1
|
Li H, Xu B, Wang D, Zhou Y, Zhang H, Xia W, Xu S, Li Y. Immunosensor for trace penicillin G detection in milk based on supported bilayer lipid membrane modified with gold nanoparticles. J Biotechnol 2015; 203:97-103. [PMID: 25840366 DOI: 10.1016/j.jbiotec.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
In this work, we developed an immunosensor for electrochemical detection of penicillin G at trace level. The biosensor was fabricated by immobilizing anti-penicillin G in a supported bilayer lipid membrane (s-BLM) modified with gold nanoparticles, and the modified electrodes were characterized by the scanning electron microscope (SEM), cyclic voltammetry and electrochemical impedance spectroscopy. The biosensor was able to detect penicillin G with a linear correlation ranging from 3.34×10(-3)ng/L to 3.34×10(3)ng/L and a detection limit of 2.7×10(-4)ng/L, much lower than the maximum residue limit (MRL) of penicillin G in milk (4ppb, equal to 4×10(3)ng/L) set out by the European Union. The mean coefficient variation (CV) of the intra-assays and the inter-assays were 5.4% and 7.7%, respectively. In addition, the concentration of penicillin G in milk samples determined by this biosensor was in good agreement with that determined by high performance liquid chromatography (HPLC) assay.
Collapse
Affiliation(s)
- Han Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Bing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Danqi Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yin Zhou
- College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Hongling Zhang
- College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Moncelli MR, Becucci L, Schiller SM. Tethered bilayer lipid membranes self-assembled on mercury electrodes. Bioelectrochemistry 2004; 63:161-7. [PMID: 15110267 DOI: 10.1016/j.bioelechem.2003.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 10/13/2003] [Accepted: 10/16/2003] [Indexed: 10/26/2022]
Abstract
In order to incorporate integral proteins in a functionally active state, metal-supported lipid bilayers must have a hydrophilic region interposed between the bilayer and the metal. This region is realized with a hydrophilic molecule terminating at one end with a sulfhydryl or disulfide group that anchors this "hydrophilic spacer" to the surface of a metal, such as gold or mercury. The other end of the hydrophilic spacer may be covalently linked to the polar head of a phospholipid molecule, giving rise to a supramolecule called "thiolipid" (TL). With respect to gold, mercury has the advantage of providing a defect-free and fluid surface to the self-assembling spacer. Hydrophilic spacers consisting of a polyethyleneoxy or a hexapeptide chain, as well as thiolipids derived from these spacers, were employed to fabricate mercury-supported lipid bilayers. The formation of a lipid bilayer on top of a self-assembled monolayer of a hydrophilic spacer, or of a single-lipid monolayer on top of a self-assembled monolayer of a thiolipid, was realized by simply immersing the coated mercury electrode into an aqueous solution across a lipid film previously spread on its surface at its spreading pressure. Particularly stable mercury-supported lipid bilayers were obtained by using thiolipids. The biomimetic properties of these lipid bilayers were tested by incorporating channel-forming polypeptides (gramicidin and melittin) and proteins (OmpF porin). The effect of the transmembrane potential on the function of these channels was estimated by using a simple electrostatic model of the mercury-solution interphase.
Collapse
Affiliation(s)
- M R Moncelli
- Chemistry Department, Laboratory of Bioelectrochemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino Florence, Italy.
| | | | | |
Collapse
|
3
|
Bizzotto D, Yang Y, Shepherd JL, Stoodley R, Agak J, Stauffer V, Lathuillière M, Akhtar AS, Chung E. Electrochemical and spectroelectrochemical characterization of lipid organization in an electric field. J Electroanal Chem (Lausanne) 2004. [DOI: 10.1016/j.jelechem.2003.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Tadini Buoninsegni F, Dolfi A, Guidelli R. Two Photobioelectrochemical Applications of Self-Assembled Films on Mercury. ACTA ACUST UNITED AC 2004. [DOI: 10.1135/cccc20040292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The homogeneous, defect-free surface of a hanging mercury drop electrode was used to self-assemble films apt for the investigation of two photobioelectrochemical systems. Monolayers of straight-chain C12-C18alkane-1-thiols were anchored to a hanging mercury drop electrode and a film of chlorophyll was self-assembled on the top of them. The dependence of the photocurrents generated by illumination of the chlorophyll film with red light, on the thickness of the alkane-1-thiol monolayer and the applied potential is discussed. The photocurrents of purple membrane fragments, adsorbed on a mixed hexadecane-1-thiol/ dioleoylphosphatidylcholine bilayer self-assembled on mercury, were investigated in the presence of sodium perchlorate, chloride and acetate. The effect of the anions on the kinetics of the light-driven proton transport by bacteriorhodopsin has been determined.
Collapse
|