1
|
Chen TW, Princy Merlin J, Chen SM, Anandaraj S, Elshikh MS, Tseng TW, Wang K, Qi D, Jiang J. Sonochemical synthesis and fabrication of neodymium sesquioxide entrapped with graphene oxide based hierarchical nanocomposite for highly sensitive electrochemical sensor of anti-cancer (raloxifene) drug. ULTRASONICS SONOCHEMISTRY 2020; 64:104717. [PMID: 32062532 DOI: 10.1016/j.ultsonch.2019.104717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/20/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The ultrasound-assisted synthesis of a novel neodymium sesquioxide nanoparticles (Nd2O5 NPs) decorated graphene oxide (GO) nanocomposite under ultrasonic probe (Ultrasonic processor model-PR 1000; frequency-30 kHz; power of 100 W/cm2) has been reported. After then, SEM, TEM, XRD, EDX and electrochemical impedance spectroscopy characterized was analyzed using Nd2O5 NPs@GO nanomaterial. Furthermore, the nanomaterial modified GCE (glassy carbon electrode) shows excellent electrochemical sensing performance towards anti-cancer drug. Raloxifene is one of the important anti-cancer drug. Moreover, the fabricated electrochemical sensor has showed a wide linear range for raloxifene between 0.03 and 472.5 µM and nanomolar detection limit (18.43 nM). In addition, the Nd2O5 NPs@GO modified sensor has been applied to the determination of raloxifene in human blood and urine samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | | | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | | | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Yuan K, Zhang YW. Engineering well-defined rare earth oxide-based nanostructures for catalyzing C1 chemical reactions. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00750a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarize the nanostructural engineering and applications of rare earth oxide-based nanomaterials with well-defined compositions, crystal phases and shapes for efficiently catalyzing C1 chemical reactions.
Collapse
Affiliation(s)
- Kun Yuan
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
3
|
|
4
|
Liu X, Liu J, Geng F, Li Z, Li P, Gong W. Synthesis and properties of PdO/CeO2-Al2O3 catalysts for methane combustion. Front Chem Sci Eng 2011. [DOI: 10.1007/s11705-011-1163-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Sato K, Ozawa Y, Watanabe A, Nagai M. Promoting effect of La2O3 and Nd2O3 on PdO/Al2O3 for NO reduction with CH4. CATAL COMMUN 2004. [DOI: 10.1016/j.catcom.2004.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Remarkable improvement in the activity and stability of Pd/HZSM-5 catalyst for methane combustion. CATAL COMMUN 2003. [DOI: 10.1016/s1566-7367(03)00059-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|