antimicrobial peptides and how they translate to frequently applied experimental techniques, along with an outline of the biophysics pertaining to the killing mechanism of antimicrobial peptides.
Collapse
Affiliation(s)
- Nermina Malanovic
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria.
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| | | | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| | - Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| |
Collapse
|
12
|
Aschi M, Perini N, Bouchemal N, Luzi C, Savarin P, Migliore L, Bozzi A, Sette M. Structural characterization and biological activity of Crabrolin peptide isoforms with different positive charge. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183055. [DOI: 10.1016/j.bbamem.2019.183055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/26/2022]
|
13
|
Goh EW, Heidelberg T, Duali Hussen RS, Salman AA. Imidazolium-Linked Azido-Functionalized Guerbet Glycosides: Multifunctional Surfactants for Biofunctionalization of Vesicles. ACS OMEGA 2019; 4:17039-17047. [PMID: 31646251 PMCID: PMC6796913 DOI: 10.1021/acsomega.9b02809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Aiming for glycolipid-based vesicles for targeted drug delivery, cationic Guerbet glycosides with spacered click functionality were designed and synthesized. The cationic charge promoted the distribution of the glycolipids during the formulation, thereby leading to homogeneously small vesicles. The positive surface charge of the vesicles stabilizes them against unwanted fusion and promotes interactions of the drug carriers with typical negative charge-dominated target cells. High bioconjugation potential of the functionalized glycolipids based on the copper-catalyzed azide alkyne cycloaddition makes them highly valuable components for targeted drug delivery systems.
Collapse
|
14
|
Luong HX, Kim DH, Lee BJ, Kim YW. Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides. Arch Pharm Res 2018; 41:1092-1097. [PMID: 30361948 DOI: 10.1007/s12272-018-1084-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/15/2018] [Indexed: 11/30/2022]
Abstract
We previously reported a series of amphipathic helices of stapled heptapeptides as membrane-lytic antimicrobial peptides. These peptides possess three lysine residues as the sole cationic amino acid residues in their hydrophilic face of the helix. Lysine-to-arginine substitution is often shown to increase antimicrobial activity of many natural AMPs due to the more favorable interactions of guanidinium moiety of arginine with membranes. In an effort to further improve the pharmacological properties of our novel AMP series, we here examined the impact of lysine-to-arginine substitution on their structures and antimicrobial and hemolytic activities. Our results indicate that the lysine-to-arginine substitution does not always guarantee enhancement in the antimicrobial potency of AMPs. Instead, we observed varied potency and selectivity depending on the number of substitutions and the positions substituted. Our results imply that, in the given helical scaffold stabilized by a hydrocarbon staple, antimicrobial potency and selectivity are influenced by a complex effect of various structural and chemical changes accompanied by lysine-to-arginine substitution rather than solely by the type of cationic residue. These data show potential for use in our scaffold-assisted development of short, selective, and metabolically stable AMPs.
Collapse
Affiliation(s)
- Huy X Luong
- College of Pharmacy, Dongguk University, Seoul, 100-715, Korea
| | - Do-Hee Kim
- College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - Bong-Jin Lee
- College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - Young-Woo Kim
- College of Pharmacy, Dongguk University, Seoul, 100-715, Korea.
| |
Collapse
|
15
|
Tabandeh M, Goh EW, Salman AA, Heidelberg T, Duali Hussen RS. Functionalized glycolipids for potential bioconjugation of vesicles. Carbohydr Res 2018; 469:14-22. [PMID: 30196011 DOI: 10.1016/j.carres.2018.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Two azide-terminated oligoethylene oxide spacered glycolipids have been synthesized, and their assembly behavior has been studied in comparison to the corresponding base surfactants. The results suggest potential of the Guerbet lactoside-based compound for targeted drug delivery, while a coiling of the ethylene oxide linker disfavors the application of the glucoside.
