1
|
Sugar Matters: Improving In Vivo Clearance Rate of Highly Glycosylated Recombinant Plasma Proteins for Therapeutic Use. Pharmaceuticals (Basel) 2021; 14:ph14010054. [PMID: 33440845 PMCID: PMC7826800 DOI: 10.3390/ph14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Correct glycosylation of proteins is essential for production of therapeutic proteins as glycosylation is important for protein solubility, stability, half-life and immunogenicity. The heavily glycosylated plasma protein C1-inhibitor (C1-INH) is used in treatment of hereditary angioedema attacks. In this study, we used C1-INH as a model protein to propose an approach to develop recombinant glycoproteins with the desired glycosylation. We produced fully functional recombinant C1-INH in Chinese hamster ovary (CHO) cells. In vivo we observed a biphasic clearance, indicating different glycosylation forms. N-glycan analysis with mass spectrometry indeed demonstrated heterogeneous glycosylation for recombinant C1-INH containing terminal galactose and terminal sialic acid. Using a Ricinus Communis Agglutinin I (RCA120) column, we could reduce the relative abundance of terminal galactose and increase the relative abundance of terminal sialic acid. This resulted in a fully active protein with a similar in vivo clearance rate to plasmaderived C1-INH. In summary, we describe the development of a recombinant human glycoprotein using simple screening tools to obtain a product that is similar in function and in vivo clearance rate to its plasma-derived counterpart. The approach used here is of potential use in the development of other therapeutic recombinant human glycoproteins.
Collapse
|
2
|
de Beer F, Lagrand W, Glas GJ, Beurskens CJP, van Mierlo G, Wouters D, Zeerleder S, Roelofs JJTH, Juffermans NP, Horn J, Schultz MJ. Nebulized C1-Esterase Inhibitor does not Reduce Pulmonary Complement Activation in Rats with Severe Streptococcus Pneumoniae Pneumonia. Cell Biochem Biophys 2016; 74:545-552. [PMID: 27683129 PMCID: PMC5101262 DOI: 10.1007/s12013-016-0766-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/20/2016] [Indexed: 01/19/2023]
Abstract
Complement activation plays an important role in the pathogenesis of pneumonia. We hypothesized that inhibition of the complement system in the lungs by repeated treatment with nebulized plasma-derived human C1-esterase inhibitor reduces pulmonary complement activation and subsequently attenuates lung injury and lung inflammation. This was investigated in a rat model of severe Streptococcus pneumoniae pneumonia. Rats were intra–tracheally challenged with S. pneumoniae to induce pneumonia. Nebulized C1-esterase inhibitor or saline (control animals) was repeatedly administered to rats, 30 min before induction of pneumonia and every 6 h thereafter. Rats were sacrificed 20 or 40 h after inoculation with bacteria. Brochoalveolar lavage fluid and lung tissue were obtained for measuring levels of complement activation (C4b/c), lung injury and inflammation. Induction of pneumonia was associated with pulmonary complement activation (C4b/c at 20 h 1.24 % [0.56–2.59] and at 40 h 2.08 % [0.98–5.12], compared to 0.50 % [0.07–0.59] and 0.03 % [0.03–0.03] in the healthy control animals). The functional fraction of C1-INH was detectable in BALF, but no effect was found on pulmonary complement activation (C4b/c at 20 h 0.73 % [0.16–1.93] and at 40 h 2.38 % [0.54–4.19]). Twenty hours after inoculation, nebulized C1-esterase inhibitor treatment reduced total histology score, but this effect was no longer seen at 40 h. Nebulized C1-esterase inhibitor did not affect other markers of lung injury or lung inflammation. In this negative experimental animal study, severe S. pneumoniae pneumonia in rats is associated with pulmonary complement activation. Repeated treatment with nebulized C1-esterase inhibitor, although successfully delivered to the lungs, does not affect pulmonary complement activation, lung inflammation or lung injury.
