Tanaka H, Mitsui R, Oishi M, Passlick S, Jabs R, Steinhäuser C, Tanaka KF, Hashitani H. NO-mediated signal transmission in bladder vasculature as a therapeutic target of PDE5 inhibitors. Rodent model studies.
Br J Pharmacol 2021;
178:1073-1094. [PMID:
33314051 DOI:
10.1111/bph.15342]
[Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE
While the bladder vasculature is considered as a target of PDE5 inhibitors to improve bladder storage dysfunctions, its characteristics are largely unknown. Thus, the functional and morphological properties of arteries/arterioles of the bladder focusing on the NO-mediated signal transmission were explored.
EXPERIMENTAL APPROACH
Diameter changes in rat bladder arteries/arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in pericytes or smooth muscle cells (SMCs) of suburothelial arterioles were visualised using transgenic mice expressing GCaMP6 under control of the NG2- or parvalbumin-promoter. The perivascular innervation was investigated using fluorescence immunohistochemistry.
KEY RESULTS
In rat suburothelial arterioles and vesical arteries, tadalafil (100 nM) attenuated nerve-evoked sympathetic vasoconstrictions. In both vascular segments, tadalafil-induced inhibition of sympathetic vasoconstriction was prevented by N ω-propyl-l-arginine hydrochloride (l-NPA, 1 μM), an nNOS inhibitor or N ω-nitro-l-arginine (l-NA, 100 μM). Both vascular segments were densely innervated with nNOS-positive nitrergic nerves in close apposition to tyrosine hydroxylase-immunoreactive sympathetic nerves. In pericyte-covered pre-capillary arterioles of the mouse bladder where sympathetic nerves were absent, nerve stimulation evoked transient reductions in pericyte Ca2+ levels that were shortened by l-NPA and abolished by l-NA. In SMC-containing arterioles, tadalafil (10 nM) caused a l-NPA-sensitive suppression of sympathetic Ca2+ transients. In mice, nitrergic perivascular nerves were distributed in the arterioles and the pre-capillary arterioles.
CONCLUSION AND IMPLICATIONS
Both nitrergic nerve and nerve-evoked endothelial NO release appear to be involved in vasodilatory signal transmission in bladder vasculature. The NO-mediated signal transmission is a potential target for PDE5 inhibitor therapy in bladder dysfunctions.
Collapse