Collapse
Affiliation(s)
- Mojtaba Tabandeh
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ean Wai Goh
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abbas Abdulameer Salman
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia; College of Pathological Analysis Technology, Al-Bayan University, Bhagdad, Iraq
| | - Thorsten Heidelberg
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | |
Collapse
|
16
|
Leber R, Pachler M, Kabelka I, Svoboda I, Enkoller D, Vácha R, Lohner K, Pabst G. Synergism of Antimicrobial Frog Peptides Couples to Membrane Intrinsic Curvature Strain. Biophys J 2018; 114:1945-1954. [PMID: 29694871 PMCID: PMC5937145 DOI: 10.1016/j.bpj.2018.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/11/2023] Open
Abstract
Mixtures of the frog peptides magainin 2 and PGLa are well-known for their pronounced synergistic killing of Gram-negative bacteria. We aimed to gain insight into the underlying biophysical mechanism by interrogating the permeabilizing efficacies of the peptides as a function of stored membrane curvature strain. For Gram-negative bacterial-inner-membrane mimics, synergism was only observed when the anionic bilayers exhibited significant negative intrinsic curvatures imposed by monounsaturated phosphatidylethanolamine. In contrast, the peptides and their mixtures did not exhibit significant activities in charge-neutral mammalian mimics, including those with negative curvature, which is consistent with the requirement of charge-mediated peptide binding to the membrane. Our experimental findings are supported by computer simulations showing a significant decrease of the peptide-insertion free energy in membranes upon shifting intrinsic curvatures toward more positive values. The physiological relevance of our model studies is corroborated by a remarkable agreement with the peptide's synergistic activity in Escherichia coli. We propose that synergism is related to a lowering of a membrane-curvature-strain-mediated free-energy barrier by PGLa that assists membrane insertion of magainin 2, and not by strict pairwise interactions of the two peptides as suggested previously.
Collapse
Affiliation(s)
- Regina Leber
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Michael Pachler
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ivo Kabelka
- Central European Institute of Technology, Brno, Czech Republic; Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Irene Svoboda
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | | | - Robert Vácha
- Central European Institute of Technology, Brno, Czech Republic; Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
17
|
Improving the Activity of Trp-Rich Antimicrobial Peptides by Arg/Lys Substitutions and Changing the Length of Cationic Residues. Biomolecules 2018; 8:biom8020019. [PMID: 29671805 PMCID: PMC6023086 DOI: 10.3390/biom8020019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/13/2023] Open
Abstract
Antimicrobial peptides (AMPs) constitute a promising alternative for the development of new antibiotics that could potentially counteract the growing number of antibiotic-resistant bacteria. However, the AMP structure⁻function relationships remain unclear and detailed studies are still necessary. The positively charged amino acid residues (Arg and Lys) play a crucial role in the activity of most AMPs due to the promotion of electrostatic interactions between the peptides and bacterial membranes. In this work we have analyzed the antimicrobial and structural properties of several Trp-rich AMPs containing exclusively either Arg or Lys as the positively charged residues. Their antimicrobial activity and mechanism of action were investigated, showing that Lys residues give rise to a reduced antimicrobial potency for most peptides, which was correlated, in turn, with a decrease in their ability to permeabilize the cytoplasmic membrane of Escherichia coli. Additionally, the presence of Arg and Lys renders the peptides susceptible to degradation by proteases, such as trypsin, limiting their therapeutic use. Therefore, modifications of the side chain length of Arg and Lys were investigated in an attempt to improve the protease resistance of AMPs. This approach resulted in enhanced stability to trypsin digestion, and in several cases, shorter sidechains conserved or even improved the antimicrobial activity. All together, these results suggest that Arg-to-Lys substitutions, coupled with side chain length modifications, can be extremely useful for improving the activity and stability of AMPs.
Collapse
|
18
|
Calorimetry Methods to Study Membrane Interactions and Perturbations Induced by Antimicrobial Host Defense Peptides. Methods Mol Biol 2018; 1548:119-140. [PMID: 28013501 DOI: 10.1007/978-1-4939-6737-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Biological membranes play an important role in determining the activity and selectivity of antimicrobial host defense peptides (AMPs). Several biophysical methods have been developed to study the interactions of AMPs with biological membranes. Isothermal titration calorimetry and differential scanning calorimetry (ITC and DSC, respectively) are powerful techniques as they provide a unique label-free approach. ITC allows for a complete thermodynamic characterization of the interactions between AMPs and membranes. DSC allows one to study the effects of peptide binding on the packing of the phospholipids in the membrane. Used in combination with mimetic models of biological membranes, such as phospholipid vesicles, the role of different phospholipid headgroups and distinct acyl chains can be characterized. In these protocols the use of ITC and DSC methods for the study of peptide-membrane interactions will be presented, highlighting the importance of membrane model systems selected to represent bacterial and mammalian cells. These studies provide valuable insights into the mechanisms involved in the membrane binding and perturbation properties of AMPs.