Collapse
Affiliation(s)
- Friso de Beer
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Wim Lagrand
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerie J Glas
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte J P Beurskens
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana Wouters
- Department of Immunopathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Sanquin Research and Landsteiner laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Janneke Horn
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Complimentary action: C1q increases ganglion cell survival in an in vitro model of retinal degeneration. J Neuroimmunol 2016; 298:117-29. [PMID: 27609284 DOI: 10.1016/j.jneuroim.2016.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/27/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022]
Abstract
Using a previously described retinal explant culture system as an acute injury model, we here explore the role of C1q, the initiator of the classical complement pathway, in neuronal cell survival and retinal homeostasis. Full-thickness adult rat retinal explants were divided into four groups, receiving the following supplementation: C1q (50nM), C1-inhibitor (C1-inh; Berinert; 500mg/l), C1q+C1-inh, and no supplementation (culture controls). Explants were kept for 12h or 2days after which they were examined morphologically and with a panel of immunohistochemical markers. C1q supplementation protects ganglion cells from degeneration within the explant in vitro system. This effect is correlated to an attenuated endogenous production of C1q, and a quiesced gliotic response.
Collapse
|
4
|
Gustafson E, Asif S, Kozarcanin H, Elgue G, Meurling S, Ekdahl KN, Nilsson B. Control of IBMIR Induced by Fresh and Cryopreserved Hepatocytes by Low Molecular Weight Dextran Sulfate Versus Heparin. Cell Transplant 2016; 26:71-81. [PMID: 27452808 DOI: 10.3727/096368916x692609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rapid destruction of hepatocytes after hepatocyte transplantation has hampered the application of this procedure clinically. The instant blood-mediated inflammatory reaction (IBMIR) is a plausible underlying cause for this cell loss. The present study was designed to evaluate the capacity of low molecular weight dextran sulfate (LMW-DS) to control these initial reactions from the innate immune system. Fresh and cryopreserved hepatocytes were tested in an in vitro whole-blood model using ABO-compatible blood. The ability to elicit IBMIR and the capacity of LMW-DS (100 μg/ml) to attenuate the degree of activation of the cascade systems were monitored. The effect was also compared to conventional anticoagulant therapy using unfractionated heparin (1 IU/ml). Both fresh and freeze-thawed hepatocytes elicited IBMIR to the same extent. LMW-DS reduced the platelet loss and maintained the cell counts at the same degree as unfractionated heparin, but controlled the coagulation and complement systems significantly more efficiently than heparin. LMW-DS also attenuated the IBMIR elicited by freeze-thawed cells. Therefore, LMW-DS inhibits the cascade systems and maintains the cell counts in blood triggered by both fresh and cryopreserved hepatocytes in direct contact with ABO-matched blood. LMW-DS at a previously used and clinically applicable concentration (100 μg/ml) inhibits IBMIR in vitro and is therefore a potential IBMIR inhibitor in hepatocyte transplantation.
Collapse
|
5
|
de Beer FM, Aslami H, Hoeksma J, van Mierlo G, Wouters D, Zeerleder S, Roelofs JJTH, Juffermans NP, Schultz MJ, Lagrand WK. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia. Cell Biochem Biophys 2015; 70:795-803. [PMID: 24760631 DOI: 10.1007/s12013-014-9983-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary complement activation, and as such attenuates lung inflammation and lung injury in a rat model of Streptococcus pneumoniae pneumonia. Forty hours after intratracheal challenge with S. pneumoniae causing pneumonia rats were subjected to ventilation with lower tidal volumes and positive end-expiratory pressure (PEEP) or high tidal volumes without PEEP, after an intravenous bolus of C1-INH (200 U/kg) or placebo (saline). After 4 h of ventilation blood, broncho-alveolar lavage fluid and lung tissue were collected. Non-ventilated rats with S. pneumoniae pneumonia served as controls. While ventilation with lower tidal volumes and PEEP slightly amplified pneumonia-induced complement activation in the lungs, ventilation with higher tidal volumes without PEEP augmented local complement activation more strongly. Systemic pre-treatment with C1-INH, however, failed to alter ventilation-induced complement activation with both ventilation strategies. In accordance, lung inflammation and lung injury were not affected by pre-treatment with C1-INH, neither in rats ventilated with lower tidal volumes and PEEP, nor rats ventilated with high tidal volumes without PEEP. Ventilation augments pulmonary complement activation in a rat model of S. pneumoniae pneumonia. Systemic administration of C1-INH, however, does not attenuate ventilation-induced complement activation, lung inflammation, and lung injury.
