1
|
Pratelli G, Tamburini B, Carlisi D, De Blasio A, D’Anneo A, Emanuele S, Notaro A, Affranchi F, Giuliano M, Seidita A, Lauricella M, Di Liberto D. Foodomics-Based Approaches Shed Light on the Potential Protective Effects of Polyphenols in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:14619. [PMID: 37834065 PMCID: PMC10572570 DOI: 10.3390/ijms241914619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory disorder affecting the gastrointestinal tract (GT) caused by a wide range of genetic, microbial, and environmental factors. IBD is characterized by chronic inflammation and decreased gut microbial diversity, dysbiosis, with a lower number of beneficial bacteria and a concomitant increase in pathogenic species. It is well known that dysbiosis is closely related to the induction of inflammation and oxidative stress, the latter caused by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity, leading to cellular ROS accumulation. ROS are responsible for intestinal epithelium oxidative damage and the increased intestinal permeability found in IBD patients, and their reduction could represent a potential therapeutic strategy to limit IBD progression and alleviate its symptoms. Recent evidence has highlighted that dietary polyphenols, the natural antioxidants, can maintain redox equilibrium in the GT, preventing gut dysbiosis, intestinal epithelium damage, and radical inflammatory responses. Here, we suggest that the relatively new foodomics approaches, together with new technologies for promoting the antioxidative properties of dietary polyphenols, including novel delivery systems, chemical modifications, and combination strategies, may provide critical insights to determine the clinical value of polyphenols for IBD therapy and a comprehensive perspective for implementing natural antioxidants as potential IBD candidate treatment.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy;
| | - Bartolo Tamburini
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Federica Affranchi
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Aurelio Seidita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| |
Collapse
|
2
|
Jamieson PE, Carbonero F, Stevens JF. Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Curr Res Food Sci 2023; 6:100521. [PMID: 37266414 PMCID: PMC10230173 DOI: 10.1016/j.crfs.2023.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are a rapidly growing public health concern worldwide. These diseases are heterogeneous at the clinical, immunological, molecular, genetic, and microbial level, but characteristically involve a disrupted immune-microbiome axis. Shortcomings in conventional treatment options warrant the need for novel therapeutic strategies to mitigate these life-long and relapsing disorders of the gastrointestinal tract. Polyphenols, a diverse group of phytochemicals, have gained attention as candidate treatments due to their array of biological effects. Polyphenols exert broad anti-inflammatory and antioxidant effects through the modulation of cellular signaling pathways and transcription factors important in IBD progression. Polyphenols also bidirectionally modulate the gut microbiome, supporting commensals and inhibiting pathogens. One of the primary means by which gut microbiota interface with the host is through the production of metabolites, which are small molecules produced as intermediate or end products of metabolism. There is growing evidence to support that modulation of the gut microbiome by polyphenols restores microbially derived metabolites critical to the maintenance of intestinal homeostasis that are adversely disrupted in IBD. This review aims to define the therapeutic targets of polyphenols that may be important for mitigation of IBD symptoms, as well as to collate evidence for their clinical use from randomized clinical trials.
Collapse
Affiliation(s)
- Paige E. Jamieson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, 99202, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
3
|
Wu D, Jin L, Huang X, Deng H, Shen QK, Quan ZS, Zhang C, Guo HY. Arctigenin: pharmacology, total synthesis, and progress in structure modification. J Enzyme Inhib Med Chem 2022; 37:2452-2477. [PMID: 36093586 PMCID: PMC9481144 DOI: 10.1080/14756366.2022.2115035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arctium lappa L. is a prevalent medicinal herb and a health supplement that is commonly used in Asia. Over the last few decades, the bioactive component arctigenin has attracted the attention of researchers because of its anti-inflammatory, antioxidant, immunomodulatory, multiple sclerosis fighting, antitumor, and anti-leukemia properties. After summarising the research and literature on arctigenin, this study outlines the current status of research on pharmacological activity, total synthesis, and structural modification of arctigenin. The purpose of this study is to assist academics in obtaining a more comprehensive understanding of the research progress on arctigenin and to provide constructive suggestions for further investigation of this useful molecule.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Qing-kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe-shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
4
|
Wu L, Chen J, Zhou D, Chen R, Chen X, Shao Z, Yang W, He B. Anti-inflammatory activity of arctigenin against PCV2 infection in a mouse model. Vet Med Sci 2021; 8:700-709. [PMID: 34914190 PMCID: PMC8959337 DOI: 10.1002/vms3.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Arctigenin (ACT) is a novel anti-inflammatory lignan extracted from Arctium lappa L, a herb commonly used in traditional Chinese herbal medicine. In this study, we investigated the molecular mechanism whereby ACT inhibits PCV2 infection-induced proinflammatory cytokine production in vitro and in vivo. We observed that in PCV2 infection+ACT treated PK-15 cells, proinflammatory cytokine production was significantly reduced, compared to the PCV2-infected cells. The transfection and luciferase reporter assay confirmed that ACT suppressed NF-κB signalling pathway activation following PCV2 infection in PK-15 cells. Furthermore, western blotting demonstrated that ACT suppressed the NF-κB signal pathway in PCV2 infection-stimulated PK-15 cells by inhibiting the translocation of p65 from the cytoplasm to the nucleus and IκBα phosphorylation. BALB/c mice were used as a model to evaluate the anti-inflammatory effect of ACT in vivo. We found that the BALB/c mice inoculated with PCV2 infection + ACT treated showed a significant reduction of proinflammatory cytokine production in serum, lung and spleen tissue, compared to the PCV2-infected mice. Western blotting confirmed that ACT suppressed the NF-κB signal pathway in PCV2-infected mice by inhibiting the translocation of p65 from the cytoplasm to the nucleus and IκBα phosphorylation in lung tissue. Our studies first demonstrate that ACT inhibits PCV2 infection-induced proinflammatory cytokine production by suppressing the phosphorylation and nuclear translocation of NF-κB in vitro and in vivo. These results will help further develop ACT as a Traditional Chinese herbal medicine remedy in the treatment of porcine circovirus-associated diseases.