Collapse
|
19
|
Arias M, Vogel HJ. Fluorescence and Absorbance Spectroscopy Methods to Study Membrane Perturbations by Antimicrobial Host Defense Peptides. Methods Mol Biol 2017; 1548:141-157. [PMID: 28013502 DOI: 10.1007/978-1-4939-6737-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides (AMPs) are currently intensely studied because of their potential as new bactericidal and bacteriostatic agents. The mechanism of action of numerous AMPs involves the permeabilization of bacterial membranes. Several methods have been developed to study peptide-membrane interactions; in particular optical spectroscopy methods are widely used. The intrinsic fluorescence properties of the Trp indole ring in Trp-containing AMPs can be exploited by measuring the fluorescence blue shift and acrylamide-induced fluorescence quenching. One important aspect of such studies is the use of distinct models of the bacterial membrane, in most cases large unilamellar vesicles (LUVs) with different, yet well-defined, phospholipid compositions. Deploying LUVs that are preloaded with fluorescent dyes, such as calcein, also allows for the study of vesicle permeabilization by AMPs. In addition, experiments using genetically engineered live Escherichia coli cells can be used to distinguish between the effects of AMPs on the outer and inner membranes of gram-negative bacteria. In combination, these methods can provide a detailed insight into the mode of action of AMPs.
Collapse
Affiliation(s)
- Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada, T2N 1N4
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada, T2N 1N4.
| |
Collapse
|
20
|
Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J Control Release 2016; 229:163-171. [DOI: 10.1016/j.jconrel.2016.03.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022]
|
21
|
Strategies for Exploring Electrostatic and Nonelectrostatic Contributions to the Interaction of Helical Antimicrobial Peptides with Model Membranes. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2016. [DOI: 10.1016/bs.abl.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Membrane interaction of a new synthetic antimicrobial lipopeptide sp-85 with broad spectrum activity. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.10.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Arias M, Nguyen LT, Kuczynski AM, Lejon T, Vogel HJ. Position-Dependent Influence of the Three Trp Residues on the Membrane Activity of the Antimicrobial Peptide, Tritrpticin. Antibiotics (Basel) 2014; 3:595-616. [PMID: 27025758 PMCID: PMC4790384 DOI: 10.3390/antibiotics3040595] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) constitute promising candidates for the development of new antibiotics. Among the ever-expanding family of AMPs, tritrpticin has strong antimicrobial activity against a broad range of pathogens. This 13-residue peptide has an unusual amino acid sequence that is almost symmetrical and features three central Trp residues with two Arg residues near each end of the peptide. In this work, the role of the three sequential Trp residues in tritrpticin was studied in a systematic fashion by making a series of synthetic peptides with single-, double- and triple-Trp substitutions to Tyr or Ala. 1H NMR and fluorescence spectroscopy demonstrated the ability of all of the tritrpticin-analog peptides to interact with negatively-charged membranes. Consequently, most tritrpticin analogs exhibited the ability to permeabilize synthetic ePC:ePG (egg-yolk phosphatidylcholine (ePC), egg-yolk phosphatidylglycerol (ePG)) vesicles and live Escherichia coli bacteria. The membrane perturbation characteristics were highly dependent on the location of the Trp residue substitution, with Trp6 being the most important residue and Trp8 the least. The membrane permeabilization activity of the peptides in synthetic and biological membranes was directly correlated with the antimicrobial potency of the peptides against E. coli. These results contribute to the understanding of the role of each of the three Trp residues to the antimicrobial activity of tritrpticin.
Collapse
Affiliation(s)
- Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Andrea M Kuczynski
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Tore Lejon
- Department of Chemistry, Faculty of Science, UiT-The Artic University of Norway, Tromsø N-9037, Norway.