Collapse
Affiliation(s)
- F M de Beer
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Emmens RW, Naaijkens BA, Roem D, Kramer K, Wouters D, Zeerleder S, van Ham MS, Niessen HW, Krijnen PA. Evaluating the efficacy of subcutaneous C1-esterase inhibitor administration for use in rat models of inflammatory diseases. Drug Deliv 2013; 21:302-6. [DOI: 10.3109/10717544.2013.853211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Rajabi M, Struble E, Zhou Z, Karnaukhova E. Potentiation of C1-esterase inhibitor by heparin and interactions with C1s protease as assessed by surface plasmon resonance. Biochim Biophys Acta Gen Subj 2011; 1820:56-63. [PMID: 22040724 DOI: 10.1016/j.bbagen.2011.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Human C1-esterase inhibitor (C1-INH) is a multifunctional plasma protein with a wide range of inhibitory and non-inhibitory properties, mainly recognized as a key down-regulator of the complement and contact cascades. The potentiation of C1-INH by heparin and other glycosaminoglycans (GAGs) regulates a broad spectrum of C1-INH activities in vivo both in normal and disease states. SCOPE OF RESEARCH: We have studied the potentiation of human C1-INH by heparin using Surface Plasmon Resonance (SPR), circular dichroism (CD) and a functional assay. To advance a SPR for multiple-unit interaction studies of C1-INH we have developed a novel (consecutive double capture) approach exploring different immobilization and layout. MAJOR CONCLUSIONS Our SPR experiments conducted in three different design versions showed marked acceleration in C1-INH interactions with complement protease C1s as a result of potentiation of C1-INH by heparin (from 5- to 11-fold increase of the association rate). Far-UV CD studies suggested that heparin binding did not alter C1-INH secondary structure. Functional assay using chromogenic substrate confirmed that heparin does not affect the amidolytic activity of C1s, but does accelerate its consumption due to C1-INH potentiation. GENERAL SIGNIFICANCE This is the first report that directly demonstrates a significant acceleration of the C1-INH interactions with C1s due to heparin by using a consecutive double capture SPR approach. The results of this study may be useful for further C-INH therapeutic development, ultimately for the enhancement of current C1-INH replacement therapies.
Collapse
Affiliation(s)
- Mohsen Rajabi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
8
|
Low Molecular Weight Dextran Sulfate Is Well Tolerated in Humans and Increases Endogenous Expression of Islet Protective Hepatocyte Growth Factor. Transplantation 2008; 86:1523-30. [DOI: 10.1097/tp.0b013e3181890593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Beinrohr L, Dobó J, Závodszky P, Gál P. C1, MBL-MASPs and C1-inhibitor: novel approaches for targeting complement-mediated inflammation. Trends Mol Med 2008; 14:511-21. [PMID: 18977695 DOI: 10.1016/j.molmed.2008.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 09/26/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
Complement activation is initiated by the pattern-recognition molecules complement component C1q, mannose-binding lectin (MBL) and ficolins (H-, L-, M-ficolin), which typically recognize antibody-antigen complexes or foreign polysaccharides. The associated proteases (C1r, C1s, MASP-1 and MASP-2) then activate the complement system. The serpin C1-inhibitor (C1-inh) blocks activity of all these complexes and has been successfully used in models of disease. Many structures of these components became available recently, including that of C1-inh, facilitating the structure-guided design of drugs targeting complement activation. Here, we propose an approach in which therapeutic proteins are made up of natural protein domains and C1-inh to allow targeting to the site of inflammation and more specific inhibition of complement activation. In particular, engineering a fast-acting C1-inh or fusing it to an 'aiming module' has been shown to be feasible and economical using a humanized yeast expression system. Complement-mediated inflammation has been linked to ischemia-reperfusion injury, organ graft rejection and even neurodegeneration, so targeting this process has direct clinical implications.