Collapse
Affiliation(s)
- Lijun Wu
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Jie Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Runshan Chen
- Animal disease prevention and control center, Fangxian Animal Husbandry and Veterinary Service Center, Shiyan, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Zhiyong Shao
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Wenhai Yang
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Rečnik LM, Thatcher RJ, Mallah S, Butts CP, Collingridge GL, Molnár E, Jane DE, Willis CL. Synthesis and pharmacological characterisation of arctigenin analogues as antagonists of AMPA and kainate receptors. Org Biomol Chem 2021; 19:9154-9162. [PMID: 34642722 DOI: 10.1039/d1ob01653a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(-)-Arctigenin and a series of new analogues have been synthesised and then tested for their potential as AMPA and kainate receptor antagonists of human homomeric GluA1 and GluK2 receptors expressed in HEK293 cells using a Ca2+ influx assay. In general, these compounds showed antagonist activity at both receptors with greater activity evident at AMPARs. Schild analysis indicates that a spirocyclic analogue 6c acts as a non-competitive antagonist. Molecular docking studies in which 6c was docked into the X-ray crystal structure of the GluA2 tetramer suggest that (-)-arctigenin and its analogues bind in the transmembrane domain in a similar manner to the known AMPA receptor non-competitive antagonists GYKI53655 and the antiepileptic drug perampanel. The arctigenin derivatives described herein may serve as novel leads for the development of drugs for the treatment of epilepsy.
Collapse
Affiliation(s)
- Lisa-Maria Rečnik
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Robert J Thatcher
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Shahida Mallah
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Craig P Butts
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Graham L Collingridge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - David E Jane
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
6
|
Shabgah AG, Suksatan W, Achmad MH, Bokov DO, Abdelbasset WK, Ezzatifar F, Hemmati S, Mohammadi H, Soleimani D, Jadidi-Niaragh F, Ahmadi M, Navashenaq JG. Arctigenin, an anti-tumor agent; a cutting-edge topic and up-to-the-minute approach in cancer treatment. Eur J Pharmacol 2021; 909:174419. [PMID: 34391770 DOI: 10.1016/j.ejphar.2021.174419] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 02/03/2023]
Abstract
Today, herbal-derived compounds are being increasingly studied in cancer treatment. Over the past decade, Arctigenin has been introduced as a bioactive dibenzylbutyrolactone lignan which is found in Chinese herbal medicines. In addition to anti-microbial, anti-inflammatory, immune-modulatory functions, Arctigenin has attracted growing attention due to its anti-tumor capabilities. It has been shown that Arctigenin can induce apoptosis and necrosis and abolish drug resistance in tumor cells by inducing apoptotic signaling pathways, caspases, cell cycle arrest, and the modulating proteasome. Moreover, Arctigenin mediates other anti-tumor functions through several mechanisms. It has been demonstrated that Arctigenin can act as an anti-inflammatory compound to inhibit inflammation in the tumor microenvironment. It also downregulates factors involved in tumor metastasis and angiogenesis, such as matrix metalloproteinases, N-cadherin, TGF-β, and VEGF. Additionally, Arctigenin, through modulation of MAPK signaling pathways and stress-related proteins, is able to abolish tumor cell growth in nutrient-deprived conditions. Due to the limited solubility of Arctigenin in water, it is suggested that modification of this compound through amino acid esterification can improve its pharmacogenetic properties. Collectively, it is hoped that using Arctigenin or its derivates might introduce new chemotherapeutic approaches in future treatment.
Collapse
Affiliation(s)
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Muhammad Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Dmitry O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunology Department, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Sasan Hemmati
- Imam Khomeini Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Arctigenin exhibits hepatoprotective activity in Toxoplasma gondii-infected host through HMGB1/TLR4/NF-κB pathway. Int Immunopharmacol 2020; 84:106539. [PMID: 32361192 DOI: 10.1016/j.intimp.2020.106539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 01/26/2023]
Abstract
Toxoplasmosis is a parasitic zoonosis with the highest incidence in humans. Severe lesions due to acute toxoplasmosis have been recorded in the visceral organs including the liver, where hepatocytes and Kupffer cells are important innate immune cells. Arctigenin (AG) is a bioactive ingredient of Arctium lappa L. and increasing evidence suggests that AG exhibits anti-oxidant, anti-inflammatory and anti-Toxoplasma gondii (T. gondii) effects. However, the role of AG in acute liver damage induced by T. gondii infection remains unclear. In this study, we analyzed the effects of AG against T. gondii-induced liver damage by establishing an in vitro infection model using a murine liver cell line (NCTC-1469 cells) and an in vivo mouse model with acute T. gondii infection of virulent RH strain. In the current study, AG effectively attenuated hepatocytes apoptosis and inhibited the reproduction of T. gondii. The results of in vitro and in vivo studies showed that AG significantly reduced alanine aminotransferase/aspartate aminotransferase activities and lessened pathological damage of liver. Moreover, AG suppressed T. gondii-induced inducible nitric oxide synthase production. AG also attenuated liver inflammation by inhibiting T. gondii-induced activation of the high-mobility group box1/toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-κB) signaling pathway. These findings demonstrated that AG exhibited prominent hepatoprotective activities in toxoplasmic liver injury with anti-inflammatory effects by inhibiting the HMGB1/TLR4/NF-κB signaling axis. Thus, this study provides the basis for the development of new drugs to treat toxoplasmic hepatitis.