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
24
|
Arias M, Jensen KV, Nguyen LT, Storey DG, Vogel HJ. Hydroxy-tryptophan containing derivatives of tritrpticin: modification of antimicrobial activity and membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:277-88. [PMID: 25178967 DOI: 10.1016/j.bbamem.2014.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/16/2014] [Accepted: 08/22/2014] [Indexed: 01/12/2023]
Abstract
Tritrpticin is an antimicrobial peptide with a strong microbicidal activity against Gram-positive and Gram-negative bacteria as well as fungi. The 13-residue peptide is essentially symmetrical and possesses a unique cluster of three Trp residues near the center of its amino acid sequence. The mechanism of action of tritrpticin is believed to involve permeabilization of the cytoplasmic membrane of susceptible bacteria. However it has been suggested that intracellular targets may also play a role in its antimicrobial activity. In this work the mechanism of action of several tritrpticin derivatives was studied through substitution of the three Trp residues with 5-hydroxy-tryptophan (5OHW), a naturally occurring non-ribosomal amino acid. Although it is more polar, 5OHW preserves many of the biophysical and biochemical properties of Trp, allowing the use of fluorescence spectroscopy and NMR techniques to study the interaction of the modified peptides with membrane mimetics. Single or triple 5OHW substitution did not have a large effect on the MIC of the parent peptide against Escherichia coli and Bacillus subtilis. However, the mechanism of action was altered by simultaneously replacing all three Trp with 5OHW. Our results suggest that the inner membrane of Gram-negative bacteria did not constitute the main target of this particular tritrpticin derivative. Since the addition of a hydroxyl group to the indole motif of the Trp residue was able to modify the mechanism of action of the peptides, our data confirm the importance of the Trp cluster in tritrpticin. This work also shows that 5OHW constitutes a new probe to modulate the antimicrobial activity and mechanism of action of other Trp-rich antimicrobial peptides.
Collapse
Affiliation(s)
- Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Katharine V Jensen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Douglas G Storey
- Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
25
|
Hinks J, Wang Y, Poh WH, Donose BC, Thomas AW, Wuertz S, Loo SCJ, Bazan GC, Kjelleberg S, Mu Y, Seviour T. Modeling cell membrane perturbation by molecules designed for transmembrane electron transfer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2429-2440. [PMID: 24499294 DOI: 10.1021/la403409t] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Certain conjugated oligoelectrolytes (COEs) modify biological function by improving charge transfer across biological membranes as demonstrated by their ability to boost performance in bioelectrochemical systems. Molecular level understanding of the nature of the COE/membrane interactions is lacking. Thus, we investigated cell membrane perturbation by three COEs differing in the number of aromatic rings and presence of a fluorine substitution. Molecular dynamic simulations showed that membrane deformation by all COEs resulted from membrane thinning as the lipid phosphate heads were drawn toward the center of the bilayer layer by positively charged COE side chains. The four-ringed COE, which most closely resembled the lipid bilayer in length, deformed the membrane the least and was least disruptive, as supported by toxicity testing (minimum inhibitory concentration (MIC) = 64 μmol L(-1)) and atomic force microscopy (AFM). Extensive membrane thinning was observed from three-ringed COEs, reducing membrane thickness to <3.0 nm in regions where the COEs were located. Severe localized membrane pitting was observed when the central aromatic ring was unfluorinated, as evident from AFM and simulations. Fluorinating the central aromatic ring delocalized thinning but induced greater membrane disorder, indicated by changes in deuterium order parameter of the acyl chains. The fluorinated three-ringed compound was less toxic (MIC 4 μmol L(-1)) than the nonfluorinated three-aromatic-ringed COE (MIC 2 μmol L(-1)); thus, hydrophobic polar interactions resulting from fluorine substitution of OPV COEs dissipate membrane perturbations. Correlating specific structural features with cell membrane perturbation is an important step toward designing non-antimicrobial membrane insertion molecules.