Collapse
Affiliation(s)
- László Beinrohr
- Institute of Enzymology, Karolina út 29, H-1113 Budapest, Hungary.
| | | | | | | |
Collapse
|
10
|
Padilla ND, van Vliet AK, Schoots IG, Seron MV, Maas MA, Peltenburg EEP, de Vries A, Niessen HW, Hack CE, van Gulik TM. C-reactive protein and natural IgM antibodies are activators of complement in a rat model of intestinal ischemia and reperfusion. Surgery 2007; 142:722-33. [DOI: 10.1016/j.surg.2007.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 01/07/2023]
|
11
|
Beinrohr L, Harmat V, Dobó J, Lörincz Z, Gál P, Závodszky P. C1 Inhibitor Serpin Domain Structure Reveals the Likely Mechanism of Heparin Potentiation and Conformational Disease. J Biol Chem 2007; 282:21100-9. [PMID: 17488724 DOI: 10.1074/jbc.m700841200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C1 inhibitor, a member of the serpin family, is a major down-regulator of inflammatory processes in blood. Genetic deficiency of C1 inhibitor results in hereditary angioedema, a dominantly inheritable, potentially lethal disease. Here we report the first crystal structure of the serpin domain of human C1 inhibitor, representing a previously unreported latent form, which explains functional consequences of several naturally occurring mutations, two of which are discussed in detail. The presented structure displays a novel conformation with a seven-stranded beta-sheet A. The unique conformation of the C-terminal six residues suggests its potential role as a barrier in the active-latent transition. On the basis of surface charge pattern, heparin affinity measurements, and docking of a heparin disaccharide, a heparin binding site is proposed in the contact area of the serpin-proteinase encounter complex. We show how polyanions change the activity of the C1 inhibitor by a novel "sandwich" mechanism, explaining earlier reaction kinetic and mutagenesis studies. These results may help to improve therapeutic C1 inhibitor preparations used in the treatment of hereditary angioedema, organ transplant rejection, and heart attack.
Collapse
Affiliation(s)
- László Beinrohr
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina út 29, H-1113 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
12
|
Loeffler DA, Camp DM. Measurement by ELISA of Complement Factor 4 (C4) in the Rat Brain: Necessity for Removal of Cerebrovascular Proteins. Neurochem Res 2006; 31:999-1002. [PMID: 16847591 DOI: 10.1007/s11064-006-9105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
Assessment of complement 4 (C4) levels in experimental animals is used as a marker for activation of the classical complement pathway. The objective of this study was to develop a method for measuring C4 concentrations in the rat brain. An ELISA (sensitivity = 0.5 ng C4/ml) was used to measure C4 in regional brain homogenates from Fischer rats cardiac-perfused with phosphate buffered saline to remove cerebrovascular contents, and from sham-perfused rats. Ventral midbrain C4 levels were increased (p < 0.001) versus frontal cortex and striatum in sham-perfused rats, whereas after perfusion there were no differences between brain regions. Removal of cerebrovascular contents decreased C4 by 43% in striatum, 52% in frontal cortex, and 69% in ventral midbrain (all p < 0.01 versus sham-perfused means). These results indicate that C4 in the rat brain can be measured quantitatively by ELISA provided that cerebrovascular proteins are removed by perfusion.