Collapse
|
8
|
Kinetics, composition and antioxidant activity of burdock (Arctium lappa) root extracts obtained with supercritical CO2 and co-solvent. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Gao Q, Yang M, Zuo Z. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin 2018; 39:787-801. [PMID: 29698388 DOI: 10.1038/aps.2018.32] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/07/2018] [Indexed: 12/11/2022] Open
Abstract
Arctigenin (AR) and its glycoside, arctiin, are two major active ingredients of Arctium lappa L (A lappa), a popular medicinal herb and health supplement frequently used in Asia. In the past several decades, bioactive components from A lappa have attracted the attention of researchers due to their promising therapeutic effects. In the current article, we aimed to provide an overview of the pharmacology of AR and arctiin, focusing on their anti-inflammatory effects, pharmacokinetics properties and clinical efficacies. Compared to acrtiin, AR was reported as the most potent bioactive component of A lappa in the majority of studies. AR exhibits potent anti-inflammatory activities by inhibiting inducible nitric oxide synthase (iNOS) via modulation of several cytokines. Due to its potent anti-inflammatory effects, AR may serve as a potential therapeutic compound against both acute inflammation and various chronic diseases. However, pharmacokinetic studies demonstrated the extensive glucuronidation and hydrolysis of AR in liver, intestine and plasma, which might hinder its in vivo and clinical efficacy after oral administration. Based on the reviewed pharmacological and pharmacokinetic characteristics of AR, further pharmacokinetic and pharmacodynamic studies of AR via alternative administration routes are suggested to promote its ability to serve as a therapeutic agent as well as an ideal bioactive marker for A lappa.
Collapse
|
10
|
Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget 2018; 8:329-344. [PMID: 27861147 PMCID: PMC5352123 DOI: 10.18632/oncotarget.13393] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are the most aggressive and hard-to-treat breast tumors with poor prognosis, and exploration for novel therapeutic drugs is impending. Arctigenin (Atn), a bioactive lignan isolated from seeds of Arctium lappa L, has been reported to inhibit many cancer types; however, the effect of Atn on TNBC remains unclear. In this study, we demonstrated that Atn decreased proliferation, and induced apoptosis in TNBC cells. Furthermore, we explored the underlying mechanism of Atn inhibition on TNBC cells. Computational docking and affinity assay showed that Atn bound to the SH2 domain of STAT3. Atn inhibited STAT3 binding to genomic DNA by disrupting hydrogen bond linking between DNA and STAT3. In addition, Atn augmented Taxotere®-induced TNBC cell cytotoxicity. TNBC xenograft tests also confirmed the antitumor effect of Atn in vivo. These characteristics render Atn as a promising candidate drug for further development and for designing new effective STAT3 inhibitors.
Collapse
|
11
|
Zhang N, Dou D, Ran X, Kang T. Neuroprotective effect of arctigenin against neuroinflammation and oxidative stress induced by rotenone. RSC Adv 2018; 8:2280-2292. [PMID: 35541453 PMCID: PMC9077403 DOI: 10.1039/c7ra10906g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022] Open
Abstract
Background: the present study was to investigate the neuroprotective effect of arctigenin, the major active component of a traditional Chinese medicine “Arctii Fructus”, against PD in a rat model induced by rotenone. Materials and methods: in the present study, rotenone was injected subcutaneously in the backs of rats to mimic the progressive neurodegenerative nature of PD and arctigenin was administered. Behavioral analyses including a grid test, bar test and open-field test were used to evaluate motor activities and behavioral movement abilities. Energy metabolism indexes including oxygen consumption, carbon dioxide production, heat production and energy expenditure were measured via a TSE phenoMaster/LabMaster animal monitoring system. Immunohistochemistry was performed to detect the staining of TH and the expression of α-synuclein in substantia nigra (SN). The effect of arctigenin on oxidative stress was evaluated by the levels of GSH and MDA, and activities of SOD and GSH-Px. The levels of pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α, IFN-γ and PGE2, the expression of Iba-1 and GFAP, and the impression of inflammatory mediators such as COX-2 and NF-κB in the SN were measured to evaluate the effect on the inflammation of SN area induced by rotenone. Results: compared with the ROT group, the deadlock time of rats treated with arctigenin was significantly shortened and the score of locomotor activity increased in the behavioral test; the number of TH+ positive DA neurons of the arctigenin treated group was increased and α-synuclein immunopositive was decreased; the level of GSH and activities of SOD and GSH-Px in the arctigenin-treated group were significantly increased; arctigenin administration induced a significant decrease in the MDA level; arctigenin also significantly decreased the levels of IL-6, IL-1β, TNF-α, IFN-γ and PGE2 and reduced the impression of COX-2 and NF-κB in SN; treatment with arctigenin decreased microglia and astrocyte activation evidenced by the reduced expression of Iba-1 and GFAP. Conclusion: the findings demonstrated that arctigenin can improve the behavior changes of PD rats and the damage of DA neurons. The oxidative stress and inflammation involved in the pathogenesis of PD and arctigenin may protect DA neurons through its potent antioxidant and anti-inflammatory activities. The present study was to investigate the neuroprotective effect of arctigenin, the major active component of a traditional Chinese medicine “Arctii Fructus”, against PD in a rat model induced by rotenone.![]()
Collapse
Affiliation(s)
- Na Zhang