Collapse
Affiliation(s)
- Jamie Hinks
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University , Singapore 637551
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Arouri A, Dathe M, Blume A. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Biophys Chem 2013; 180-181:10-21. [DOI: 10.1016/j.bpc.2013.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 12/18/2022]
|
27
|
Colomer A, Perez L, Pons R, Infante MR, Perez-Clos D, Manresa A, Espuny MJ, Pinazo A. Mixed monolayer of DPPC and lysine-based cationic surfactants: an investigation into the antimicrobial activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7912-7921. [PMID: 23750883 DOI: 10.1021/la401092j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, we report studies which aim to elucidate the mechanisms involved in the antimicrobial activity of three cationic lysine-based surfactants: LLM, LALM, and C6 (LL)2. To this end, a simple membrane model (i.e., 1,2-dipalmitoyl-sn-phosphatidylcholine, DPPC) was used to explore the monolayer properties at the air/liquid interface. Compression π-A isotherms of mixtures of DPPC/lysine surfactants at different pH showed an expansion of the DPPC monolayer, suggesting cationic lysine surfactant/DPPC interactions, which strongly depend on surfactant structure and hydrophobic interactions. Antimicrobial activity of the three surfactants has also been assessed with transmission electron microscopy, observing the effects on Staphylococcus aureus and Escherichia coli . The three surfactants caused various kinds of damage to the bacteria tested, such as structural alterations, leakage of internal material, and cell destruction.
Collapse
Affiliation(s)
- Aurora Colomer
- Department de Tecnologia Química i de Tensioactius, IQAC-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Membrane-perturbing effect of fatty acids and lysolipids. Prog Lipid Res 2013; 52:130-40. [DOI: 10.1016/j.plipres.2012.09.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/20/2012] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
|
29
|
Lopes SC, Neves CS, Eaton P, Gameiro P. Improved model systems for bacterial membranes from differing species: Theimportance of varying composition in PE/PG/cardiolipin ternary mixtures. Mol Membr Biol 2012; 29:207-17. [DOI: 10.3109/09687688.2012.700491] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Use of X-ray scattering to aid the design and delivery of membrane-active drugs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:915-29. [DOI: 10.1007/s00249-012-0821-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/30/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
|
31
|
Liu J, Guo S, Han L, Wang T, Hong W, Liu Y, Wang E. Synthesis of phospholipid monolayer membrane functionalized graphene for drug delivery. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34494g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Junkes C, Harvey RD, Bruce KD, Dölling R, Bagheri M, Dathe M. Cyclic antimicrobial R-, W-rich peptides: the role of peptide structure and E. coli outer and inner membranes in activity and the mode of action. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:515-28. [PMID: 21286704 DOI: 10.1007/s00249-011-0671-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/07/2010] [Accepted: 01/03/2011] [Indexed: 11/25/2022]
Abstract
This study compares the effect of cyclic R-, W-rich peptides with variations in amino acid sequences and sizes from 5 to 12 residues upon Gram negative and Gram positive bacteria as well as outer membrane-deficient and LPS mutant Escherichia coli (E. coli) strains to analyze the structural determinants of peptide activity. Cyclo-RRRWFW (c-WFW) was the most active and E. coli-selective sequence and bactericidal at the minimal inhibitory concentration (MIC). Removal of the outer membrane distinctly reduced peptide activity and the complete smooth LPS was required for maximal activity. c-WFW efficiently permeabilised the outer membrane of E. coli and promoted outer membrane substrate transport. Isothermal titration calorimetric studies with lipid A-, rough-LPS (r-LPS)- and smooth-LPS (s-LPS)-doped POPC liposomes demonstrated the decisive role of O-antigen and outer core polysaccharides for peptide binding and partitioning. Peptide activity against the inner E. coli membrane (IM) was very low. Even at a peptide to lipid ratio of 8/1, c-WFW was not able to permeabilise a phosphatidylglycerol/phosphatidylethanolamine (POPG/POPE) bilayer. Low influx of propidium iodide (PI) into bacteria confirmed a low permeabilising ability of c-WFW against PE-rich membranes at the MIC. Whilst the peptide effect upon eukaryotic cells correlated with the amphipathicity and permeabilisation of neutral phosphatidylcholine bilayers, suggesting a membrane disturbing mode of action, membrane permeabilisation does not seem to be the dominating antimicrobial mechanism of c-WFW. Peptide interactions with the LPS sugar moieties certainly modulate the transport across the outer membrane and are the basis of the E. coli selectivity of this type of peptides.