Collapse
Affiliation(s)
- David A Loeffler
- Division of Neurology, William Beaumont Hospital Research Institute, 3811 West Thirteen Mile Rd., Royal Oak, MI 48073, USA.
| | | |
Collapse
|
13
|
Heijnen BHM, Straatsburg IH, Padilla ND, Van Mierlo GJ, Hack CE, Van Gulik TM. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model. Clin Exp Immunol 2006; 143:15-23. [PMID: 16367929 PMCID: PMC1809558 DOI: 10.1111/j.1365-2249.2005.02958.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 100, 200 or 400 IU/kg bodyweight, 5 min before 60 min ischaemia (pre-I) or 5 min before 24 h reperfusion (end-I). One hundred IU/kg bodyweight significantly reduced the increase of plasma levels of activated C4 as compared to albumin-treated control rats and attenuated the increase of alanine aminotransferase (ALT). These effects were not better with higher doses of C1-inh. Administration of C1-inh pre-I resulted in lower ALT levels and higher bile secretion after 24 h of reperfusion than administration at end-I. Immunohistochemical assessment indicated that activated C3, the membrane attack complex C5b9 and C-reactive protein (CRP) colocalized in hepatocytes within midzonal areas, suggesting CRP is a mediator of I/R-induced, classical complement activation in rats. Pre-ischaemic administration of C1-inh is an effective pharmacological intervention to protect against liver I/R injury.
Collapse
Affiliation(s)
- B H M Heijnen
- Department of Surgery, Surgical Laboratory, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Yang SX, Diaz Padilla N, Zhu Q, Ma XM, Sasso D, Prestwood K, Hack CE, Kuchel GA. Estrogen replacement raises rat CRP without evidence of complement activation. Endocr Res 2005; 31:121-32. [PMID: 16355491 DOI: 10.1080/07435800500229268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Given current controversies regarding anti- and pro-inflammatory effects of estrogen, there is a need to explore relationships between gonadal hormones and inflammation using appropriate animal models. It has been proposed that rats are not appropriate for such research since, contrary to the effect of estrogen in humans, earlier animal studies had reported that estrogen downregulates serum C-reactive protein (rCRP) levels in the rat. With these considerations in mind, we re-examined the effects of estrogen withdrawal and replacement on CRP expression and complement activation in the rat. F-344 rats underwent bilateral ovariectomy or sham surgery at 9-10 months of age. Four months later, ovariectomized rats were treated with traditional high-dose 17beta-estradiol (Hi-E2) capsules, lower-dose (Lo-E2) 17beta-estradiol capsules, or placebo capsules for 7 days prior to sacrifice. Levels of plasma rat C-reactive protein (rCRP) were significantly lower in ovariectomized vs. sham-operated animals (415.5 +/- 10.6 vs. 626.6 +/- 23.0 mg/L, p < 0.001). Estrogen replacement significantly raised rCRP levels in ovariectomized animals (690.0 +/- 28.0 mg/L in Lo-E2 and 735.5 +/- 35.8 mg/L in Hi-E2, respectively, p < 0.001). Plasma rCRP levels correlated significantly with both hepatic rCRP (r = 0.79, p < 0.001) and serum estradiol (r = 0.70, p < 0.001) levels. However, no significant differences were observed in indices of complement activation (C4b/c) or CRP-complement complex generation (rCRP-C3 complex). In the mature female rat, ovariectomy reduces and estrogen replacement raises rCRP. Effects of estrogen on plasma rCRP induction are mediated, at least in part, through hepatic mechanisms and do not appear to require or be associated with complement activation.