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| | - Deqiang Dou
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| | - Xiaoku Ran
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| | - Tingguo Kang
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| |
Collapse
|
12
|
Huang Q, Qin S, Yuan X, Zhang L, Ji J, Liu X, Ma W, Zhang Y, Liu P, Sun Z, Zhang J, Liu Y. Arctigenin inhibits triple-negative breast cancers by targeting CIP2A to reactivate protein phosphatase 2A. Oncol Rep 2017; 38:598-606. [PMID: 28560452 DOI: 10.3892/or.2017.5667] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/15/2017] [Indexed: 11/06/2022] Open
Abstract
We have shown that a novel STAT3 inhibitor arctigenin (Atn) induces significant cytotoxicity in triple-negative breast cancer (TNBC) cells. This study further delineated molecular mechanisms where by Atn triggered cytotoxicity in TNBC cells. We found Atn can also inhibit metastasis in TNBC cells through cancerous inhibitor of protein phosphatase 2A (CIP2A) pathway. CIP2A is an endogenous inhibitor of protein phosphatase 2A (PP2A), which can increase the migration and invasion of various cancer cells. PP2A is a tumor suppressor, which is functionally defective in various cancers. Atn-induced metastasis inhibition was associated with reactivation of PP2A, downregulation of CIP2A and Akt phosphorylation. Silencing CIP2A enhanced Atn-induced metastasis inhibition and apoptosis in TNBCs. Furthermore, ectopic expression of CIP2A or inhibition of PP2A in TNBC cells abolished the effects of Atn. In conclusion, we found that enhancement of PP2A activity by inhibition of CIP2A, at least in part, promotes the anti-metastasis effect induced by Atn. Our findings disclose the novel therapeutic mechanism of this targeted agent, and suggest the therapeutic potential and feasibility of developing PP2A enhancers as a novel anticancer strategy.
Collapse
Affiliation(s)
- Qiuyue Huang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shanshan Qin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoning Yuan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Juanli Ji
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wenjing Ma
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yunfei Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Pengfei Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhiting Sun
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jingxuan Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
13
|
Maxwell T, Chun SY, Lee KS, Kim S, Nam KS. The anti-metastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression. Int J Oncol 2016; 50:727-735. [DOI: 10.3892/ijo.2016.3825] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 11/05/2022] Open
|
14
|
Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:490209. [PMID: 26539501 PMCID: PMC4619842 DOI: 10.1155/2015/490209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/27/2015] [Indexed: 01/19/2023]
Abstract
Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p < 0.01). The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p < 0.01). This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH.
Collapse
|
15
|
Li A, Wang J, Zhu D, Zhang X, Pan R, Wang R. Arctigenin suppresses transforming growth factor-β1-induced expression of monocyte chemoattractant protein-1 and the subsequent epithelial–mesenchymal transition through reactive oxygen species-dependent ERK/NF-κB signaling pathway in renal tubular epithelial cells. Free Radic Res 2015; 49:1095-113. [DOI: 10.3109/10715762.2015.1038258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: Persistent p27Kip1 induction by interfering with PI3K/Akt/FOXO3a signaling pathway. Eur J Pharmacol 2015; 747:71-87. [DOI: 10.1016/j.ejphar.2014.11.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/06/2014] [Accepted: 11/20/2014] [Indexed: 01/18/2023]
|
17
|
Maghsoumi-Norouzabad L, Alipoor B, Abed R, Eftekhar Sadat B, Mesgari-Abbasi M, Asghari Jafarabadi M. Effects of Arctium lappa L. (Burdock) root tea on inflammatory status and oxidative stress in patients with knee osteoarthritis. Int J Rheum Dis 2014; 19:255-61. [PMID: 25350500 DOI: 10.1111/1756-185x.12477] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM This study was designed to examine the effect of Burdock root tea on inflammatory markers and oxidative stress indicators in patients with knee osteoarthritis (OA). METHODS Thirty-six patients (10 men and 26 women) aged 50-70 years old with knee osteoarthritis referred to the Physical Medicine and Rehabilitation Department of the Tabriz University of Medical Sciences Hospitals, were selected for the study and randomly divided into two groups. Anthropometric measurements, including height, weight and body mass index (BMI) were measured. For all individuals along the 42 days of study period, the same drug treatments, including two lots of 500 mg acetaminophen twice a day and one glucosamine 500 mg once a day,were considered. The intervention group received daily three cups of Burdock root tea (each cup containing 2 g/150 mL boiled water) half-hour after the meal. The control group received three cups containing 150 cc boiled water daily. We assessed inflammatory markers such as high sensitivity C-reactive protein (hs-CRP) and interleukin-6 (IL-6) and oxidative stress indicators such as total antioxidants capacity (TAC), glutathione peroxidase (GPX), superoxide dismutase (SOD) and thiobarbituric acid reactive substances before and after the intervention. RESULTS The results showed that burdock root tea significantly decreased the levels of serum IL-6 (P = 0.002), hs-CRP (P = 0.003) and malondialdehyde (P < 0.001), while the levels of serum TAC (P < 0.001) and activities of SOD (P = 0.009) were significantly increased. GPX activities increased but not significantly. CONCLUSIONS The results suggested that Arctium lappa L. root tea improves inflammatory status and oxidative stress in patients with knee osteoarthritis.
