1
|
Liu J, Zeng X, Han K, Jia X, Zhou M, Zhang Z, Wang Y. The expression regulation of Cyclins and CDKs in ovary via miR-9c and miR-263a of Scylla paramamosain. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110567. [PMID: 33548504 DOI: 10.1016/j.cbpb.2021.110567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Scylla paramamosain is an economically important cultured crab species in China. Cyclins and cyclin-dependent kinases (CDKs) play important roles in regulations of cell cycle and ovarian development. MiRNAs can negatively regulate gene expression at the post-transcriptional level through base-complementary pairing with the 3'-untranslated region (3-UTR) of the target gene. In this study, bioinformatics prediction showed that miR-9c and miR-263a identified from our group's gonad miRNAome of S. paramamosain may bind to the 3' UTR region of cyclin A, cyclin B, cyclin E, cyclin H, CDK1, and CDK2. Furthermore, the results of double luciferase reporter gene assay showed that the luciferase activities of HEK293T cells co-transfected with miR-9c mimics/miR-9c inhibitor and the 3'-UTR plasmid vectors of the five genes (cyclin A, cyclin B, cyclin H, CDK1, and CDK2) were significantly decreased/increased compared with those in the NC (negative control) and BC (blank control) groups. The results in miR-263a were similar to miR-9c, but all of the six genes could be regulated by miR-263a. In in vivo experiments, agomiR-9c (miR-9c enhancer) injection resulted in decreases of cyclin A and CDK1 expression level, and reverse effects were observed by injecting antagomiR-9c. AgomiR-263a decreased the expression of cyclin A, cyclin B, cyclin H, CDK1, and CDK2, but antagomiR-263a increased their expression. Both the in vitro and in vivo experiments confirmed functions of miR-9c and miR-263a in cell cycle progress of ovarian development by expression regulation of cyclin A, cyclin B, cyclin E, cyclin H, CDK1, and CDK2. The findings provide new insights into the reproductive regulation mechanism in mud crab and further enrich the knowledge of cell cycle and ovarian development regulation in invertebrates.
Collapse
Affiliation(s)
- Jianan Liu
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Xianyuan Zeng
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; School of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Kunhuang Han
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; School of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Xiwei Jia
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Mingcan Zhou
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziping Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
2
|
Jessus C, Munro C, Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells 2020; 9:E1150. [PMID: 32392797 PMCID: PMC7290932 DOI: 10.3390/cells9051150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.
Collapse
Affiliation(s)
- Catherine Jessus
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Catriona Munro
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
- Inserm, Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
| |
Collapse
|
3
|
Hydrogen Sulfide Impairs Meiosis Resumption in Xenopus laevis Oocytes. Cells 2020; 9:cells9010237. [PMID: 31963573 PMCID: PMC7017156 DOI: 10.3390/cells9010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/19/2023] Open
Abstract
The role of hydrogen sulfide (H2S) is addressed in Xenopus laevis oocytes. Three enzymes involved in H2S metabolism, cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, were detected in prophase I and metaphase II-arrested oocytes and drove an acceleration of oocyte meiosis resumption when inhibited. Moreover, meiosis resumption is associated with a significant decrease in endogenous H2S. On another hand, a dose-dependent inhibition was obtained using the H2S donor, NaHS (1 and 5 mM). NaHS impaired translation. NaHS did not induce the dissociation of the components of the M-phase promoting factor (MPF), cyclin B and Cdk1, nor directly impacted the MPF activity. However, the M-phase entry induced by microinjection of metaphase II MPF-containing cytoplasm was diminished, suggesting upstream components of the MPF auto-amplification loop were sensitive to H2S. Superoxide dismutase and catalase hindered the effects of NaHS, and this sensitivity was partially dependent on the production of reactive oxygen species (ROS). In contrast to other species, no apoptosis was promoted. These results suggest a contribution of H2S signaling in the timing of amphibian oocytes meiosis resumption.