Collapse
Affiliation(s)
- S X Yang
- UConn Center on Aging, University of Connecticut Health Center, MC-5215, 263 Farmington Ave., Farmington, CT 06030-5215, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Agostoni A, Aygören-Pürsün E, Binkley KE, Blanch A, Bork K, Bouillet L, Bucher C, Castaldo AJ, Cicardi M, Davis AE, De Carolis C, Drouet C, Duponchel C, Farkas H, Fáy K, Fekete B, Fischer B, Fontana L, Füst G, Giacomelli R, Gröner A, Hack CE, Harmat G, Jakenfelds J, Juers M, Kalmár L, Kaposi PN, Karádi I, Kitzinger A, Kollár T, Kreuz W, Lakatos P, Longhurst HJ, Lopez-Trascasa M, Martinez-Saguer I, Monnier N, Nagy I, Németh E, Nielsen EW, Nuijens JH, O'grady C, Pappalardo E, Penna V, Perricone C, Perricone R, Rauch U, Roche O, Rusicke E, Späth PJ, Szendei G, Takács E, Tordai A, Truedsson L, Varga L, Visy B, Williams K, Zanichelli A, Zingale L. Hereditary and acquired angioedema: problems and progress: proceedings of the third C1 esterase inhibitor deficiency workshop and beyond. J Allergy Clin Immunol 2004; 114:S51-131. [PMID: 15356535 PMCID: PMC7119155 DOI: 10.1016/j.jaci.2004.06.047] [Citation(s) in RCA: 440] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 06/24/2004] [Accepted: 06/24/2004] [Indexed: 01/13/2023]
Abstract
Hereditary angioedema (HAE), a rare but life-threatening condition, manifests as acute attacks of facial, laryngeal, genital, or peripheral swelling or abdominal pain secondary to intra-abdominal edema. Resulting from mutations affecting C1 esterase inhibitor (C1-INH), inhibitor of the first complement system component, attacks are not histamine-mediated and do not respond to antihistamines or corticosteroids. Low awareness and resemblance to other disorders often delay diagnosis; despite availability of C1-INH replacement in some countries, no approved, safe acute attack therapy exists in the United States. The biennial C1 Esterase Inhibitor Deficiency Workshops resulted from a European initiative for better knowledge and treatment of HAE and related diseases. This supplement contains work presented at the third workshop and expanded content toward a definitive picture of angioedema in the absence of allergy. Most notably, it includes cumulative genetic investigations; multinational laboratory diagnosis recommendations; current pathogenesis hypotheses; suggested prophylaxis and acute attack treatment, including home treatment; future treatment options; and analysis of patient subpopulations, including pediatric patients and patients whose angioedema worsened during pregnancy or hormone administration. Causes and management of acquired angioedema and a new type of angioedema with normal C1-INH are also discussed. Collaborative patient and physician efforts, crucial in rare diseases, are emphasized. This supplement seeks to raise awareness and aid diagnosis of HAE, optimize treatment for all patients, and provide a platform for further research in this rare, partially understood disorder.
Collapse
Key Words
- aae
- acquired angioedema
- angioedema
- c1 esterase inhibitor
- c1-inh
- hae
- hane
- hano
- hereditary angioedema
- hereditary angioneurotic edema
- angioneurotic edema
- chemically induced angioedema
- human serping1 protein
- aae, acquired angioedema
- aaee, (italian) voluntary association for the study, therapy, and fight against hereditary angioedema
- ace, angiotensin-converting enzyme
- app, aminopeptidase p
- at2, angiotensin ii
- b19v, parvovirus b19
- bmd, bone mineral density
- bvdv, bovine viral diarrhea virus
- c1, first component of the complement cascade
- c1-inh, c1 esterase inhibitor
- c1nh, murine c1 esterase inhibitor gene
- c1nh, human c1 esterase inhibitor gene
- c2, second component of the complement cascade
- c3, third component of the complement cascade
- c4, fourth component of the complement cascade
- c5, fifth component of the complement cascade
- ccm, chemical cleavage of mismatches
- ch50, total hemolytic complement, 50% cell lysis
- cmax, maximum concentration
- cpmp, committee for proprietary medicinal products
- cpv, canine parvovirus
- dhplc, denaturing hplc
- ff, (ovarian) follicular fluid
- ffp, fresh frozen plasma
- hae, hereditary angioedema
- hae-i, hereditary angioedema type i
- hae-ii, hereditary angioedema type ii
- haea, us hae association
- hav, hepatitis a virus
- hbsag, hepatitis b surface antigen
- hbv, hepatitis b virus
- hcv, hepatitis c virus
- hk, high molecular weight kininogen
- hrt, hormone replacement therapy
- huvs, hypocomplementemic urticaria-vasculitis syndrome
- lh, luteinizing hormone
- masp, mannose-binding protein associated serine protease
- mbl, mannan-binding lectin
- mfo, multifollicular ovary
- mgus, monoclonal gammopathies of undetermined significance
- mr, molecular mass
- nat, nucleic acid amplification technique