Collapse
Affiliation(s)
| | - Beitollah Alipoor
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Reza Abed
- Students' Research Committee, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Bina Eftekhar Sadat
- Physical Medicine and Rehabilitation, Faculty of Medicine, Tabriz University (Medical Sciences), Tabriz, Iran
| | | | | |
Collapse
|
18
|
Wang P, Wang B, Chung S, Wu Y, Henning SM, Vadgama JV. Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells. RSC Adv 2014; 4:35242-35250. [PMID: 25243063 PMCID: PMC4166488 DOI: 10.1039/c4ra06616b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The low bioavailability of most flavonoids limits their application as anti-carcinogenic agents in humans. A novel approach of treatment with a mixture of bioactive compounds that share molecular anti-carcinogenic targets may enhance the effect on these targets at low concentrations of individual compound, thereby overcoming the limitations of reduced bioavailability. We therefore investigated whether a combination of three natural products arctigenin (Arc), a novel anti-inflammatory lignan from the seeds of Arctium lappa, green tea polyphenol (-)-epigallocatechin gallate (EGCG) and curcumin (Cur) increases the chemopreventive potency of individual compounds. LNCaP prostate cancer and MCF-7 breast cancer cells were treated with 2-4 mg/L (about 5-10μM) Cur, 1μM Arc and 40μM EGCG alone or in combination for 48h. In both cell lines treatment with the mixture of Cur, Arc and EGCG synergistically increased the antiproliferative effect. In LNCaP cells both Arc and EGCG increased the pro-apoptotic effect of Cur. Whereas in MCF-7 cells Arc increased the cell apoptosis of Cur while EGCG enhanced cell cycle arrest of Cur at G0/G1 phase. The strongest effects on cell cycle arrest and apoptosis were achieved by combining all three compounds in both cell lines. The combination treatment significantly increased the ratio of Bax to Bcl-2 proteins, decreased the activation of NFκB, PI3K/Akt and Stat3 pathways and cell migration compared to individual treatment. These results warrant in vivo studies to confirm the efficacy of this novel regimen by combining Arc and EGCG with Cur to enhance chemoprevention in both prostate and breast cancer.
Collapse
Affiliation(s)
- Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Bin Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Seyung Chung
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Susanne M. Henning
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Shi X, Sun H, Zhou D, Xi H, Shan L. Arctigenin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Rats. Inflammation 2014; 38:623-31. [DOI: 10.1007/s10753-014-9969-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Yao X, Li G, Lü C, Xu H, Yin Z. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity. Int Immunopharmacol 2012; 14:138-44. [DOI: 10.1016/j.intimp.2012.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 01/02/2023]
|
21
|
Yao X, Zhu F, Zhao Z, Liu C, Luo L, Yin Z. Arctigenin enhances chemosensitivity of cancer cells to cisplatin through inhibition of the STAT3 signaling pathway. J Cell Biochem 2011; 112:2837-49. [DOI: 10.1002/jcb.23198] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Kou X, Qi S, Dai W, Luo L, Yin Z. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int Immunopharmacol 2011; 11:1095-102. [PMID: 21426947 DOI: 10.1016/j.intimp.2011.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 12/22/2022]
Abstract
Arctigenin has been demonstrated to have an anti-inflammatory function, but the precise mechanisms of its action remain to be fully defined. In the present study, we determined the effects of arctigenin on lipopolysaccharide (LPS)-induced production of proinflammatory mediators and the underlying mechanisms involved in RAW264.7 cells. Our results indicated that arctigenin exerted its anti-inflammatory effect by inhibiting ROS-dependent STAT signaling through its antioxidant activity. Arctigenin also significantly reduced the phosphorylation of STAT1 and STAT 3 as well as JAK2 in LPS-stimulated RAW264.7 cells. The inhibitions of STAT1 and STAT 3 by arctigenin prevented their translocation to the nucleus and consequently inhibited expression of iNOS, thereby suppressing the expression of inflammation-associated genes, such as IL-1β, IL-6 and MCP-1, whose promoters contain STAT-binding elements. However, COX-2 expression was slightly inhibited at higher drug concentrations (50 μM). Our data demonstrate that arctigenin inhibits iNOS expression via suppressing JAK-STAT signaling pathway in macrophages.