Collapse
Affiliation(s)
- Christof Junkes
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Arouri A, Kiessling V, Tamm L, Dathe M, Blume A. Morphological changes induced by the action of antimicrobial peptides on supported lipid bilayers. J Phys Chem B 2011; 115:158-67. [PMID: 21158379 PMCID: PMC3033229 DOI: 10.1021/jp107577k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We utilized epifluorescence microscopy to investigate the morphological changes in labeled lipid bilayers supported on quartz surfaces (SLBs) induced by the interaction of cationic antimicrobial peptides with the lipid membranes. The SLBs were prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and mixtures thereof as well as from Escherichia coli lipid extract. We succeeded in the preparation of POPG and POPG-rich SLBs without the necessity to use fusogenic agents such as calcium by using the Langmuir-Blodgett/Langmuir-Schaefer transfer method. The adsorption of the peptides to the SLBs was initially driven by electrostatic interactions with the PG headgroups and led to the formation of lipid protrusions bulging out from the lipid layer facing the bulk, originating particularly from domain boundaries and membrane defects. The shape, size, and frequency of the lipid protrusions are mainly controlled by the peptide macroscopic properties and the membrane composition. A restructuring of the lipid protrusions into other structures can also occur over time.
Collapse
Affiliation(s)
- Ahmad Arouri
- Martin-Luther-University Halle-Wittenberg, Institute of Chemistry, Halle, Germany
| | - Volker Kiessling
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA
| | - Lukas Tamm
- University of Virginia, Department of Molecular Physiology and Biological Physics, Charlottesville, VA
| | - Margitta Dathe
- Institute of Molecular Pharmacology, Robert-Rossle-Strasse 10, D-13125 Berlin, Germany
| | - Alfred Blume
- Martin-Luther-University Halle-Wittenberg, Institute of Chemistry, Halle, Germany
| |
Collapse
|
34
|
|
35
|
Chou HT, Wen HW, Kuo TY, Lin CC, Chen WJ. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides 2010; 31:1811-20. [PMID: 20600422 DOI: 10.1016/j.peptides.2010.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 11/20/2022]
Abstract
We have designed and synthesized a series of cationic α-helical AMPs with improved antibacterial activity and selectivity against a broad spectrum of G(+) and G(-) bacteria. In the current study, we intended to gain further insight into the mechanisms of action between AMPs and cellular membranes using model liposomes of various phospholipid compositions. Circular dichroism measurements showed that AMPs adopted amphipathic α-helical conformation in the presence of negatively charged vesicles (DOPC/DOPG=1:3), while they were largely unstructured when incubated with neutral vesicles (DOPC). The interaction of AMPs with phospholipid vesicles were further analyzed by calcein leakage experiments. AMPs exhibited weak dye-leakage activity for DOPC (neutral) vesicles, while they effectively induced calcein leakage when interacted with DOPC/DOPG-entrapped vesicles. These results indicated that our newly designed cationic AMPs did show preferences for bacteria-mimicking anionic membranes. All of them exert their cytolytic activity by folding into an amphipathic helix upon selectively binding and insertion into the target membrane, leading to breakdown of the membrane structure, thus causing leakage of cell contents, resulting finally in cell death. Elucidating the mechanism of the membranolytic activity of AMPs may facilitate the development of more effective antimicrobial agents.
Collapse
Affiliation(s)
- Hung-Ta Chou
- Graduate Institute of Biotechnology, College of Bioresources, National Ilan University, 1 Sheng-lung Rd. Sec. 1, Ilan 26047, Taiwan
| | | | | | | | | |
Collapse
|
36
|
Lozano N, Pérez L, Pons R, Pinazo A. Diacyl glycerol arginine-based surfactants: biological and physicochemical properties of catanionic formulations. Amino Acids 2010; 40:721-9. [PMID: 20676901 DOI: 10.1007/s00726-010-0710-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/19/2010] [Indexed: 12/15/2022]
Abstract
In this paper, we report on a catanionic vesicles-based strategy to reduce the cytotoxicity of the diacyl glycerol arginine-based synthetic surfactants 1,2-dimyristoyl-rac-glycero-3-O-(N(α)-acetyl-L-arginine) hydrochloride (1414RAc) and 1,2-dilauroyl-rac-glycero-3-O-(N(α)-acetyl-L-arginine) hydrochloride (1212RAc). The behavior of these surfactants was studied either as pure components or after their formulation as pseudo-tetra-chain catanionic mixtures with phosphatidylglycerol (PG) and as cationic mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) used as control. The antimicrobial activity of the negatively charged formulations against Acinetobacter baumannii was maintained with respect to the surfactant alone, while a significant improvement of the antimicrobial activity against Staphylococcus aureus was observed, together with a strong decrease of hemolytic activity. The influence of the net charge of the catanionic vesicles on membrane selectivity was studied using model membranes. The dynamics of surface tension changes induced by the addition of 1414RAc/PG aqueous dispersions into phospholipid monolayers composed of zwitterionic DPPC as model system for mammalian membranes and of negatively charged PG mimicking cytoplasmic membrane of gram-positive bacteria was followed by tensiometry. Our results constitute a proof of principle that tuning formulation can reduce the cytotoxicity of many surfactants, opening their possible biological applications.