Collapse
|
4
|
Nie ZW, Chen L, Jin QS, Gao YY, Wang T, Zhang X, Miao YL. Function and regulation mechanism of Chk1 during meiotic maturation in porcine oocytes. Cell Cycle 2017; 16:2220-2229. [PMID: 28933982 DOI: 10.1080/15384101.2017.1373221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Checkpoint 1 (Chk1), as an important member of DNA replication checkpoint and DNA damage response, has an important role during the G2/M stage of mitosis. In this study, we used porcine oocyte as a model to investigate the function of Chk1 during porcine oocyte maturation. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages, mainly localized in the cytoplasm at GV stage and moved to the spindle after germinal vesicle breakdown (GVBD). Chk1 depletion not only induced oocytes to be arrested at MI stage with abnormal chromosomes arrangement, but also inhibited the degradation of Cyclin B1 and decreased the expression of Mitotic Arrest Deficient 2-Like 1 (Mad2L1), one of spindle assembly checkpoint (SAC) proteins, and cadherin 1 (Cdh1), one of coactivation for anaphase-promoting complex/cyclosome (APC/C). Moreover, Chk1 overexpression delayed GVBD. These results demonstrated that Chk1 facilitated the timely degradation of Cyclin B1 at anaphase I (AI) and maintained the expression of Mad2L1 and Cdh1, which ensured that all chromosomes were accurately located in a line, and then oocytes passed metaphase I (MI) and AI and exited from the first meiotic division successfully. In addition, we proved that Chk1 had not function on GVBD of porcine oocytes, which suggested that maturation of porcine oocytes did not need the DNA damage checkpoint, which was different from the mouse oocyte maturation.
Collapse
Affiliation(s)
- Zheng-Wen Nie
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China
| | - Li Chen
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China
| | - Qiu-Shi Jin
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China
| | - Ying-Ying Gao
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China
| | - Tao Wang
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China
| | - Xia Zhang
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,c The Cooperative Innovation Center for Sustainable Pig Production , Huazhong Agricultural University , Wuhan , Hubel , China
| | - Yi-Liang Miao
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , Hubel , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , Hubel , China.,c The Cooperative Innovation Center for Sustainable Pig Production , Huazhong Agricultural University , Wuhan , Hubel , China
| |
Collapse
|
5
|
Abstract
Sesquiterpene lactones (STLs) are a large and structurally diverse group of plant metabolites generally found in the Asteraceae family. STLs exhibit a wide spectrum of biological activities and it is generally accepted that their major mechanism of action is the alkylation of the thiol groups of biological molecules. The guaianolides is one of various groups of STLs. Anti-tumour and anti-migraine effects, an allergenic agent, an inhibitor of smooth muscle cells and of meristematic cell proliferation are only a few of the most commonly reported activities of STLs. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under stimulus with progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. There are previous records of the inhibitory effect of dehydroleucodin (DhL), a guaianolide lactone, on the progression of meiosis. It has been also shown that DhL and its 11,13-dihydroderivative (2H-DhL; a mixture of epimers at C-11) act as blockers of the resumption of meiosis in fully grown ovarian oocytes from the amphibian Rhinella arenarum (formerly classified as Bufo arenarum). The aim of this study was to analyze the effect of four closely related guaianolides, i.e., DhL, achillin, desacetoxymatricarin and estafietin as possible inhibitors of meiosis in oocytes of amphibians in vitro and discuss some structure-activity relationships. It was found that the inhibitory effect on meiosis resumption is greater when the lactone has two potentially reactive centres, either a α,β-α',β'-diunsaturated cyclopentanone moiety or an epoxide group plus an exo-methylene-γ-lactone function.
Collapse
|
6
|
Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics 2014; 2014:970607. [PMID: 25180174 PMCID: PMC4142390 DOI: 10.1155/2014/970607] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022] Open
Abstract
Discovered in 1993, micoRNAs (miRNAs) are now recognized as one of the major regulatory gene families in eukaryotes. To date, 24521 microRNAs have been discovered and there are certainly more to come. It was primarily acknowledged that miRNAs result in gene expression repression at both the level of mRNA stability by conducting mRNA degradation and the level of translation (at initiation and after initiation) by inhibiting protein translation or degrading the polypeptides through binding complementarily to 3′UTR of the target mRNAs. Nevertheless, some studies revealed that miRNAs have the capability of activating gene expression directly or indirectly in respond to different cell types and conditions and in the presence of distinct cofactors. This reversibility in their posttranslational gene regulatory natures enables the bearing cells to rapidly response to different cell conditions and consequently block unnecessary energy wastage or maintain the cell state. This paper provides an overview of the current understandings of the miRNA characteristics including their genes and biogenesis, as well as their mediated downregulation. We also review up-to-date knowledge of miRNA-mediated gene upregulation through highlighting some notable examples and discuss the emerging concepts of their associations with other posttranscriptional gene regulation processes.