Collapse
Affiliation(s)
- Xianjuan Kou
- Tongji Medical College, Huazhong University of Science and Technology, PR China
| | | | | | | | | |
Collapse
|
23
|
Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW, Lee SMY, Leung GPH, Yu PHF, Chan SW. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 2010; 19:245-54. [PMID: 20981575 DOI: 10.1007/s10787-010-0062-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
Abstract
Arctium lappa, commonly known as burdock, is being promoted/recommended as a healthy and nutritive food in Chinese societies. Burdock has been used therapeutically in Europe, North America and Asia for hundreds of years. The roots, seeds and leaves of burdock have been investigated in view of its popular uses in traditional Chinese medicine (TCM). In this review, the reported therapeutic effects of the active compounds present in the different botanical parts of burdock are summarized. In the root, the active ingredients have been found to "detoxify" blood in terms of TCM and promote blood circulation to the skin surface, improving the skin quality/texture and curing skin diseases like eczema. Antioxidants and antidiabetic compounds have also been found in the root. In the seeds, some active compounds possess anti-inflammatory effects and potent inhibitory effects on the growth of tumors such as pancreatic carcinoma. In the leaf extract, the active compounds isolated can inhibit the growth of micro-organisms in the oral cavity. The medicinal uses of burdock in treating chronic diseases such as cancers, diabetes and AIDS have been reported. However, it is also essential to be aware of the side effects of burdock including contact dermatitis and other allergic/inflammatory responses that might be evoked by burdock.
Collapse
Affiliation(s)
- Yuk-Shing Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu JG, Wu JZ, Sun LN, Han T, Du J, Ye Q, Zhang H, Zhang YG. Ameliorative effects of arctiin from Arctium lappa on experimental glomerulonephritis in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:1033-1041. [PMID: 19524415 DOI: 10.1016/j.phymed.2009.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/06/2009] [Accepted: 04/24/2009] [Indexed: 05/27/2023]
Abstract
Membranous glomerulonephritis (MGN) remains the most common cause of adult-onset nephrotic syndrome in the world and up to 40% of untreated patients will progress to end-stage renal disease. Although the treatment of MGN with immunosuppressants or steroid hormones can attenuate the deterioration of renal function, numerous treatment-related complications have also been established. In this study, the ameliorative effects of arctiin, a natural compound isolated from the fruits of Arctium lappa, on rat glomerulonephritis induced by cationic bovine serum albumin (cBSA) were determined. After oral administration of arctiin (30, 60, 120 mg/kgd) for three weeks, the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) and 24-h urine protein content markedly decreased, while endogenous creatinine clearance rate (ECcr) significantly increased. The parameters of renal lesion, hypercellularity, infiltration of polymorphonuclear leukocyte (PMN), fibrinoid necrosis, focal and segmental proliferation and interstitial infiltration, were reversed. In addition, we observed that arctiin evidently reduced the levels of malondialdehyde (MDA) and pro-inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor (TNF-alpha), suppressed nuclear factor-kappaB p65 (NF-kappaB) DNA binding activity, and enhanced superoxide dismutase (SOD) activity. These findings suggest that the ameliorative effects of arctiin on glomerulonephritis is carried out mainly by suppression of NF-kappaB activation and nuclear translocation and the decreases in the levels of these pro-inflammatory cytokines, while SOD is involved in the inhibitory pathway of NF-kappaB activation. Arctiin has favorable potency for the development of an inhibitory agent of NF-kappaB and further application to clinical treatment of glomerulonephritis, though clinical studies are required.
Collapse
Affiliation(s)
- Jian-Guo Wu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang GX, Han J, Feng TT, Li FY, Zhu B. Bioassay-guided isolation and identification of active compounds from Fructus Arctii against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitol Res 2009; 106:247-55. [DOI: 10.1007/s00436-009-1659-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
|
26
|
Kim BH, Hong SS, Kwon SW, Lee HY, Sung H, Lee IJ, Hwang BY, Song S, Lee CK, Chung D, Ahn B, Nam SY, Han SB, Kim Y. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages. J Pharmacol Exp Ther 2008; 327:393-401. [PMID: 18694995 DOI: 10.1124/jpet.108.140145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.
Collapse
Affiliation(s)
- Byung Hak Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ma G, Tabanca N, Husnu Can Baser K, Kirimer N, Pasco DS, Khan IA, Khan SI. Inhibition of NF-κB-mediated transcription and induction of apoptosis in human breast cancer cells by epoxypseudoisoeugenol-2-methyl butyrate. Cancer Chemother Pharmacol 2008; 63:673-80. [DOI: 10.1007/s00280-008-0784-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
|
28
|
Pokharel YR, Liu QH, Oh JW, Woo ER, Kang KW. 4-Hydroxykobusin Inhibits the Induction of Nitric Oxide Synthase by Inhibiting NF-.KAPPA.B and AP-1 Activation. Biol Pharm Bull 2007; 30:1097-101. [PMID: 17541160 DOI: 10.1248/bpb.30.1097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently isolated a novel lignan, 4-hydroxykobusin from Geranium thunbergii (Liu et al., Arch. Pharm. Res., 29, 1109-1113, 2006). Here, we studied its effect on the expression of inducible nitric oxide synthase (iNOS) gene in RAW264.7 cells. 4-Hydroxykobusin inhibited nitric oxide (NO) production in a concentration-dependent manner and blocked the lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS). To identify the mechanistic basis for its inhibition of iNOS induction, we examined the effect of 4-hydroxykobusin on the transactivation of iNOS gene by luciferase reporter activity using -1.59 kb flanking region. The lignan suppressed the reporter gene activity and the LPS-induced reporter activations of nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) were also significantly blocked by 4-hydroxykobusin. These findings suggest that the inhibition of LPS-induced NO formation by 4-hydroxykobusin is due to its inhibition of NF-kappaB and AP-1 activation.