- nep, neutral endopeptidase
- oc, oral contraceptive
- omim, online mendelian inheritance in man (database)
- pco, polycystic ovary
- pct, primary care trust
- prehaeat, novel methods for predicting, preventing, and treating attacks in patients with hereditary angioedema
- prv, pseudorabies virus
- rhc1-inh, recombinant human c1 esterase inhibitor
- rtpa, recombinant tissue-type plasminogen activator
- shbg, sex hormone binding globulin
- ssca, single-stranded conformational analysis
- tpa, tissue-type plasminogen activator
- uk, united kingdom
Collapse
|
16
|
Castellheim A, Lindenskov PHH, Pharo A, Fung M, Saugstad OD, Mollnes TE. Meconium is a potent activator of complement in human serum and in piglets. Pediatr Res 2004; 55:310-8. [PMID: 14605246 DOI: 10.1203/01.pdr.0000100902.76021.8e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Meconium aspiration syndrome (MAS) is a clinical condition in the newborn infant with a significant morbidity and mortality. The complex pathophysiology of MAS, leading to both pulmonary and systemic complications, is characterized by an incompletely understood inflammatory reaction. Treatment is symptomatic, mainly limited to airway cleaning and ventilatory support. In this study, we show for the first time that meconium is a potent activator of complement, a key mediator of inflammation. In vitro, meconium activated the alternative complement pathway in human umbilical cord serum as judged by a substantial increase in the alternative pathway convertase C3bBbP. The activation proceeded through C3 (C3bc) and the terminal C5-9 pathway (terminal SC5b-9 complement complex), whereas the classical and lectin pathways were not activated (C1rs-C1-inhibitor complexes and C4bc). The lipid fraction, containing, e.g. free fatty acids, and the water fraction, containing, e.g. bile acids, contributed equally to the complement activation. A blocking antibody to factor D (alternative pathway) completely inhibited the meconium-induced complement activation, whereas blocking antibodies to mannose-binding lectin (lectin pathway) and C2 (classical and lectin pathway) had no effect. In vivo, meconium induced systemic complement activation in a piglet model of MAS, paralleling the increase in lung dysfunction. In conclusion, meconium is a potent activator of the complement system both in vitro and in vivo. Complement may be important in the pathogenesis of MAS, and specific complement inhibition might be a possible treatment approach in MAS.
Collapse
Affiliation(s)
- Albert Castellheim
- Department of Pediatric Research, Rikshospitalet University Hospital, Oslo 0027, Norway.
| | | | | | | | | | | |
Collapse
|
17
|
Bos IGA, Lubbers YTP, Roem D, Abrahams JP, Hack CE, Eldering E. The functional integrity of the serpin domain of C1-inhibitor depends on the unique N-terminal domain, as revealed by a pathological mutant. J Biol Chem 2003; 278:29463-70. [PMID: 12773530 DOI: 10.1074/jbc.m302977200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C1-inhibitor (C1-Inh) is a serine protease inhibitor (serpin) with a unique, non-conserved N-terminal domain of unknown function. Genetic deficiency of C1-Inh causes hereditary angioedema. A novel type of mutation (Delta 3) in exon 3 of the C1-Inh gene, resulting in deletion of Asp62-Thr116 in this unique domain, was encountered in a hereditary angioedema pedigree. Because the domain is supposedly not essential for inhibitory activity, the unexpected loss-of-function of this deletion mutant was further investigated. The Delta 3 mutant and three additional mutants starting at Pro76, Gly98, and Ser115, lacking increasing parts of the N-terminal domain, were produced recombinantly. C1-Inh76 and C1-Inh98 retained normal conformation and interaction kinetics with target proteases. In contrast, C1-Inh115 and Delta 3, which both lack the connection between the serpin and the non-serpin domain via two disulfide bridges, were completely non-functional because of a complex-like and multimeric conformation, as demonstrated by several criteria. The Delta 3 mutant also circulated in multimeric form in plasma from affected family members. The C1-Inh mutant reported here is unique in that deletion of an entire amino acid stretch from a domain not shared by other serpins leads to a loss-of-function. The deletion in the unique N-terminal domain results in a "multimerization phenotype" of C1-Inh, because of diminished stability of the central beta-sheet. This phenotype, as well as the location of the disulfide bridges between the serpin and the non-serpin domain of C1-Inh, suggests that the function of the N-terminal region may be similar to one of the effects of heparin in antithrombin III, maintenance of the metastable serpin conformation.