Collapse
|
7
|
MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci Rep 2012; 2:842. [PMID: 23150790 PMCID: PMC3496365 DOI: 10.1038/srep00842] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/25/2012] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs can promote translation of specific mRNAs in quiescent (G0) mammalian cells and immature Xenopus laevis oocytes. We report that microRNA-mediated upregulation of target mRNAs in oocytes is dependent on nuclear entry of the microRNA; cytoplasmically-injected microRNA repress target mRNAs. Components of the activation microRNP, AGO, FXR1 (FXR1-iso-a) and miR16 are present in the nucleus and cytoplasm. Importantly, microRNA target mRNAs for upregulation, Myt1, TNFα and a reporter bearing the TNFα AU-rich, microRNA target sequence, are associated with AGO in immature oocyte nuclei and AGO2 in G0 human nuclei, respectively. mRNAs that are repressed or lack target sites are not associated with nuclear AGO. Crosslinking-coupled immunopurification revealed greater association of AGO2 with FXR1 in the nucleus compared to cytoplasm. Consistently, overexpression of FXR1-iso-a rescues activation of cytoplasmically-injected RNAs and in low density, proliferating cells. These data indicate the importance of a compartmentalized AGO2-FXR1-iso-a complex for selective recruitment for microRNA-mediated upregulation.
Collapse
|
8
|
Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc Natl Acad Sci U S A 2011; 108:8281-6. [PMID: 21536868 DOI: 10.1073/pnas.1105401108] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNA-protein complexes (microRNPs) can activate translation of target reporters and specific mRNAs in quiescent (i.e., G0) mammalian cell lines. Induced quiescent cells, like folliculated immature oocytes, have high levels of cAMP that activate protein kinase AII (PKAII) to maintain G0 and immature states. We report microRNA-mediated up-regulated expression of reporters in immature Xenopus laevis oocytes, dependent on Xenopus AGO or human AGO2 and on FXR1, as in mammalian cells. Importantly, we find that maintenance of cAMP levels and downstream PKAII signaling are required for microRNA-mediated up-regulated expression in oocytes. We identify an important, endogenous cell state regulator, Myt1 kinase, as a natural target of microRNA-mediated up-regulation in response to xlmiR16, ensuring maintenance of oocyte immaturity. Our data reveal the physiological relevance of cAMP/PKAII-controlled posttranscriptional gene expression activation by microRNAs in maintenance of the immature oocyte state.
Collapse
|
9
|
Ueki T, Furuno N, Michibata H. A novel vanadium transporter of the Nramp family expressed at the vacuole of vanadium-accumulating cells of the ascidian Ascidia sydneiensis samea. Biochim Biophys Acta Gen Subj 2011; 1810:457-64. [PMID: 21236319 DOI: 10.1016/j.bbagen.2010.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/16/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vanadium is an essential transition metal in biological systems. Several key proteins related to vanadium accumulation and its physiological function have been isolated, but no vanadium ion transporter has yet been identified. METHODS We identified and cloned a member of the Nramp/DCT family of membrane metal transporters (AsNramp) from the ascidian Ascidia sydneiensis samea, which can accumulate extremely high levels of vanadium in the vacuoles of a type of blood cell called signet ring cells (also called vanadocytes). We performed immunological and biochemical experiments to examine its expression and transport function. RESULTS Western blotting analysis showed that AsNramp was localized at the vacuolar membrane of vanadocytes. Using the Xenopus oocyte expression system, we showed that AsNramp transported VO(2+) into the oocyte as pH-dependent manner above pH 6, while no significant activity was observed below pH 6. Kinetic parameters (K(m) and V(max)) of AsNramp-mediated VO(2+) transport at pH 8.5 were 90nM and 9.1pmol/oocyte/h, respectively. A rat homolog, DCT1, did not transport VO(2+) under the same conditions. Excess Fe(2+), Cu(2+), Mn(2+), or Zn(2+) inhibited the transport of VO(2+). AsNramp was revealed to be a novel VO(2+)/H(+) antiporter, and we propose that AsNramp mediates vanadium accumulation coupled with the electrochemical gradient generated by vacuolar H(+)-ATPase in vanadocytes. GENERAL SIGNIFICANCE This is the first report of identification and functional analysis on a membrane transporter for vanadium ions.