Collapse
|
29
|
Park SY, Hong SS, Han XH, Hwang JS, Lee D, Ro JS, Hwang BY. Lignans from Arctium lappa and Their Inhibition of LPS-Induced Nitric Oxide Production. Chem Pharm Bull (Tokyo) 2007; 55:150-2. [PMID: 17202721 DOI: 10.1248/cpb.55.150] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new butyrolactone sesquilignan, isolappaol C (1), together with four known lignans, lappaol C (2), lappaol D (3), lappaol F (4), and diarctigenin (5), were isolated from the methanolic extract of the seeds from the Arctium lappa plant. The structure of isolappaol C (1) was determined by spectral analysis including 1D- and 2D-NMR. All the isolates were evaluated for their inhibitory effects on the LPS-induced nitric oxide production using murine macrophage RAW264.7 cells. Lappaol F (4) and diarctigenin (5) strongly inhibited NO production in the LPS-stimulated RAW264.7 cells with IC(50) values of 9.5 and 9.6 microM, respectively.
Collapse
Affiliation(s)
- So Young Park
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Chin YW, Park EY, Seo SY, Yoon KD, Ahn MJ, Suh YG, Kim SG, Kim J. A novel iNOS and COX-2 inhibitor from the aerial parts of Rodgersia podophylla. Bioorg Med Chem Lett 2006; 16:4600-2. [PMID: 16784852 DOI: 10.1016/j.bmcl.2006.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Revised: 05/25/2006] [Accepted: 06/05/2006] [Indexed: 11/26/2022]
Abstract
A novel compound, rodgersinol (1), was isolated from the aerial parts of Rodgersia podophylla and its structure was elucidated with various spectroscopic methods. Rodgersinol (1) exhibited the significant inhibitory effects on iNOS and COX-2 expressions in LPS-activated macrophages.
Collapse
Affiliation(s)
- Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim CY, Ahn MJ, Kim J. A preparative isolation and purification of arctigenin and matairesinol fromForsythia koreana by centrifugal partition chromatography. J Sep Sci 2006; 29:656-9. [PMID: 16605084 DOI: 10.1002/jssc.200500316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrifugal partition chromatography was applied to separate arctigenin and matairesinol from Forsythia koreana extract with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (5:5:5:5 v/v). Using this method, arctigenin and matairesinol were successfully separated from partially purified F. koreana extracts in only one step. The purities of isolated compounds were determined to be over 90% by HPLC analysis.
Collapse
Affiliation(s)
- Chul Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
32
|
Kim IK, Chung HT, Oh GS, Bae HO, Kim SH, Chun HJ. Integrated gold-disk microelectrode modified with iron(II)-phthalocyanine for nitric oxide detection in macrophages. Microchem J 2005. [DOI: 10.1016/j.microc.2004.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Abstract
Lignans are a class of secondary plant metabolites produced by oxidative dimerization of two phenylpropanoid units. Although their molecular backbone consists only of two phenylpropane (C6-C3) units, lignans show an enormous structural diversity. There is a growing interest in lignans and their synthetic derivatives due to applications in cancer chemotherapy and various other pharmacological effects. This review deals with lignans possessing anticancer, antioxidant, antimicrobial, anti-inflammatory and immunosuppressive activities, and comprises the data reported in more than 100 peer-reviewed articles, so as to highlight the recently reported bioactive lignans that could be a first step towards the development of potential new therapeutic agents.
Collapse
Affiliation(s)
- Muhammad Saleem
- Medicinal Chemistry Research Center, Division of Life Sciences, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea
| | | | | | | |
Collapse
|
34
|
Cho MK, Jang YP, Kim YC, Kim SG. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-α inhibition. Int Immunopharmacol 2004; 4:1419-29. [PMID: 15313439 DOI: 10.1016/j.intimp.2004.06.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/15/2004] [Accepted: 06/23/2004] [Indexed: 02/06/2023]
Abstract
Arctigenin, naturally occurring in Bardanae fructus, Saussurea medusa, Arctium lappa L., Torreya nucifera and Ipomea cairica, is a phenylpropanoid dibenzylbutyrolactone lignan with antioxidant and anti-inflammatory activities. Previously, we showed that arctigenin potently inhibited the induction of nitric oxide synthase (iNOS) by lipopolysaccharide (LPS), which involved suppression of NF-kappaB activation. In the present study, we examined the effects of arctigenin on mitogen-activated protein (MAP) kinase activation in Raw264.7 cells and MAP kinase kinase (MKK) activity. The effect of arctigenin on activator protein-1 (AP-1) activation was also studied in association with tumor necrosis factor-alpha (TNF-alpha) expression. Immunoblot analysis showed that arctigenin inhibited phosphorylation of MAP kinases ERK1/2, p38 kinase and JNK and their activities in Raw264.7 cells treated with LPS. Arctigenin potently inhibited the activity of MKK1 in vitro with the IC(50) value of 1 nM. Gel shift and reporter gene analyses revealed that arctigenin inhibited LPS-inducible AP-1 binding to the AP-1 consensus oligonucleotide and AP-1-mediated reporter gene expression. In view of the potential role of AP-1 in the induction of TNF-alpha, we next examined the inhibitory effects of arctigenin on the expression of TNF-alpha. Arctigenin blocked TNF-alpha production and decreased the level of TNF-alpha mRNA in the cells exposed to LPS. These results showed that arctigenin inhibited activation of MAP kinases including ERK1/2, p38 kinase and JNK through the inhibition of MKK activities, leading to AP-1 inactivation, which might, at least in part, contribute to the inhibition of TNF-alpha production.