Collapse
Affiliation(s)
- Neus Lozano
- Departament de Tecnologia Química i de Tensioactius, Institut de Química Avançada de Catalunya, CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | | | | |
Collapse
|
37
|
Lee TH, Hall KN, Swann MJ, Popplewell JF, Unabia S, Park Y, Hahm KS, Aguilar MI. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:544-57. [PMID: 20100457 DOI: 10.1016/j.bbamem.2010.01.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/08/2023]
Abstract
The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide selectivity and activity and may assist in defining the mode of antimicrobial action.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Vic, 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pimthon J, Willumeit R, Lendlein A, Hofmann D. Membrane association and selectivity of the antimicrobial peptide NK-2: a molecular dynamics simulation study. J Pept Sci 2009; 15:654-67. [DOI: 10.1002/psc.1165] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Svenson J, Karstad R, Flaten GE, Brandsdal BO, Brandl M, Svendsen JS. Altered activity and physicochemical properties of short cationic antimicrobial peptides by incorporation of arginine analogues. Mol Pharm 2009; 6:996-1005. [PMID: 19341291 DOI: 10.1021/mp900057k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incorporation of nongenetically encoded amino acids is a well established strategy to alter the behavior of several types of promising cationic antimicrobial peptides. Generally, these elements have been improved mimics of the hydrophobic amino acids yielding peptides with increased stability and potency. In this initial study, the effect of systematic replacement of Arg in a well-defined moderately antimicrobial tripeptide library is described. It is shown that the arginine analogues need to display a strong basicity to produce active peptides. It is further revealed that the hydrophobic units needed for activity in these peptides can be effectively incorporated in the direct vicinity of the cationic charge to produce compounds with improved antibacterial properties. A well-defined facial amphiphilic structure, which remains intact upon introduction of hydrophobic elements in the cationic side chains, is seen for the majority of the tested peptides. Microcalorimetric studies revealed a peptide binding to large anionic unilamellar vesicles (LUVs) mimicking the Gram-positive bacterial membrane as well as a potentially competitive binding to human serum albumin in the low- to mid-micromolar range. No considerable alterations in binding to either albumin or the LUVs were seen for the analogue containing peptides. A neutral LUV mimicking the eukaryotic cell membrane showed no significant binding to any of the peptides. The oral absorption of this class of short lactoferricin based peptides was investigated for the first time and revealed that incorporation of weaker bases than Arg produced peptides with much improved permeability in a recently developed permeation model, the phospholipid vesicle based barrier assay. Collectively, the results presented here show that there is ample room to toggle the activity and physical properties of short cationic antimicrobial peptides by incorporation of arginine analogues.
Collapse
Affiliation(s)
- Johan Svenson
- The Norwegian Structural Biology Centre, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
40
|
Microstructural characterization of lysophosphatidylcholine micellar aggregates: The structural basis for their use as biomembrane mimics. J Colloid Interface Sci 2009; 336:827-33. [DOI: 10.1016/j.jcis.2009.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/03/2009] [Accepted: 04/03/2009] [Indexed: 11/20/2022]
|
41
|
Jelinek R, Silbert L. Biomimetic approaches for studying membrane processes. MOLECULAR BIOSYSTEMS 2009; 5:811-8. [PMID: 19603114 DOI: 10.1039/b907223n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This short review focuses on recent innovative systems and experimental approaches designed to investigate membrane processes and biomolecular interactions associated with membranes. Our emphasis is on "biomimetics" which reflects the significance and contributions of the chemistry/biology interface in addressing complex biological questions. We have not limited this review to discussion of new "sensors" or "assays"per se, but rather we tried to review new concepts employed for analysis of membrane processes.