Collapse
Affiliation(s)
- Tatsuya Ueki
- Molecular Physiology Laboratory, Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | | | | |
Collapse
|
10
|
Ueki T, Furuno N, Xu Q, Nitta Y, Kanamori K, Michibata H. Identification and biochemical analysis of a homolog of a sulfate transporter from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta Gen Subj 2009; 1790:1295-300. [DOI: 10.1016/j.bbagen.2009.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
|
11
|
Involvement of the dehydroleucodine alpha-methylene-gamma-lactone function in GVBD inhibition inBufo arenarumoocytes. ZYGOTE 2009; 18:41-9. [DOI: 10.1017/s0967199409990086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryDehydroleucodine (DhL), a sesquiterpenic lactone, was isolated and purified from aerial parts ofArtemisia douglasianaBesser, a medicinal herb used in Argentina. DhL is an alpha-methylene butyro-gamma-lactone ring connected to a seven-membered ring fused to an exocyclic alpha,beta-unsaturated cyclopentenone ringIt has been previously shown that DhL selectively induces a dose-dependent transient arrest in G2of both meristematic cells and vascular smooth muscle cells. Treatment with DhL induces an inhibition of spontaneous and progesterone-induced maturation in a dose-dependent manner inBufo arenarumfully grown oocytes arrested at G2, at the beginning of meiosis I. However, the nature of the mechanisms involved in the process is still unknown.The aim of this work was to analyse whether DhL's alpha-methylene-gamma-lactone function is responsible for the inhibition effect on meiosis reinitiation ofBufo arenarumoocytes as well as some of the transduction pathways that could be involved in this effect using a derivative of DhL inactivated for alpha-methylenelactone, the 11,13-dihydro-dehydroleucodine (2H-DhL).The use of 2H-DhL in the maturation promoting factor (MPF) amplification experiments by injection of both cytoplasm with active MPF and of germinal vesicle content showed results similar to the ones obtained with DhL, suggesting that the hydrogenated derivative would act in a similar way to DhL.Pretreatment with DhL or 2H-DhL did not affect the percentage of germinal vesicle breakdown (GVBD) induced by H89, a protein kinase A (PKA) inhibitor, which suggests that these lactones would act on another step of the signalling pathway that induces MPF activation. The fact that both DhL and 2H-Dhl inhibit GVBD induced by okadaic acid microinjection suggests that they could act on the activity of the Myt1 kinase. This idea is supported by the experiments of injection of GV contents in which an inhibitory effect of these lactones on GVBD was also observed.Our results indicate that the inhibitory effect on meiosis progression of DhL does not depend only on the activity of the alpha-methylenelactone function, as its hydrogenated derivative, 2H-DhL, in which this function has been inactivated, causes similar effects on amphibian oocytes. However, 2H-DhL was less active than DhL as higher doses were required to obtain a significant inhibition. On the other hand, the analysis of the participation of certain mediators in some of the signalling pathways leading to MPF activation suggests that the Myt1 kinase could be a target of these lactones, while cdc25 phosphatase would not be affected. Besides, the PKA inhibition assays indicate that these lactones would act earlier in the signalling pathways.