Collapse
Affiliation(s)
- Ineke G A Bos
- Department of Immunopathology, Sanquin Research at CLB, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Diaz Padilla N, Bleeker WK, Lubbers Y, Rigter GMM, Van Mierlo GJ, Daha MR, Hack CE. Rat C-reactive protein activates the autologous complement system. Immunology 2003; 109:564-71. [PMID: 12871224 PMCID: PMC1783000 DOI: 10.1046/j.1365-2567.2003.01681.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of complement is a biological function of human C-reactive protein (hCRP), whereas rat CRP (rCRP) has been claimed to be unable to activate complement. As important biological functions of proteins are probably conserved among species, we re-evaluated, using various ligands, the capability of rCRP to activate complement. The activation of complement by hCRP and rCRP was investigated in solid- and fluid-phase systems. In the solid-phase system, purified CRP was fixed to enzyme-linked immunosorbent assay (ELISA) plates and incubated with human or rat recalcified plasma. Dose-dependent binding of human and rat C3 and C4 was observed to human and rat CRP, respectively. In the fluid-phase system, recalcified rat plasma, which contains about 500 mg/l of CRP, or human plasma supplemented with hCRP, were incubated with lyso-phosphatidylcholine. A dose-dependent activation of complement was observed upon incubation with this ligand, as reflected by the generation of activated C4 as well as of CRP-complement complexes. This activation was, in both cases, inhibited by preincubation of plasma with p-aminophosphorylcholine, a specific inhibitor of the interaction of CRP with its ligands, or by chelation of calcium ions. We conclude that rat CRP, similarly to human CRP, can activate autologous complement. These results support the notion that opsonization of ligands with complement is an important biological function of CRP.
Collapse
Affiliation(s)
- Niubel Diaz Padilla
- Department of Immunopathology, Sanquin Research, and Laboratory for Experimental and Clinical Immunology, Academical Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Bos IGA, de Bruin EC, Karuntu YA, Modderman PW, Eldering E, Hack CE. Recombinant human C1-inhibitor produced in Pichia pastoris has the same inhibitory capacity as plasma C1-inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1648:75-83. [PMID: 12758149 DOI: 10.1016/s1570-9639(03)00107-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Therapeutic application of the serpin C1-inhibitor (C1-Inh) in inflammatory diseases like sepsis, acute myocardial infarction and vascular leakage syndrome seems promising, but large doses may be required. Therefore, a high-yield recombinant expression system for C1-Inh is very interesting. Earlier attempts to produce high levels of C1-Inh resulted in predominantly inactive C1-Inh. We describe the high yield expression of rhC1-Inh in Pichia pastoris, with 180 mg/l active C1-Inh at maximum. On average, 30 mg/l of 80-100% active C1-Inh was obtained. Progress curves were used to study the interaction with C1s, kallikrein, coagulation factor XIIa and XIa, and demonstrated that rhC1-Inh had the same inhibitory capacity as plasma C1-Inh. Structural integrity, as monitored via heat stability, was comparable despite differences in extent and nature of glycosylation. We conclude that the P. pastoris system is capable of high-level production of functionally and structurally intact human C1 inhibitor.
Collapse
Affiliation(s)
- Ineke G A Bos
- Dept. of Immunopathology, Sanquin Research at CLB, and Landsteiner Laboratory, Academical Medical Centre, University of Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|