Collapse
Affiliation(s)
- Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | |
Collapse
|
42
|
Bonechi C, Ristori S, Martini G, Martini S, Rossi C. Study of bradykinin conformation in the presence of model membrane by Nuclear Magnetic Resonance and molecular modelling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:708-16. [DOI: 10.1016/j.bbamem.2008.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/29/2008] [Accepted: 12/31/2008] [Indexed: 01/08/2023]
|
43
|
Arouri A, Dathe M, Blume A. Peptide induced demixing in PG/PE lipid mixtures: a mechanism for the specificity of antimicrobial peptides towards bacterial membranes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:650-9. [PMID: 19118516 DOI: 10.1016/j.bbamem.2008.11.022] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/21/2008] [Accepted: 11/28/2008] [Indexed: 11/25/2022]
Abstract
Antimicrobial peptides attract a lot of interest as potential candidates to overcome bacterial resistance. So far, nearly all the proposed scenarios for their mechanism of action are associated with perforating and breaking down bacterial membranes after a binding process. In this study we obtained additional information on peptide induced demixing of bacterial membranes as a possible mechanism of specificity of antimicrobial peptides. We used DSC and FT-IR to study the influence of a linear and cyclic arginine- and tryptophan-rich antimicrobial peptide having the same sequence (RRWWRF) on the thermotropic phase transitions of lipid membranes. The cyclization of the peptide was found to enhance its antimicrobial activity and selectivity ( Dathe, M. Nikolenko, H. Klose, J. Bienert, M. Biochemistry 43 (2004) 9140-9150). A particular preference of the binding of the peptides to DPPG headgroups compared to other headgroups of negatively charged phospholipids, namely DMPA, DPPS and cardiolipin was observed. The main transition temperature of DPPG bilayers was considerably decreased by the bound peptides. The peptides caused a substantial down-shift of the transition of DPPG/DMPC. In contrast, they induced a demixing in DPPG/DPPE bilayers and led to the appearance of two peaks in the DSC curves indicating a DPPG-peptide-enriched domain and a DPPE-enriched domain. These results could be confirmed by FT-IR-spectroscopic measurements. We therefore propose that the observed peptide-induced lipid demixing in PG/PE-membranes could be a further specific effect of the antimicrobial peptides operating only on bacterial membranes, which contain appreciable amounts of PE and PG, and which could in principle also occur in liquid-crystalline membranes.
Collapse
Affiliation(s)
- Ahmad Arouri
- Martin-Luther-University Halle-Wittenberg, Institute of Chemistry, Muehlpforte 1, D-06108 Halle/Saale, Germany
| | | | | |
Collapse
|
44
|
Abstract
Using x-ray diffraction, solid-state 2H-NMR, differential scanning calorimetry, and dilatometry, we have observed a perturbation of saturated acyl chain phosphatidylglycerol bilayers by the antimicrobial peptide peptidyl-glycylleucine-carboxyamide (PGLa) that is dependent on the length of the hydrocarbon chain. In the gel phase, PGLa induces a quasi-interdigitated phase, previously reported also for other peptides, which is most pronounced for C18 phosphatidylglycerol. In the fluid phase, we found an increase of the membrane thickness and NMR order parameter for C14 and C16 phosphatidylglycerol bilayers, though not for C18. The data is best understood in terms of a close hydrophobic match between the C18 bilayer core and the peptide length when PGLa is inserted with its helical axis normal to the bilayer surface. The C16 acyl chains appear to stretch to accommodate PGLa, whereas tilting within the bilayer seems to be energetically favorable for the peptide when inserted into bilayers of C14 phosphatidylglycerol. In contrast to the commonly accepted membrane thinning effect of antimicrobial peptides, the data demonstrate that pore formation does not necessarily relate to changes in the overall bilayer structure.
Collapse
|