Collapse
|
12
|
Jin Z, Homola EM, Goldbach P, Choi Y, Brill JA, Campbell SD. Drosophila Myt1 is a Cdk1 inhibitory kinase that regulates multiple aspects of cell cycle behavior during gametogenesis. Development 2005; 132:4075-85. [PMID: 16107480 DOI: 10.1242/dev.01965] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The metazoan Wee1-like kinases Wee1 and Myt1 regulate the essential mitotic regulator Cdk1 by inhibitory phosphorylation. This regulatory mechanism, which prevents Cdk1 from triggering premature mitotic events, is also induced during the DNA damage response and used to coordinate cell proliferation with crucial developmental events. Despite the previously demonstrated role for Myt1 regulation of Cdk1 during meiosis, relatively little is known of how Myt1 functions at other developmental stages. To address this issue, we have undertaken a functional analysis of Drosophila Myt1 that has revealed novel developmental roles for this conserved cell cycle regulator during gametogenesis. Notably, more proliferating cells were observed in myt1 mutant testes and ovaries than controls. This can partly be attributed to ectopic division of germline-associated somatic cells in myt1 mutants, suggesting that Myt1 serves a role in regulating exit from the cell cycle. Moreover, mitotic index measurements suggested that germline stem cells proliferate more rapidly, in myt1 mutant females. In addition, male myt1 germline cells occasionally undergo an extra mitotic division, resulting in meiotic cysts with twice the normal numbers of cells. Based on these observations, we propose that Myt1 serves unique Cdk1 regulatory functions required for efficient coupling of cell differentiation with cell cycle progression.
Collapse
Affiliation(s)
- Zhigang Jin
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Karaiskou A, Leprêtre AC, Pahlavan G, Du Pasquier D, Ozon R, Jessus C. Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes. Development 2004; 131:1543-52. [PMID: 14985258 DOI: 10.1242/dev.01050] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During oogenesis, the Xenopus oocyte is blocked in prophase of meiosis I. It becomes competent to resume meiosis in response to progesterone at the end of its growing period (stage VI of oogenesis). Stage IV oocytes contain a store of inactive pre-MPF (Tyr15-phosphorylated Cdc2 bound to cyclin B2); the Cdc25 phosphatase that catalyzes Tyr15 dephosphorylation of Cdc2 is also present. However, the positive feedback loop that allows MPF autoamplification is not functional at this stage of oocyte growth. We report that when cyclin B is overexpressed in stage IV oocytes, MPF autoamplification does not occur and the newly formed cyclin B-Cdc2 complexes are inactivated by Tyr15 phosphorylation, indicating that Myt1 kinase remains active and that Cdc25 is prevented to be activated. Plx1 kinase (or polo-like kinase), which is required for Cdc25 activation and MPF autoamplification in full grown oocytes is not expressed at the protein level in small stage IV oocytes. In order to determine if Plx1 could be the missing regulator that prevents MPF autoamplification, polo kinase was overexpressed in stage IV oocytes. Under these conditions, the MPF-positive feedback loop was restored. Moreover, we show that acquisition of autoamplification competence does not require the Mos/MAPK pathway.
Collapse
Affiliation(s)
- Anthi Karaiskou
- Laboratoire de Biologie du Développement, UMR-CNRS 7622, Equipe 'Biologie de l'ovocyte', Université Pierre et Marie Curie, boîte 24, 4 place Jussieu, 75252 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
14
|
Aoki K, Matsumoto K, Tsujimoto M. Xenopus Cold-inducible RNA-binding Protein 2 Interacts with ElrA, the Xenopus Homolog of HuR, and Inhibits Deadenylation of Specific mRNAs. J Biol Chem 2003; 278:48491-7. [PMID: 13679363 DOI: 10.1074/jbc.m308328200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xenopus cold-inducible RNA-binding protein 2 (xCIRP2) is a major cytoplasmic RNA-binding protein in oocytes. In this study, we identify another RNA-binding protein ElrA, the Xenopus homolog of HuR, as an interacting protein of xCIRP2 by yeast two-hybrid screening. As ElrA stabilizes the RNA body in the in vitro mRNA stability system, we examine the role of xCIRP2 in the stabilization of mRNA and find that xCIRP2 inhibits deadenylation of AU-rich element-containing mRNA. These results suggest that xCIRP2 and ElrA may be involved in the regulation of mRNA stability at different steps. By immunoprecipitation with anti-xCIRP2 antibody, we find that xCIRP2 interacts with several mRNAs including mRNA encoding the centrosomal kinase Nek2B in oocytes. xCIRP2 also inhibits deadenylation of the mRNA substrate containing the 3'-untranslated region of Nek2B mRNA in the in vitro system. Our results suggest that xCIRP2 associates with specific mRNAs and can regulate the length of poly(A) tail in Xenopus oocytes.
Collapse
Affiliation(s)
- Kazuma Aoki
- Laboratory of Cellular Biochemistry, RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|