1
|
Elhassan MM, Glasco DL, Sheelam A, Mahmoud AM, Hegazy MA, Mowaka S, Bell JG. Potentiometric detection of apomorphine in human plasma using a 3D printed sensor. Biosens Bioelectron 2024; 248:115971. [PMID: 38154328 DOI: 10.1016/j.bios.2023.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Apomorphine is a dopamine agonist that is used for the management of Parkinson's disease and has been proven to effectively decrease the off-time duration, where the symptoms recur, in Parkinson's disease patients. This paper describes the design and fabrication of the first potentiometric sensor for the determination of apomorphine in bulk and human plasma samples. The fabrication protocol involves stereolithographic 3D printing, which is a unique tool for the rapid fabrication of low-cost sensors. The solid-contact apomorphine ion-selective electrode combines a carbon-mesh/thermoplastic composite as the ion-to-electron transducer and a 3D printed ion-selective membrane, doped with the ionophore calix[6]arene. The sensor selectively measures apomorphine in the presence of other biologically present cations - sodium, potassium, magnesium, and calcium - as well as the commonly prescribed Parkinson's pharmaceutical, levodopa (L-Dopa). The sensor demonstrated a linear, Nernstian response, with a slope of 58.8 mV/decade over the range of 5.0 mM-9.8 μM, which covers the biologically (and pharmaceutically) relevant ranges, with a limit of detection of 2.51 μM. Moreover, the apomorphine sensor exhibited good stability (minimal drift of just 188 μV/hour over 10 h) and a shelf-life of almost 4 weeks. Experiments performed in the presence of albumin, the main plasma protein to which apomorphine binds, demonstrate that the sensor responds selectively to free-apomorphine (i.e., not bound or complexed forms). The utility of the sensor was confirmed through the successful determination of apomorphine in spiked human plasma samples.
Collapse
Affiliation(s)
- Manar M Elhassan
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA; Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt
| | - Dalton L Glasco
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA
| | - Anjaiah Sheelam
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| | - Maha A Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| | - Shereen Mowaka
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt; Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
2
|
Hanaki M, Murakami K, Katayama S, Akagi KI, Irie K. Mechanistic analyses of the suppression of amyloid β42 aggregation by apomorphine. Bioorg Med Chem 2018; 26:1538-1546. [PMID: 29429575 DOI: 10.1016/j.bmc.2018.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/05/2023]
Abstract
(R)-Apomorphine (1) has the potential to reduce the accumulation of amyloid β-protein (Aβ42), a causative agent of Alzheimer's disease (AD). Although the inhibition of Aβ42 aggregation by 1 is ascribable to the antioxidative effect of its phenol moiety, its inhibitory mechanism at the molecular level remains to be fully elucidated. LC-MS and UV analyses revealed that 1 is autoxidized during incubation to produce an unstable o-quinone form (2), which formed a Michael adduct with Lys 16 and 28 of Aβ42. A further autoxidized form of 1 (3) with o-quinone and phenanthrene moieties suppressed Aβ42 aggregation comparable to 1, whereas treating 1 with a reductant, tris(2-carboxyethyl)phosphine diminished its inhibitory activity. 1H-15N SOFAST-HMQC NMR studies suggested that 1 interacts with Arg5, His13,14, Gln15, and Lys16 of the Aβ42 monomer. These regions form intermolecular β-sheets in Aβ42 aggregates. Since 3 did not perturb the chemical shift of monomeric Aβ42, we performed aggregation experiments using 1,1,1,3,3,3-hexafluoro-2-propanol-treated Aβ42 to investigate whether 3 associates with Aβ42 oligomers. Compounds 1 and 3 delayed the onset of the oligomer-driven nucleation phase. Despite their cytotoxicity, they did not exacerbate Aβ42-mediated neurotoxicity in SH-SY5Y neuroblastoma cells. These results demonstrate that extension of the conjugated system in 1 by autoxidation can promote its planarity, which is required for intercalation into the β-sheet of Aβ42 nuclei, thereby suppressing further aggregation.
Collapse
Affiliation(s)
- Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Sumie Katayama
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Ken-Ichi Akagi
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
3
|
Pharmacological Insights into the Use of Apomorphine in Parkinson’s Disease: Clinical Relevance. Clin Drug Investig 2018; 38:287-312. [DOI: 10.1007/s40261-018-0619-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Ye N, Neumeyer JL, Baldessarini RJ, Zhen X, Zhang A. Update 1 of: Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem Rev 2013; 113:PR123-78. [DOI: 10.1021/cr300113a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Ye
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - John L. Neumeyer
- Medicinal Chemistry Laboratory,
McLean Hospital, Harvard Medical School, Massachusetts 02478, United States
| | | | - Xuechu Zhen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China 215123
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| |
Collapse
|
5
|
Regnier-Delplace C, Thillaye du Boullay O, Siepmann F, Martin-Vaca B, Degrave N, Demonchaux P, Jentzer O, Bourissou D, Siepmann J. PLGA microparticles with zero-order release of the labile anti-Parkinson drug apomorphine. Int J Pharm 2013; 443:68-79. [DOI: 10.1016/j.ijpharm.2013.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
|
6
|
|
7
|
Liu Z, Chen X, Yu L, Zhen X, Zhang A. Synthesis and pharmacological investigation of novel 2-aminothiazole-privileged aporphines. Bioorg Med Chem 2008; 16:6675-81. [DOI: 10.1016/j.bmc.2008.05.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 11/15/2022]
|
8
|
He X, Wang D, Zhang X, Li A, Gu X, Ding F, Zhou J. Prolonged modulation of FGF-2 expression in astrocytic cultures induced by O,O'-diacetyl-apomorphine. Biochem Biophys Res Commun 2008; 369:824-9. [PMID: 18312850 DOI: 10.1016/j.bbrc.2008.02.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Apomorphine (APO) is an anti-parkinsonian drug currently in use, which provides relief of Parkinson's symptoms. However, the utility of APO is greatly hampered by its poor bioavailability and rapid metabolism. In the present study, O,O'-diacetyl-apomorphine, a prodrug of apomorphine, was synthesized and its biological activity was examined. The prodrug induced fibroblast growth factor-2 production in astrocytic cultures similarly to apomorphine. However, its duration of action was significantly prolonged, and its resistance to oxidation was markedly enhanced compared to APO. O,O'-Diacetyl-apomorphine also induced MEK/MAPK signaling. These results suggest that O,O'-diacetyl-apomorphine can efficiently counteract oxidation and thereby enhance FGF-2 production in astrocytes.
Collapse
Affiliation(s)
- Xiaochun He
- Department of Chemical Engineering, Nantong Vocational College, Nantong, JS 226007, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang A, Neumeyer JL, Baldessarini RJ. Recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 2007; 107:274-302. [PMID: 17212477 DOI: 10.1021/cr050263h] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ao Zhang
- Bioorganic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | | | | |
Collapse
|
10
|
Zhang A, Zhang Y, Branfman AR, Baldessarini RJ, Neumeyer JL. Advances in development of dopaminergic aporphinoids. J Med Chem 2007; 50:171-81. [PMID: 17228858 DOI: 10.1021/jm060959i] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ao Zhang
- Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | | | | | | | | |
Collapse
|