Collapse
Affiliation(s)
- Min Kyung Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
35
|
Integrated Microdisk Gold Electrode Modified with Metal-porphyrin and Metal-phthalocyanines for Nitric Oxide Determination in Biological Media. B KOREAN CHEM SOC 2003. [DOI: 10.5012/bkcs.2003.24.11.1579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Kim SH, Jang YP, Sung SH, Kim CJ, Kim JW, Kim YC. Hepatoprotective dibenzylbutyrolactone lignans of Torreya nucifera against CCl4-induced toxicity in primary cultured rat hepatocytes. Biol Pharm Bull 2003; 26:1202-5. [PMID: 12913279 DOI: 10.1248/bpb.26.1202] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three dibenzylbutyrolactone lignans, (-)-arctigenin, (-)-traxillagenin, and (-)-4'-demethyltraxillagenin, isolated from the bark of Torreya nucifera SIEB. et ZUCC. (Taxaceae) showed significant hepatoprotective activity in primary cultures of rat hepatocytes injured by carbon tetrachloride (CCl(4)). These lignans reduced the release of glutamic pyruvic transaminase into the culture medium from the CCl(4)-injured primary cultures of rat hepatocytes. Further investigation revealed that the three lignans significantly preserved the level of glutathione (GSH) and activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the CCl(4)-injured rat hepatocytes. The lignans also ameliorated lipid peroxidation as demonstrated by a reduction in malondialdehyde-related products. Moreover, these lignans significantly attenuated the GSH reduction caused by diethylmaleate which depletes GSH through the formation of stable conjugates. However, these lignans showed no effect on the GSH synthesis inhibited by buthionine sulfoximine. From these results, it can be concluded that arctigenin, traxillagenin, and 4'-demethyltraxillagenin may protect hepatocytes from CCl(4) injury by maintaining the GSH level.
Collapse
Affiliation(s)
- Seung Hyun Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Lee AK, Sung SH, Kim YC, Kim SG. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappaBalpha phosphorylation, C/EBP and AP-1 activation. Br J Pharmacol 2003; 139:11-20. [PMID: 12746218 PMCID: PMC1573829 DOI: 10.1038/sj.bjp.0705231] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
1. Sauchinone, a lignan isolated from Saururus chinensis (Saururaceae), is a diastereomeric lignan with cytoprotective and antioxidant activities in cultured hepatocytes. The effects of sauchinone on the inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha) and cyclooxygenase 2 (COX-2) gene expression and on the activation of transcription factors, nuclear factor-kappaB (NF-kappaB), CCAAT/enhancer-binding protein (C/EBP), activator protein-1 (AP-1) and cAMP-response element-binding protein (CREB) were determined in Raw264.7 cells as part of the studies on its anti-inflammatory effects. 2. Expression of the iNOS, TNF-alpha and COX-2 genes was assessed by Northern and Western blot analyses. NO production was monitored by chemiluminescence detection using a NO analyzer. To identify the transcriptional factors affected by sauchinone, the extents of NF-kappaB, C/EBP, AP-1 and CREB activation were measured. Activation of the transcription factors was monitored by gel mobility shift assay, whereas p65 and I-kappaBalpha were analyzed by immunocytochemical and immunoblot analyses. 3. Sauchinone inhibited the induction of iNOS, TNF-alpha and COX-2 by lipopolysaccharide (LPS) (IC50</=10 micro M) with suppression of the mRNAs. 4. Sauchinone (1-30 micro M) inhibited LPS-inducible nuclear NF-kappaB activation and nuclear translocation of p65, which was accompanied by inhibition of I-kappaBalpha phosphorylation. 5. LPS-inducible increase in the intensity of C/EBP binding to its consensus sequence was also inhibited by sauchinone. The AP-1, but not CREB, DNA binding activity was weakly inhibited by sauchinone. 6. These results demonstrate that sauchinone inhibits LPS-inducible iNOS, TNF-alpha and COX-2 expression in macrophages through suppression of I-kappaBalpha phosphorylation and p65 nuclear translocation and of C/EBP and/or AP-1 activation, which may constitute anti-inflammatory effects of the lignan.
Collapse
Affiliation(s)
- Ae Kyung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Young Choong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
- Author for correspondence:
| |
Collapse
|
38
|
Choi YH, Kim J, Yoo KP. High performance liquid chromatography-electrospray lonization MS-MS analysis ofForsythia koreana fruits, leaves, and stems. Enhancement of the efficiency of extraction of arctigenin by use of supercritical-fluid extraction. Chromatographia 2003. [DOI: 10.1007/bf02497480] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|